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Abstract
Aging is characterized by the progressive accumulation of degenerative
changes, culminating in impaired function and increased probability of death. It
is the major risk factor for many human pathologies – including cancer, type 2
diabetes, and cardiovascular and neurodegenerative diseases – and
consequently exerts an enormous social and economic toll. The major goal of
aging research is to develop interventions that can delay the onset of multiple
age-related diseases and prolong healthy lifespan (healthspan). The
observation that enhanced longevity and health can be achieved in model
organisms by dietary restriction or simple genetic manipulations has prompted
the hunt for chemical compounds that can increase lifespan. Most of the
pathways that modulate the rate of aging in mammals have homologs in yeast,
flies, and worms, suggesting that initial screening to identify such
pharmacological interventions may be possible using invertebrate models. In
recent years, several compounds have been identified that can extend lifespan
in invertebrates, and even in rodents. Here, we summarize the strategies
employed, and the progress made, in identifying compounds capable of
extending lifespan in organisms ranging from invertebrates to mice and discuss
the formidable challenges in translating this work to human therapies.
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Introduction
Aging is characterized by molecular, cellular, and organismal 
changes that culminate in the inability of an organism to main-
tain physiological integrity1. In humans, aging is associated with 
a greatly increased predisposition to a wide variety of diseases, 
including cancer, type 2 diabetes (T2D), neurodegeneration, 
and cardiovascular disease, leading to increased morbidity and 
mortality1,2. The long-term objective of aging research is to 
develop interventions that can delay the onset of age-associated 
diseases and promote longevity. With this goal, research in bio-
gerontology is focused on elucidating basic mechanisms of aging. 
Current evidence suggests that many of these mechanisms are 
conserved among eukaryotes, from yeast to mammals.

In recent decades, work in diverse organisms has identified cel-
lular signaling pathways that modulate the aging rate3,4. Many of 
these pathways normally function to sense the nutritional status of 
the organism (Figure 1) and initiate signaling cascades that modu-
late specific inter- and intra-cellular pathways and alter target cell 
physiology accordingly2. These nutrient-sensing pathways, which 
include insulin and insulin-like growth factor (IGF) signaling (IIS)5, 

target of rapamycin (mTOR) signaling6, adenosine monophosphate 
(AMP)-activated protein kinase (AMPK) signaling7, and sirtuins8, 
coordinate cellular growth- and metabolism-related processes and 
integrate them with levels of nutrients, energy, growth factors, and 
stress. When nutrient levels and growth cues are reduced, signal-
ing through these pathways is altered. Genetic or, in some cases, 
pharmacologic manipulation of these pathways can lead to lifespan 
extension, whereas their age-associated dysregulation may contrib-
ute to organismal senescence.

Dietary restriction (DR), a dietary regimen involving either a reduc-
tion in overall calorie ingestion without malnutrition or diminished 
intake of specific dietary components such as amino acids, is the 
best-characterized intervention that slows aging and delays dis-
ease in a wide range of species9,10. Molecular effectors implicated 
in mediating the remarkable effects of DR include these nutrient-
sensing pathways9. Initial evidence suggests that some of these 
same pathways may impact aging and disease in humans as well. 
For example, genetic variants in the FOXO3A gene, encoding a 
transcription factor downstream of IIS, have been linked to human 
longevity11–16. Individuals with Laron dwarfism have greatly 

Figure 1. Summary of various factors that may contribute to aging. Dysregulation of nutrient-sensing pathways, mitochondrial dysfunction, 
loss of proteostasis, stem cell attrition, accumulated DNA damage, reduced autophagy, accumulation of senescent cells, and increased 
sterile inflammation are some important pathways thought to drive aging1.

Page 3 of 19

F1000Research 2016, 5(F1000 Faculty Rev):406 Last updated: 29 MAR 2016



reduced serum IGF1 levels and profound protection from T2D and 
cancer17. Pharmacological interventions that partially mimic DR by 
modulating activities of these nutrient-sensing pathways have the 
potential to improve healthspan and promote longevity. For exam-
ple, rapamycin, a specific inhibitor of mTOR, has been proposed to 
provoke some of the beneficial effects of DR under standard feeding 
and nutrient conditions18. Similarly, a handful of other molecules 
such as metformin and resveratrol have been shown to modulate 
nutrient signaling and promote healthspan in multiple model organ-
isms and are discussed in detail subsequently.

In addition to dysregulation of nutrient-sensing pathways, other 
conserved mechanisms implicated in the deleterious manifestations 
of aging include (Figure 1) i) mitochondrial dysfunction, leading 
to impaired respiratory metabolism, increased generation of reac-
tive oxygen species (ROS), as well as potentially other sequelae, 
ii) increased accumulation of DNA damage, induced by exogenous 
insults and endogenous hazards including DNA replication errors 
and ROS, iii) diminished proteostasis associated with increased 
protein misfolding and aggregation, iv) cellular senescence, con-
tributing to tissue dysfunction, v) increased sterile inflammation, 
vi) stem cell attrition, and vii) epigenetic alterations1,19. For a more 
complete discussion of conserved aging mechanisms, the reader 
is referred elsewhere1. Pharmacological agents targeting some of 
these changes represent candidate anti-aging drugs. In this review, 
we will provide an overview of pharmacological interventions with 
known or potential ability to delay aging and promote late-life 
health. First, we summarize the major contributions that studies in 
invertebrate model systems have made towards screening efforts to 
identify small molecule anti-aging drugs. Then we focus in depth on 
molecules currently under study for their potential to extend lifespan 
and delay disease. Finally, challenges in screening for new anti- 
aging drugs and in translating this work to humans will be discussed.

Invertebrates as model systems to screen pro-longevity 
small molecules
Due to a variety of factors – notably including ease of genetic 
manipulation and a physiology similar to that of humans – the 
mouse has become the pre-eminent mammalian model organism in 
aging biology20. However, in light of the high housing costs and 
relatively long lifespan of mice, large-scale unbiased screening to 
identify anti-aging medicines is not feasible in this organism. With 
the realization that many aging-related pathways are evolutionar-
ily conserved, even among widely divergent species, short-lived 
invertebrate models have instead been employed for such screen-
ing. The nematode Caenorhabditis elegans – with its short lifespan 
of ~3 weeks, ease of culture and genetic manipulation, and well- 
characterized aging biology – represents a very attractive model 
system for chemical screening to identify compounds that modu-
late lifespan and age-related phenotypes. Indeed, several stud-
ies have identified a number of candidate anti-aging compounds 
using C. elegans as a model organism. To date, the most comprehen-
sive small molecule lifespan screen using C. elegans was conducted 
by Petrascheck et al., who evaluated 88,000 chemicals for their 
ability to enhance longevity21. They identified 115 compounds that 
significantly increased worm lifespan. Interestingly, one of these 

displayed structural resemblance to human antidepressants that 
affect signaling by the neurotransmitter serotonin. They subse-
quently found that mianserin, a serotonin receptor antagonist used 
as an antidepressant in humans, extends C. elegans lifespan when 
administered at 50 μM, likely via mechanisms linked to DR21. 
In an evaluation of 19 compounds with known effects on human 
physiology, Evason et al. reported that the anticonvulsants etho-
suximide (dosed at 2 and 4 mg/mL), trimethadione (4 mg/mL), 
and 3,3-diethyl-2-pyrrolidinone (2 mg/mL) delayed age-related 
changes and increased C. elegans lifespan22.

Using a bioinformatics approach to identify DR mimetics, Calvert 
et al. analyzed drugs that induce gene expression changes similar 
to those associated with DR and identified 11 small molecules 
with this property23. Interestingly, among five drugs tested, four – 
rapamycin (administered at 10 μM), allantoin (250 μM), trichos-
tatin A (100 μM), and LY-294002 (100 μM) – provoked increased 
lifespan and healthspan in wild-type (WT) C. elegans. Conversely, 
no longevity effects were observed in the eat-2 mutant background, 
a genetic DR model, suggesting that the life-extending effects of 
these drugs may indeed occur via DR-related mechanisms23.

A study by Alavez et al. reported that amyloid-binding compounds 
maintain protein homeostasis and extend lifespan in C. elegans24. 
Exposure of WT worms to the amyloid-binding dye Thioflavin 
T (ThT) at either 50 or 100 μM throughout adulthood increased 
median lifespan by 60% and maximal lifespan by 43–78%24. ThT 
treatment reduced Aβ-aggregation and preserved muscle integrity 
in C. elegans models of Alzheimer’s disease (AD), resulting in a 
decreased proportion of paralyzed worms. ThT administration 
also suppressed the toxicity associated with metastable proteins 
in mutant worms24. ThT-mediated suppression of protein aggrega-
tion and lifespan extension depended upon molecular chaperones, 
autophagy, proteosomal function, the proteostasis regulator heat 
shock factor 1 (HSF-1), and the stress resistance and longevity 
transcription factor SKN-124. Compounds with structural simi-
larity to ThT also extended worm lifespan by up to 40%, but at 
significantly lower concentrations than ThT. Moreover, exposure 
to other protein-aggregate-binding compounds like curcumin 
(100 μM) and rifampicin (10–100 μM) extended worm lifespan by 
up to 45%24. These results highlight the importance of proteostasis 
in worm healthspan and lifespan, and provide further impetus for 
the development of interventions capable of maintaining proteosta-
sis to suppress aging and age-related diseases.

The National Institute of Aging has recently sponsored a pharma-
cological intervention program using Caenorhabditis as a model 
system, analogous to similar ongoing efforts in the mouse. The 
Caenorhabditis Intervention Testing Program (CITP) is a multi-
institutional effort aimed at identifying compounds with the abil-
ity to extend lifespan and enhance healthspan, using multiple 
Caenorhabditis species and multiple strains of C. elegans. The 
identification of compounds that are effective in genetically diverse 
worm populations may accelerate the discovery of interventions 
that can extend lifespan/healthspan in other species, potentially 
including humans.
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The fruit fly Drosophila melanogaster represents another model 
suitable for the screening of anti-aging compounds25. A wide variety 
of genetic strains of D. melanogaster are available, with different 
mean lifespans, useful for validation of compound efficacy across 
multiple genetic backgrounds. Similar to C. elegans, Drosophila 
has a short lifespan, and the many genetic tools available in this 
organism facilitate mechanistic study of lead compounds25. The first 
study reporting lifespan extension in Drosophila by administration 
of a drug was performed by Kang et al., who showed that feeding 
Drosophila 4-phenylbutyrate at 5–10 mM – a drug with multiple 
activities, including histone deacetylase inhibition – significantly 
increased both median and maximum lifespan without negative 
impacts on locomotion, stress resistance, or reproduction26. A more 
recent study described the screening of protein kinase inhibitors for 
effects on Drosophila lifespan27. Among the 80 inhibitors tested in 
this study, 17 significantly increased Drosophila lifespan without 
affecting food intake or consumption, indicating that the effects 
of these inhibitors on Drosophila lifespan do not involve DR27. In 
this regard, a recent study by Slack et al. reported that attenuation 
of RAS-Erk-ETS signaling results in reduced IIS and provokes 
lifespan extension in Drosophila28. Trametinib (1.56–15.6 μM), a 
highly specific MEK inhibitor that attenuates signaling downstream 
of RAS, can prolong median lifespan of female Drosophila by up 
to 12% (p=1.92 × 10-10), and at higher doses (156 μM), improves 
late-life survival28. Trametinib administration was effective in 
promoting fly longevity even when administered to middle-aged 
animals. These and similar findings with other drugs – cf. extension 
of mouse lifespan by rapamycin treatment initiated in middle age, 
see below – raise the possibility that anti-aging medicines in humans 
might be effective even when administered to older individuals, 
thus avoiding potential developmental side effects of these drugs.

Compounds that modulate aging and age-associated 
phenotypes in mammals
The mTOR inhibitor rapamycin
mTOR is a conserved serine/threonine kinase that senses and 
responds to nutrient availability, growth factors, and environmental 
stress and plays a key role in triggering growth6,29. In multicellular 
eukaryotes, mTOR exists in two distinct multi-protein complexes, 
mTORC1 and mTORC2, distinguished by their association with 
regulatory-associated protein of mTOR (RAPTOR) and rapamycin- 
insensitive companion of mTOR (RICTOR), respectively30,31. 
Rapamycin forms a complex with the FKBP12 protein, which binds 
to mTORC1 and inhibits its activity32. Importantly, chronic treat-
ment with rapamycin also inhibits mTORC233. mTORC1 activity 
is regulated by nutrients (glucose and amino acids), cytokines, hor-
mones (insulin or IGF1), energy (ATP levels), and oxidative stress 
via PI3K, AKT, and AMPK signaling6. Key downstream mediators 
of mTORC1 signaling are pathways that control cell growth, pro-
liferation, stress response, and autophagy29,34. mTORC1, therefore, 
critically integrates cellular growth and maintenance with nutrient 
availability, hormonal cues, and other environmental stimuli.

A number of studies have established a link between mTOR sign-
aling pathways and longevity in organisms ranging from yeast to 
mammals. Inhibition of mTOR signaling by genetic or pharma-
cologic means extends lifespan in yeast35–37, nematodes38,39, fruit 
flies40, and mice33,41–47. Likewise, genetic deletion in mice of the 

downstream mTORC1 effector, S6 kinase 1, increases oxidative 
metabolism, protects against age- and diet-induced obesity, and 
increases female lifespan47,48. Consistently, enhanced activity of the 
mTORC1 target 4E-BP1 in skeletal muscle results in increased oxi-
dative metabolism and protects mice from diet- and age-induced 
metabolic dysfunction49.

In a landmark study, NIA’s Interventions Testing Program (ITP) 
showed that treatment of a genetically heterogeneous mouse stock 
with the mTOR inhibitor rapamycin (administered at 14 mg/kg 
food; 2.24 mg/kg body weight/day) initiated at either 9 months or 
20 months of age extended lifespan in both sexes43,50. A follow-up 
study demonstrated that the increase in mouse lifespan induced by 
rapamycin is dose and sex dependent. At a given chow concen-
tration of rapamycin, female mice showed a greater increase in 
lifespan than did males, which correlated with higher blood levels 
of rapamycin achieved in females relative to males51. Rapamycin 
treatment induced entirely distinct gene expression changes in 
males and females, implying the existence of sex-specific responses 
to mTOR inhibition51. Furthermore, the expression patterns of 
xenobiotic-metabolizing enzymes in the livers of rapamycin-treated 
(14 mg/kg food) mice differed strikingly from those in DR-exposed 
animals at 12 months of age51. Indeed, DR is less effective in lifespan 
extension when initiated later in life52–54, while rapamycin treatment 
extends the lifespan of mice, even when started in middle age43,55. 
Crucially, rapamycin-induced lifespan extension in mice has also 
been observed in diverse genetic backgrounds41,42,44,56.

Mechanisms of longevity extension by rapamycin remain a hotly 
debated topic in aging biology56,57. Rapamycin has anti-neoplastic 
properties58–60, and cancer is the major cause of death in most mouse 
strains that show rapamycin-mediated lifespan extension43,61. In 
this context, one plausible explanation for the extension of mouse 
lifespan by rapamycin is that this drug suppresses the onset and/or 
aggressiveness of lethal cancers. However, some investigators have 
reported that rapamycin also inhibits age-associated phenotypes 
besides neoplasia62,63, strongly suggesting that this drug has broader 
anti-aging effects. In contrast, a recent exhaustive study by Neff  
et al. claimed that the effects of rapamycin on aging phenotypes 
per se were quite limited56. In this regard, conflicting observations 
have been made concerning the effects of rapamycin treatment 
in mouse models of AD64. Long-term rapamycin treatment led to 
behavioral improvements in mouse AD models and induced an 
autophagy-mediated decrease in Aβ and hyperphosphorylated tau 
levels65,66. Conversely, rapamycin has been shown to promote Aβ 
production67,68 and led to an increase in Aβ-induced cell death69.

Rapamycin has significant side effects – metabolic dysfunction, 
cataract, and testicular atrophy in particular – that may limit its 
long-term utility as an anti-aging treatment in humans70,71. Most 
importantly, due to the immunomodulatory effects of mTOR 
inhibitors, treatment of human patients with the rapamycin-like 
drug everolimus/RAD001 is associated with a higher incidence of 
infection in individuals with diseases such as cancer72,73 and tuber-
ous sclerosis complex (TSC)74. Conversely, a recent study showed 
that short-term administration of everolimus/RAD001 to healthy 
older individuals enhanced the immunological response to influenza 
vaccination, with modest side effects75. Decreased influenza vaccine 
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response is a major clinical challenge in older populations76. These 
findings suggest that intermittent or short-term administration of 
rapamycin or other mTOR inhibitors might suppress certain func-
tionally important effects of aging, such as poor immunization 
response, while avoiding the negative consequences associated with 
chronic use of these agents. A recent study in mice is consistent 
with this view, identifying an intermittent rapamycin administration 
regimen in mice that minimizes metabolic dysfunction, while main-
taining chronic mTORC1 suppression in adipose tissue, though not 
in other tissues77. It will be of great interest to evaluate the effects 
of such intermittent dosing regimens on a wide range of age- 
associated phenotypes and on lifespan.

Metformin and other biguanides
Metformin, an oral biguanide antiglycemic agent, is the most 
widely used drug in the treatment of metabolic syndrome and T2D. 
Metformin’s mechanism of action is not completely understood 
and is likely to be multi-factorial. It was reported to decrease 
serum glucose levels by inhibiting respiratory chain Complex I 
in hepatocytes78, resulting in reduced ATP production, leading to 
activation of the LKB1 and AMPK kinases, suppressing hepatic 
gluconeogenesis79,80. Metformin has been reported to activate 
AMPK in many other tissues, including adipose, skeletal muscle, 
heart, pancreatic β-cells, and hypothalamus with potential ben-
eficial physiological effects in patients with T2D81,82. However, 
metformin also exerts important effects independent of AMPK 
and LKB183, e.g. by antagonizing the action of glucagon84. Recently, 
another AMPK-independent mechanism has been revealed for 
metformin. A study by Madiraju et al. showed that metformin 
non-competitively inhibits the redox shuttle enzyme mitochon-
drial glycerophosphate dehydrogenase, increasing the cytosolic 
redox state and decreasing the mitochondrial redox state85. This 
suppresses hepatic gluconeogenesis by reducing the conversion of 
lactate and glycerol to glucose85. Although metformin is currently 
approved for treatment of T2D, a large literature suggests efficacy 
of metformin against other conditions, particularly cardiovascular 
diseases and cancer78. In this regard, a recent study demonstrated 
that metformin reduces tumorigenesis by inhibiting mitochondrial 
Complex I in cancer cells86.

AMPK activation provokes longevity in flies and worms87,88. A 
number of studies suggest that metformin treatment can recapitu-
late some effects of DR. In this context, several studies have exam-
ined the effects of metformin and other biguanides on lifespan and 
reported a variety of outcomes. Metformin and other biguanides 
extend C. elegans lifespan in a dose-dependent manner89–91. The 
increase in C. elegans lifespan by metformin is mediated through 
inhibition of bacterial folate and methionine metabolism, which 
in turn alters methionine metabolism in the worm, resulting in 
reduced S-adenosylmethionine and increased S-adenosylhomo-
cysteine levels89. However, metformin apparently does not extend 
longevity in D. melanogaster92,93. Indeed, despite robust activation 
of AMPK, high doses of metformin actually decrease lifespan of 
both male and female flies93, perhaps due to disruption of intestinal 
fluid homeostasis93. However, metformin treatment suppressed age-
related phenotypes in intestinal midgut stem cells94 and also exerted 
beneficial effects in a fly obesity model95. A recent study showed 
that metformin treatment causes a significant extension in mean and 
maximal lifespan in both sexes of the cricket Acheta domesticus96.

Several studies have been performed in rodents to test the effects 
of metformin and other biguanides on lifespan; the outcomes have 
varied with genotype, sex, and dose and duration of treatment97. 
Chronic treatment with metformin (100 mg/kg in the drinking 
water) enhanced the mean lifespan of cancer-prone HER-2/neu 
transgenic, outbred SHR, and inbred 129/Sv female mice by 8% 
(p<0.05), 37.8% (p<0.01), and 4.4% (p<0.05), respectively98–100. 
Metformin treatment also extended the maximum lifespan of 
HER-2/neu transgenic and outbred SHR female mice by 9% 
and 10.3%, respectively, while no effect was observed on maxi-
mal lifespan in inbred 129/Sv female mice98–100. Conversely, 
treatment of inbred 129/Sv male mice with a similar dose of 
metformin actually reduced mean lifespan by 13.4%100. How-
ever, metformin treatment (2 mg/mL in drinking water) in a 
transgenic mouse model of Huntington disease (HD) prolonged 
male mean lifespan by 20.1% (p=0.017), but did not affect 
female survival101. It has been reported that metformin treatment 
(100 mg/kg in the drinking water) of female outbred SHR mice 
initiated at 3 months of age induced a trend towards increased 
mean lifespan102. Metformin treatment also postponed the onset 
of detectable tumors when started at young or middle ages, but 
not at old age102. Neonatal metformin treatment of 129/Sv mice 
(100 mg/kg via subcutaneous injection) led to a 20% (p<0.001) 
increase in male mean lifespan and also slightly increased maxi-
mum lifespan by 3.5%103. However, in females, the mean and 
maximum lifespan in metformin-treated groups were decreased 
by 9.1% and 3.8%, respectively103. In a recent study by Martin-
Montalvo et al., male C57BL/6 mice supplemented with 0.1% 
metformin in the diet showed a 5.8% increase in mean lifespan 
(p=0.02, Gehan–Breslow survival test), whereas supplementa-
tion with 1% metformin was toxic and reduced mean lifespan by 
14.4%104. However, supplementation of B6C3F1 male mice with 
0.1% metformin resulted in extension of mean lifespan only by 
4.2% (p=0.064, Gehan–Breslow)104. Treatment with another bigua-
nide, phenformin (2 mg/mouse in 0.2 mL of drinking water), 
significantly reduced spontaneous tumor development in female 
C3H/Sn mice and prolonged mean lifespan by 21% or more 
(p<0.05)105,106 and maximum lifespan by 26%105. Evaluation of the 
lifespan effects of metformin in mice by the ITP consortium is 
ongoing, and the results should be available soon.

In rats, buformin treatment (5 mg/rat in 1 mL of drinking water) 
led to a non-significant 7.3% increase in mean lifespan of female 
LIO animals, while phenformin (5 mg/rat in 1 mL of drinking 
water) had no effect105. However, administration of both buformin 
and phenformin increased the maximum lifespan of female LIO 
rats by 5.5% and 9.8%, respectively105. Treatment with metformin 
(300 mg/kg/day) did not increase either mean or maximum lifespan 
of male F344 rats107. However, in the same report, a parallel group 
of male F344 rats exposed to DR also failed to exhibit lifespan 
extension107, leaving the metformin results in this study somewhat 
inconclusive. Mechanistically, treatment with metformin has been 
proposed to mimic some effects of DR, in particular by increasing 
AMPK activity and also activating antioxidant responses, leading 
to a reduction in both oxidative damage accumulation and chronic 
inflammation104.

Although no study has formally analyzed the effects of long-term 
metformin treatment on lifespan in healthy humans, randomized 
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clinical trials of metformin showed beneficial effects on health 
and survival in overweight/obese patients with T2D, as shown by 
decreased incidences of cardiovascular disease and cancer and 
reduced overall mortality108–110. However, when combined with 
sulfonylurea, metformin increased the risk of diabetes-related 
death and all-cause mortality in a mixed group of non-overweight 
and overweight/obese individuals with T2D78,108. Consistent with 
these observations, a recent study by Bannister et al. reported that 
patients with T2D treated with metformin displayed improved sur-
vival compared to matched, non-diabetic controls, whereas those 
treated with sulfonylureas showed reduced survival111.

Given the relatively promising rodent data, the hints that met-
formin might suppress cancer and other age-associated conditions 
in humans, and metformin’s relatively benign safety profile, there 
is great current interest in formally testing the ability of this drug 
to delay age-associated disease in humans112. Indeed, the US Food 
and Drug Administration (FDA) recently approved a study termed 
Targeting Aging With Metformin (TAME) for the evaluation of 
metformin as an anti-aging drug. The TAME project will involve 
approximately 3000 participants between the ages of 70 years and 
80 years who either already have one, two, or all three of the condi-
tions: cancer, heart disease, or cognitive impairment or are at risk 
of developing them. The trial will take place at roughly 15 centers 
around the United States over 5–7 years, costing approximately $50 
million113. The goal of the study is to determine whether metformin 
can prevent the onset of age-associated disease. This landmark trial 
will represent the first testing of a candidate anti-aging compound 
in humans.

Resveratrol and other sirtuin-activating compounds
The sirtuins are a family of NAD+-dependent deacetylases/ADP-
ribosyltransferases/deacylases implicated in regulating nutrient 
responses and numerous other aspects of cell biology8. Over-
expression of Sir2, the founding member of the sirtuin family, 
extends replicative lifespan in the budding yeast Saccharomyces 
cerevisiae by repressing the accumulation of extrachromosomal 
rDNA plasmids, promoting segregation of an undamaged pro-
teome to the daughter cell, enforcing subtelomeric silencing, and 
perhaps other mechanisms114,115. Several, though not all, inves-
tigators have found that overexpression of sirtuins in worms and 
flies modestly increases lifespan in these organisms116–123. Interest-
ingly, the Sir2 homolog Sir-2.1 can extend C. elegans lifespan in a 
manner independent of its deacetylase activity116. Indeed, 
nicotinamide (NAM), a product of sirtuin activity, and its metab-
olite, 1-methylnicotinamide (MNA), are capable of extending 
worm lifespan, potentially by inducing transient ROS signaling116. 
In mammals, SIRT1 is the closest Sir2 homolog; overexpression 
of this protein in the brain (but not the whole organism) extends 
lifespan124, probably by enhancing hypothalamic function during 
aging125. Global overexpression of another sirtuin, SIRT6, extends 
mouse lifespan in males specifically, at least in part via sup-
pression of lung cancer, a major cause of death in males of the 
mouse stock used126,127. SIRT2 overexpression stabilizes levels 
of the mitotic checkpoint protein BubR1 in progeroid BubR1H/H 
mice and extends both median and maximum lifespan in male 
mice of this strain128. No information is available concerning the 
potential effects of chronic SIRT2 overexpression in WT animals. 
Accumulating evidence suggests that NAD+ levels may decline 

during aging, impairing sirtuin activity, and that the ability of 
sirtuin overexpression to increase lifespan partially counters this 
effect by maintaining sirtuin function in the face of a diminished 
NAD+ pool in older organisms129.

Resveratrol and certain other polyphenols were originally identi-
fied as Sir2/SIRT1 activators that extended the average and maxi-
mal lifespan of yeast130. It is important to note that resveratrol is a 
highly promiscuous drug and exerts functionally important effects 
on many cellular targets131. Treatment of worms and flies with res-
veratrol (dosed at 100 μM in worms and 10–100 μM in flies) has 
also been reported to extend lifespan, dependent on the presence 
of functional Sir-2.1 and dSir2, respectively132. However, a study 
by Bass et al. claimed that resveratrol treatment (1–1000 μM) had 
no significant effects on Drosophila lifespan133. The same study 
also reported that resveratrol treatment at 100 μM induced only 
a slight and sporadic increase in C. elegans lifespan in both WT 
and sir-2.1 mutant animals, suggesting that these small increases 
in C. elegans lifespan induced by resveratrol may be Sir-2.1 
independent133. Resveratrol protects worms from oxidative stress, 
radiation-induced damage, and amyloid toxicity134–136 and also 
induces radioprotection in flies137. Resveratrol treatment increases 
mean and maximum lifespan in the honeybee138 and the short-lived 
fishes Nothobranchius furzeri and Nothobranchius guentheri139–141.

It was reported that resveratrol and other sirtuin-activating com-
pounds (STACs) activate Sir2/SIRT1 allosterically130. However, 
other groups have found that these compounds were unable to 
enhance SIRT1 activity towards native peptides in vitro142,143. In this 
context, it has been suggested that increased SIRT1 activity induced 
by resveratrol depends on the presence of a non-native fluorophore 
conjugated to the peptide sequence originally used in screening for 
SIRT1 activators142,143. Recent reports, however, have shown that 
resveratrol and other STACs directly bind to SIRT1 and allosteri-
cally enhance its deacetylase activity towards non-tagged peptide 
substrates144,145. Resveratrol has also been reported to inhibit the 
catalytic activity of human tyrosyl transfer-RNA (tRNA) synthetase 
(TyrRS), resulting in its nuclear translocation and stimulation of 
NAD+-dependent activation of poly (ADP-ribose) polymerase 1 
(PARP1)146. PARP1 plays important roles in both DNA repair and 
transcription147.

In mice, resveratrol is protective against some damaging effects of 
high-fat/high-calorie diets148–151, substantially reduces the growth 
and development of multiple types of cancers152–154, and delays or 
prevents the onset of AD155,156. Moreover, in rodents and humans, 
resveratrol is protective against both type 1 diabetes and T2D157,158 
and cardiovascular disease159 and possesses anti-inflammatory160 
and anti-viral activities161. Resveratrol supplementation (either 
at 0.016–0.1% of diet or 25 mg/kg/day) has been reported to 
increase lifespan in mouse models of obesity148, AD162, HD163, 
and amyotrophic lateral sclerosis164,165. Resveratrol treatment 
(2–8 mg/kg/day) increases the lifespan of LPS-treated mice166 
and attenuates catecholamine-induced mortality in obese rats 
(20 mg/kg/day)167. Furthermore, resveratrol (10 mg/mL, intraperi-
toneal injection) prolongs survival in a mouse model of sepsis-
induced acute kidney injury and restores renal microcirculation168. 
Resveratrol administration (18 mg/kg/day in the diet) also improves 
survival in a rat hypertension model169. Importantly, however, 
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resveratrol treatment (100–1200 mg/kg food) does not increase 
lifespan in normal chow-fed mice50,170,171. Resveratrol supplemen-
tation induces gene expression changes in several tissues that 
resemble those associated with calorie restriction in mice171,172.

In humans, 30-day resveratrol supplementation (150 mg/day) in 
obese men induced metabolic changes, including reductions in 
sleeping and resting metabolic rate, intrahepatic lipid content, cir-
culating glucose levels, inflammatory markers, and systolic blood 
pressure173. Skeletal muscle from resveratrol-treated objects dis-
played increased AMPK activity, increased SIRT1 and PGC-1α 
protein levels, and improved mitochondrial respiration of fatty 
acids173. In contrast, 12 weeks’ supplementation with resveratrol  
(75 mg/day) in non-obese, postmenopausal women with normal 
glucose tolerance induced no apparent change in body composition, 
insulin sensitivity, resting metabolic rate, plasma lipids, or inflamma-
tory markers174. Moreover, resveratrol supplementation had no effect 
on its putative molecular targets, including AMPK, SIRT1, NAMPT, 
and PPARGC1A, in either skeletal muscle or adipose tissue174.

An important recent study by Cai et al. demonstrated a non-linear 
dose response for the protective effects of resveratrol in humans 
and mice175. When co-administered with high-fat diet (HFD), 
low-dose resveratrol (~0.07 mg/kg/day) appeared to be more effica-
cious than high-dose (14 mg/kg/day) in reducing adenoma number 
and decreasing overall tumor burden in Apcmin mice, a model of 
intestinal carcinogenesis. Interestingly, female mice on the lower 
dose of resveratrol exhibited significantly higher expression and 
activation of AMPK in intestinal mucosa than those in the high-
dose group175. Consistently, human colorectal tissues exposed to 
low dietary concentrations (0.01 to 0.1 μM) of resveratrol ex vivo 
displayed rapid AMPK activation and increased autophagy at low 
concentrations and a less pronounced or even no effect at higher 
doses (1 to 10 μM)175. This unusual effect may help rationalize the 
conflicting reports of resveratrol’s efficacies in humans, and future 
human studies using resveratrol must be designed with careful 
attention paid to dosage and serum levels and to a thorough assess-
ment of effects on resveratrol’s putative molecular targets.

Other STACs have been synthesized and are reported to enhance 
healthspan and extend lifespan in mice. The STAC SRT1720 
(100 mg/kg/day) has been reported to extend mean lifespan of adult 
male C57BL/6J mice fed a standard diet by 8.8% (p=0.096), and 
up to 21.7% (p=0.0193) on a HFD, without increasing maximal 
lifespan in either context176,177. SRT1720 treatment improved physi-
ological parameters in HFD-fed animals, reducing liver steatosis, 
increasing insulin sensitivity, enhancing locomotor activity, and 
also inducing a gene expression profile similar to that associated 
with a standard diet176. SRT1720 supplementation inhibited pro-
inflammatory gene expression in liver and muscle of mice fed 
a standard chow diet and delayed the onset of age-related meta-
bolic disease177. Similarly, dietary supplementation (100 mg/kg) 
with SRT2104, another synthetic STAC, increased both mean and 
maximal lifespan of male C57BL/6J mice fed a chow diet by 9.7% 
(p<0.05) and 4.9% (p<0.001), respectively, and increased insulin 
sensitivity and motor coordination while reducing inflammation178. 
Short-term treatment with SRT2104 preserves bone and muscle mass 
in an experimental atrophy model178. These findings indicate that 

resveratrol and other STACs can exert beneficial effects on health, 
particularly in the context of HFD, and that some STACs can 
modestly extend lifespan under normal feeding conditions; how-
ever, additional studies are warranted to better evaluate their effects 
on longevity in females and other strains of mice. In this regard, 
there is great current interest in evaluating the effects of NAD+ 
precursors as therapies for metabolic disease and candidate anti-
aging drugs129.

Other potential candidate anti-aging drugs
In recent decades, numerous compounds with pro-healthspan 
and -longevity effects have been identified. Due to space limita-
tions, we restrict our discussion to a few key small molecules that 
have shown beneficial effects, from invertebrate models to mice 
(Figure 2).

Spermidine is a member of the polyamine family, involved in 
numerous critical cellular processes including DNA stability, 
transcription, translation, apoptosis, cell proliferation, and cell 
growth179. In multiple organs, levels of polyamines have been 
reported to decline with age180,181. Indeed, a study by Pucciarelli 
et al. suggested that maintaining high levels of spermidine dur-
ing aging might promote longevity182. Administration of exog-
enous spermidine extended the lifespan of yeast, flies, worms, and 

Figure 2. Pharmacological interventions targeting aging-related 
pathways and processes. Representative compounds (yellow 
boxes) target various processes or pathways that contribute to 
aging and either promote or suppress their activities/progression, 
resulting in improved health and enhanced lifespan.
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cultured human peripheral blood mononuclear cells183. Spermidine 
also reduces the age-related decline of locomotor performance in 
flies184. Furthermore, it has been reported that a polyamine-rich diet 
reduced age-related pathology and increased lifespan in Jcl:ICR 
male mice185. Conversely, depletion of endogenous spermidine by 
genetic manipulation of the polyamine pathway shortens lifespan 
in yeast183 and mice186. Spermidine supplementation reduces lev-
els of age-related oxidative damage in mice183 and also increases 
stress resistance in yeast183 and flies187. The beneficial effects of 
spermidine are mediated mainly via induction of autophagy183,187, 
allowing the regulated degradation and recycling of dysfunctional 
cellular components188. Defective autophagy prevented the onset of 
spermidine supplementation-associated benefits183,187.

Aspirin, a derivative of salicylic acid, is the prototypical cycloox-
ygenase inhibitor and non-steroidal anti-inflammatory agent189. 
Aspirin is a versatile drug, with antithrombotic and antioxidant 
properties190,191. Indeed, chronic aspirin use in humans reduces the 
risk of mortality from a variety of age-associated diseases, includ-
ing atherosclerosis, diabetes, and a variety of cancers192–196. Aspirin 
use has been reported to be associated with increased survival in 
extreme old age in humans197. In a recent study by Ayyadevara et al., 
aspirin was shown to upregulate the expression of antioxidant genes 
(superoxide dismutase, catalases, and glutathione-S-transferases), 
resulting in attenuation of endogenous ROS levels and extension of 
C. elegans lifespan198. Another study showed that aspirin treatment 
leads to lifespan extension in the cricket A. domesticus96. In studies 
by the ITP, aspirin treatment (21 mg/kg diet) led to an increase in the 
mean lifespan of male mice, but there was no effect in females199.

Nordihydroguaiaretic acid (NDGA), also known as masoprocol, is 
a naturally occurring dicatechol, with antioxidant, antiviral, antine-
oplastic, and anti-inflammatory activities200. It has been reported to 
be a potent antagonist of the inflammatory cytokine TNFα. Dietary 
administration with NDGA delayed motor deterioration in a mouse 
model of amyotrophic lateral sclerosis and significantly extended 
lifespan201. Consistently, the ITP reported that NDGA (2500 mg/kg 
diet) increased the lifespan of UM-HET3 male mice199,202. Lifespan 
extension by NDGA was not observed in female mice, even at a 
dose that produced blood levels equivalent to those in males202. One 
possible explanation for this sex discrepancy could be that male 
controls in this study showed a somewhat short lifespan at two of 
the three ITP testing sites202. Additional studies will be required to 
fully address this issue.

Acarbose is an inhibitor of α-glucosidases, intestinal enzymes that 
convert complex carbohydrates into simple sugars to facilitate their 
absorption203. Acarbose treatment thus impairs carbohydrate diges-
tion and inhibits the normal postprandial glucose rise203. The ITP 
found that acarbose administration (1000 mg/kg diet) induced a 
significant increase in median and maximal lifespan in both sexes, 
although the impact was much more pronounced in males202. 
Acarbose treatment increased male median lifespan by 22% 
(p<0.0001), but female median lifespan by only 5% (p=0.01). Simi-
larly, maximum lifespan extension in males and females was 11% 
(p<0.001) and 9% (p=0.001), respectively202. Acarbose-treated mice 
had a significant increase in levels of serum fibroblast growth fac-
tor 21 (FGF21) and also a mild reduction in IGF1 levels202. FGF21 

plays important roles in the regulation of glucose, lipid, and energy 
homeostasis204. Transgenic mice with constitutive FGF21 secretion 
displayed an increase in both mean and maximal lifespan, probably 
occurring via reduced IIS205,206.

17-α-estradiol is a non-feminizing estrogen, with reduced bind-
ing affinity for estrogen receptors202. It inhibits the activity of the 
enzyme 5α-reductase, responsible for the reduction of testoster-
one to the more potent androgen dihydrotestosterone207, which has 
higher affinity for the androgen receptor than does testosterone208. 
17-α-estradiol has been reported to be neuroprotective against 
cerebral ischemia, Parkinson’s disease, and cerebrovascular  
disease209–211. Recently, it has been shown to diminish metabolic 
and inflammatory impairment in old male mice by reducing 
calorie intake and altering nutrient sensing and inflammatory path-
ways in visceral white adipose tissues, without inducing feminiza-
tion212. In ITP studies, administration of 17-α-estradiol (4.8 mg/kg 
diet) from 10 months of age increased male median lifespan by 
12%, without significant effect on maximum lifespan or effects on 
female lifespan202. Similar to NDGA, the relatively short lifespan of 
male controls might contribute to this apparent sex discrepancy202 
and further longevity studies are warranted using this drug.

β-adrenergic receptor (β-AR) antagonists bind to β-ARs (β1, 2, 
and 3-AR) and block the action of the endogenous catecholamines 
epinephrine and norepinephrine. Increased activity of β-ARs may 
hasten the development of age-related pathologies and increase 
mortality in genetically modified mice213–218. Consistently, chronic 
administration of β-AR agonists leads to increased mortality and 
morbidity219. In humans, increased production of β2-AR due to 
specific genetic variants is associated with reduced lifespan220. 
Conversely, dietary administration of β-AR blockers metoprolol 
(1.1 g/kg in the diet) and nebivolol (0.27 g/kg in the diet) increased 
the median lifespan of C3B6F1 male mice by 10% (p=0.016) and 
6.4% (p=0.023), respectively, without affecting food intake or 
utilization221. However, no effect was observed on maximal 
lifespan. Consistently, treatment with metoprolol (5 mg/mL diet) 
and nebivolol (100 μg/mL diet) extended the median lifespan of 
Drosophila by 23% (p≤0.0001) and 15% (p≤0.001), respectively, 
without impact on food intake or locomotion221. Similar to β-AR 
blockers, an α1-AR antagonist, doxazosin mesylate, which inhibits 
the binding of norepinephrine to α1-AR on the membrane of vas-
cular smooth muscle cells, extends C. elegans lifespan by 15%222. 
Given that some of these agents are routinely administered clini-
cally as antihypertensives and their safety profiles are well charac-
terized, they may warrant further evaluation in humans specifically 
for their potential anti-aging effects.

Antioxidants, compounds conferring resistance to oxidative stress, 
have in some cases also proven successful in increasing lifespan, 
particularly in lower organisms. Dietary supplementation with the 
glutathione precursor N-acetylcysteine (NAC) increased resistance 
to oxidative stress, heat stress, and UV irradiation and significantly 
extended both the mean and the maximum lifespan of C. elegans223 
and D. melanogaster224. Furthermore, treatment with EUK-134 and 
EUK-8, small molecule synthetic catalytic mimetics of superoxide 
dismutase (SOD) and catalase, was reported to extend C. elegans 
lifespan225; however, as discussed by Gems and Doonan, other 
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groups have not observed this effect226. Treatment of a mixed group 
of male and female C57BL/6 mice with another SOD mimetic, 
carboxyfullerene (C3, at 10 mg/kg/day), reduced age-associated 
oxidative stress and mitochondrial superoxide production and 
modestly extended mean lifespan227. Consistently, oral administra-
tion of carboxyfullerene (C60; 4 mg/kg/day) dissolved in olive oil 
to male Wistar rats leads to a 90% increase in median lifespan as 
compared to water-treated controls228. Similarly, some other studies 
have shown an ability of antioxidants to extend lifespan in multiple 
organisms229,230.

Conversely, there are many reports that do not support the idea 
that dietary supplementation with antioxidants can increase the 
lifespan of healthy animals or humans as a general rule. Dietary 
supplementation with either vitamin E (α-tocopherol) or vitamin C 
(ascorbic acid) significantly shortened the lifespan of short-tailed 
field voles231. Similarly, treatment of male mice with a nutraceuti-
cal mixture enriched in antioxidants was ineffective in extending 
lifespan232. Moreover, as described in a recent review by Bjelakovic 
et al., systematic review and meta-analyses of a large number of 
randomized clinical trials evaluating the effects of dietary sup-
plementation with various anti-oxidants (β-carotene, vitamin A, 
vitamin C, vitamin E, and selenium) in humans did not reveal any 
overall benefit; indeed, in some cases, there was evidence for 
increased mortality occurring in response to these agents233. Del-
eterious effects of antioxidant supplementation may result from 
inappropriate suppression of the normal signaling functions ROS 
play in cells, including in crucial cell populations such as stem 
cells234.

Selective deletion of senescent cells by senolytic drugs
Cellular senescence refers to permanent cellular growth arrest, 
which can be induced by multiple stressors, including serial 
passage, telomere attrition, inappropriate mitotic stimuli, and 
genotoxic insult235. Senescence is thought to play an important 
role in tumor suppression in mammals236,237. However, senescent 
cells develop an altered secretory phenotype (termed the SASP) 
characterized by the release of factors such as proteases, growth 
factors, interleukins, chemokines, and extracellular remodeling 
proteins238. With advancing age, senescent cells accumulate in vari-
ous tissues239–241 and potentially contribute to pathological states, as 
factors they secrete induce chronic inflammation, loss of function 
in progenitor cells, and extracellular matrix dysfunction236,242. The 
functional impact of senescent cells in vivo has been a hotly debated 
topic in aging biology for many years. Recently, genetic approaches 
to delete senescent cells in mice have been described, via activation 
of a drug-inducible “suicide gene”243. Depleting senescent cells in a 
progeroid mouse model substantially delayed the onset of multiple 
age-related phenotypes, including lordokyphosis (a measure of sar-
copenia in this model), cataract, loss of adipose tissue, and impaired 
muscle function243. However, the overall survival of these mice was 
not extended substantially by deletion of senescent cells, perhaps 
because the suicide gene was not expressed in the heart or aorta; 
cardiac failure is thought to represent a major cause of mortality 
in this strain243. A recent landmark study by Baker et al. showed 
that clearance of naturally occurring senescence cells in non- 
progeroid mice maintained the functionality of several organs with 
age, delayed lethal tumorigenesis, and extended median lifespan in 
mixed and pure C57BL/6 genetic backgrounds by 27% (p<0.001) 

and 24% (p<0.001), respectively244. This study provides very strong 
evidence that age-associated accumulation of senescent cells con-
tributes to age-associated pathologies and shortens lifespan in WT 
animals.

Pharmacologic, as opposed to genetic, approaches to deplete 
senescent cells have posed a major technical and conceptual 
challenge. A recent study showed that senescent cells display 
increased expression of pro-survival factors, responsible for their 
well-known resistance to apoptosis245. Interestingly, small inter-
fering RNA (siRNA)-mediated silencing of many of these factors 
(ephrins, PI3Kδ, p21, BCL-xL, and others) selectively killed 
senescent cells but left dividing and quiescent cells unaffected. 
These siRNAs were termed “senolytic” siRNAs245. Small molecules 
(senolytic drugs) targeting the same factors also selectively killed 
senescent cells. Out of 46 agents tested, dasatinib and quercetin 
were particularly effective in eliminating senescent cells. Dasat-
inib, used in cancer treatment, is an inhibitor of multiple tyro-
sine kinases246. Quercetin is a natural flavonol that inhibits PI3K, 
other kinases, and serpins247,248. Dasatinib preferentially eliminated 
senescent human preadipocytes, while quercetin was more effec-
tive against senescent human endothelial cells and senescent bone 
marrow-derived murine mesenchymal stem cells (BM-MSCs). 
The combination of dasatinib and quercetin was effective in selec-
tive killing of senescent BM-MSCs, human preadipocytes, and 
endothelial cells245. The combination was more effective in killing 
senescent mouse embryonic fibroblasts compared to either drug 
alone. Treatment of chronologically aged WT mice, radiation- 
exposed WT mice, and progeroid Ercc1 hypomorphic mice with 
the combination of dasatinib and quercetin reduced the bur-
den of senescent cells. Following drug treatment, old WT mice 
showed improved cardiac function and carotid vascular reactiv-
ity, irradiated mice displayed improved exercise capacity, and 
progeroid Ercc1-/Δ mutants demonstrated delay of age-related 
symptoms and pathologies245. Similarly, a recent study by Chang 
et al. identified ABT263 (Navitoclax, a specific inhibitor of the 
anti-apoptotic proteins BCL-2 and BCL-xL) as another potent 
senolytic agent249. ABT263, which is used for the treatment of 
multiple cancers250–252, induced apoptosis and selectively killed 
senescent cells in a manner independent of cell type or species249. 
In culture, senescent human lung fibroblasts (IMR90), human 
renal epithelial cells, and mouse embryo fibroblasts (MEFs) were 
more sensitive to ABT263 treatment than their non-senescent 
counterparts249. In contrast, another study found that ABT263 
is not a broad-spectrum senolytic; instead it acts in a cell type- 
specific manner253. In this study, ABT263 was found to be senolytic 
in human umbilical vein cells (HUVECs), IMR90 cells, and MEFs, 
but not in human primary preadipocytes253.

Treatment of either irradiated or naturally aged mice with ABT263 
not only reduced the burden of senescent cells, including those 
among bone marrow hematopoietic stem cell (HSC) and muscle 
stem cell (MuSC) populations, but also suppressed the expres-
sion of several SASP factors and rejuvenated the function of aged 
HSCs and MuSCs249. These results, together with the impressive 
results obtained in genetic models described previously, indicate 
that senolytic drugs may have a role in improving tissue function 
during aging. However, some senolytic drugs are associated with 
toxic side effects, like thrombocytopenia and neutropenia in the 
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case of ABT263, which are major potential hurdles in their use as 
anti-aging therapies. These toxicities may be mitigated somewhat if 
these drugs can be administered intermittently, rather than chroni-
cally, to achieve their senolytic effects.

Major results concerning the small molecules discussed in this 
review are summarized in Figure 2.

From model organisms to humans: the challenges of 
screening for anti-aging drugs
Several drugs have demonstrated great promise in the labora-
tory setting in enhancing the healthspan and lifespan of multiple 
species, including mice, raising the possibility that efficacious 
pharmacologic anti-aging therapy in people may be possible. How-
ever, screening for novel small molecules with anti-aging effects in 
mammals in an unbiased fashion represents an enormous, poten-
tially insurmountable challenge. Alternatively, since it is clear 
that several cellular pathways affect longevity in an evolutionar-
ily conserved manner, invertebrate models may be quite useful for 
such screening endeavors. However, some known molecular fac-
tors with major effects on mammalian lifespan (e.g. GH) are not 
well conserved between invertebrates and mammals. Consequently, 
small molecule screening efforts relying exclusively on the use of 
invertebrates will likely miss drugs with potent effects on mam-
malian aging. Moreover, many of the key physiologic features of 
humans and other mammals are not well modeled in invertebrates, 
as the latter lack specific tissues like heart and kidney and complex 
endocrine, nervous, and circulatory systems that are crucial targets 
of mammalian aging and age-related pathologies. Most inverte-
brate aging models possess limited regenerative capabilities and 
incompletely recapitulate processes such as stem cell renewal, 
which are required for tissue repair mechanisms that maintain 
tissue homeostasis in mammals, in order to sustain organ function 
over years and decades.

The development of new, shorter-lived vertebrate aging systems 
could be tremendously beneficial in screening for drugs with anti-
aging activities. In this context, several features of the naturally 
short-lived vertebrate African turquoise killfish (N. furzeri) make 
this organism an attractive model system to study various aspects 
of vertebrate aging and potentially as a drug-screening system254–258. 
Recently, using a de novo-assembled genome and CRISPR/Cas9 
technology, Harel et al. described a genotype-to-phenotype plat-
form in N. furzeri, opening up the possibility of screening for gene 
mutations and drugs that increase lifespan in this organism in an 
integrative fashion259. One current major limitation of N. furzeri is 
the need for individual housing in aging studies, greatly increasing 
husbandry costs. Moreover, it is possible that some of the factors 
modulating aging in fish and other cold-blooded vertebrates may be 
dissimilar to those in mammals.

Although mice faithfully recapitulate many aspects of human aging 
and age-associated diseases, their use in primary screening/testing 
of a large number of potential anti-aging compounds is not fea-
sible because of the high associated costs. The use of progeroid 
models, such as Ercc1 hypomorphs or Lmna mutants, with acceler-
ated pathology and short lifespan, might allow the evaluation of 
many more compounds than could be reasonably tested in WT 
mice260,261; however, whether or not such animals suffer from aging 

per se is a hotly debated topic262,263. Likewise, it is possible that 
rigorous delineation of appropriate surrogate markers of aging – 
e.g. increased p16 expression264 or altered DNA methylation 
(DNAm)265 – may allow initial evaluation of a large number of 
compounds in mice for potential anti-aging effects, without the 
need to perform costly and lengthy lifespan studies on many dif-
ferent cohorts, each treated with different candidate anti-aging 
compounds. In this regard, the Horvath group has developed an 
approach that allows estimation of the age of most tissues and cell 
types based on age-associated alterations in DNAm levels at 353 
CpG sites266. To the author’s knowledge, longevity screens using 
surrogate markers such as DNAm have not been attempted in 
mice.

To date, the discovery of anti-aging compounds has so far been 
carried out via two basic approaches. One of these is phenotypic, 
defined as the screening of compounds in cellular or animal models 
to identify drugs conferring desired biological effects, i.e. lifespan 
extension267,268. Although this approach has proven enormously 
valuable in many areas of biochemical research, identifying drugs 
that can modulate lifespan is more time consuming, complex, 
and expensive than for many other phenotypes267,268. Moreover, 
elucidating the mechanism of action of agents identified in such 
phenotypic, “black box” screens represents a formidable challenge, 
though the powerful genetic tools available in invertebrate models 
can facilitate such efforts. One currently underutilized system with 
respect to small molecule-based longevity screens is the budding 
yeast, S. cerevisiae. Two distinct forms of aging have been charac-
terized in this organism, replicative and chronological (population 
based)269. In principle, either might serve as the basis for screens 
for anti-aging compounds, though chronological aging is far more 
amenable to high-throughput analysis. A complementary approach 
involves target-based screening for modulators of pathways known 
or strongly suspected to modulate the aging rate267. However, by 
definition, such efforts are unlikely to identify novel cellular factors 
and pathways involved in longevity.

To address these complications, a holistic approach, involving com-
plementary efforts in invertebrates, mammalian cells, and mice, 
might represent a powerful combination in the quest for anti-aging 
compounds. With the important caveats noted above, invertebrates 
can be efficiently used for primary screening of thousands of com-
pounds to identify a few selected candidates with potential anti-
aging effects for further testing in mice. In this context, in our Center 
(http://www.med.umich.edu/geriatrics/research/glenn/), supported 
by the Glenn Foundation for Medical Research, compounds are 
screened for their ability to increase healthspan and lifespan in 
Drosophila and C. elegans and for enhancement of stress resistance 
in mammalian fibroblasts, a correlate of longevity in mammals270. 
Compounds that are efficacious in all of these assays are candidates 
for more in-depth mechanistic evaluation and for further testing in 
mice (Figure 3).

A related challenge in aging research at present is the lack of primate 
model systems with reasonably short lifespan for preclinical testing 
of candidate anti-aging drugs. The most commonly used model, the 
rhesus monkey, lives for three to four decades20. Another primate, 
the common marmoset, has several advantages over rhesus monkeys 
in terms of size, availability, and other biological characteristics271. 

Page 11 of 19

F1000Research 2016, 5(F1000 Faculty Rev):406 Last updated: 29 MAR 2016

http://www.med.umich.edu/geriatrics/research/glenn/


Because of their small size, marmosets generally cost less to feed 
and house in comparison with the rhesus monkey. Furthermore, the 
marmoset has a gestation period of ~147 days and usually gives 
birth to 2–3 offspring per delivery. Some marmoset traits more 
closely resemble those of humans than do those of rhesus, including 
their disease susceptibility profile. In Europe, the marmoset is used 
as a non-rodent species for drug safety assessment and toxicology271. 
In this regard, in a recent report, Tardif et al. described the dosing 
procedure, pharmacokinetics, and downstream signaling changes 
for rapamycin administration to marmosets272. However, their 
maximal lifespan is ~17 years – shorter than the rhesus monkey, 
but still highly impractical for testing pharmacological interven-
tions aimed at extending longevity. The development of new 
mammalian aging models besides the mouse would be extremely 
helpful to better elucidate the biological processes underlying 
mammalian aging and to expedite the translation of pharmaco-
logical interventions from the laboratory to actual clinical use in 
humans.

One model to consider in this regard is dogs, which share their social 
environment with humans273. Furthermore, dogs are relatively well 

understood with regard to aging and disease, exhibit great heteroge-
neity in body size and lifespan, and provide a large pool of genetic 
diversity. Dogs might represent a relatively inexpensive model 
system, particularly if some dog owners were willing to test can-
didate lifespan-extending drugs that had previously been validated 
in invertebrate and rodent models. Indeed, identifying interven-
tions that can promote healthspan and lifespan in dogs may rep-
resent an excellent entrée to achieving the same goals in humans. 
In this context, Matthew Kaeberlein and Daniel Promislow at the 
University of Washington in Seattle have launched a pilot trial 
involving 30 dogs aimed at testing the efficacy of rapamycin in 
improving overall health and extending lifespan in large dogs that 
usually survive for 8 to 10 years274.

Testing candidate anti-aging compounds in humans represents 
an enormous challenge112. It is highly unlikely that pharmaceuti-
cal companies can be persuaded to engage in decades-long clini-
cal trials of candidate anti-aging medicines with lifespan as an 
endpoint. The evaluation of shorter-term surrogate phenotypes, such 
as molecular markers or age-associated defects such as impaired 
responses to vaccination75, may permit initial clinical evaluation of 
candidate anti-aging compounds in a more reasonable timeframe.

Conclusion
Since ancient times, humanity has dreamed of interventions to 
slow the aging process and prolong lifespan. However, only in the 
modern era has biological aging research progressed to the point 
where interventions that delay human aging may eventually repre-
sent a real possibility. Accumulating work in invertebrate models 
and rodents has identified an ever-growing list of molecules with 
the ability to extend lifespan and promote late-life health in mam-
mals. Given the intimate link between aging and disease, such drugs 
may dramatically improve human health if the major challenges in 
their testing and deployment can be overcome.
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further in-depth mechanistic evaluation and testing in mice.
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