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Abstract

Older adults often suffer from functional impairments that affect their ability to perform everyday
tasks. To detect the onset and changes in abilities, healthcare professionals administer
standardized assessments. Recently, technology has been utilized to complement these clinical
assessments to gain a more objective and detailed view of functionality. In the clinic and at home,
technology is able to provide more information about patient performance and reduce subjectivity
in outcome measures. The timed up and go (TUG) test is one such assessment recently
instrumented with technology in several studies, yielding promising results towards the future of
automating clinical assessments. Potential benefits of technological TUG implementations include
additional performance parameters, generated reports, and the ability to be self-administered in the
home. In this paper, we provide an overview of the TUG test and technologies utilized for TUG
instrumentation. We then critically review the technological advancements and follow up with an
evaluation of the benefits and limitations of each approach. Finally, we analyze the gaps in the
implementations and discuss challenges for future research towards automated, self-administered
assessment in the home.
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[. Introduction

In recent years, there has been an increase in life expectancy which has resulted in a global
aging of the population. In 2050 there will be an estimated 88.5 million individuals aged 65
and older in the United States alone, a 120% increase over the elderly population in 2010
[1]. This growing older population is placing a heavy burden on our healthcare systems.
According to the Association of American Medical Colleges, the increasing demand for
healthcare will cause a shortage of 124,400 physicians by 2025 [2]. The future of healthcare
availability and quality of services is uncertain. In order to meet these demands, healthcare
needs to scale and utilize technology more than ever before. To address this problem,
proposed technological solutions have flooded research and the healthcare market. For
example, to aid individuals in living safely and independently in their homes, ambient
intelligence and smart environments are being heavily researched and prototyped. Therapy
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and rehabilitation in the home is becoming more and more prevalent with inexpensive
teleconferencing systems and networked gaming platforms like the Nintendo WiiU. Mobile
applications for smartphones and tablets are being developed to assist individuals with
cognitive impairment as they navigate their activities of daily living (ADLs). Wearable
technology is attempting to ubiquitously collect daily living data and assess functional
ability. All of these technologies are moving towards scaling healthcare assessments and
rehabilitation to meet demands.

The area of instrumenting clinical assessments with technology is being explored by
interdisciplinary researchers to gain a more detailed view of functionality. In the clinic and
at home, technology is able to provide more details and insight about patient performance.
In addition, carrying out these assessments in the home instead of the clinic is believed to be
more representative of an individual’s capabilities [3]. One such exam is the extensively
researched timed up and go (TUG) test, which has been widely used in the clinic and in the
home to assess functionality for over 20 years [4]. The TUG test has recently been
instrumented with technology in several studies, yielding promising results towards the
future of automating clinical assessments. A few benefits of the TUG technology
implementations include additional performance parameters, generated reports, and the
ability to be self-administered in the home. These are steps in the right direction that
technology needs to take to address the healthcare crisis and become widely adopted by
clinicians and patients alike.

A. Goal of the Current Paper

While developments in technology have made a direct impact on the future of automated
assessments, these advances have not been summarized or compared in the medical or
engineering literature. There is no defined consensus on what information has been gained
by technology, how valuable that information is, or which technologies are appropriate and
which ones are not. If we want technology to be utilized in the clinic and deployed in the
home, we need to demonstrate how it can reliably and accurately advance rehabilitation
measurements and alleviate the burden on clinicians and caregivers.

The TUG test is widely used to provide valuable information on falls risk assessment,
functional decline, and changes exhibited amongst populations with different conditions. We
believe the technologies applied to the TUG test are representative of the current state of
technology-infused clinical assessments. In this paper, we overview the timed up and go
exam and analyze its importance in functional assessment. We review current technologies
that are used for instrumenting TUG tests and analyze their contributions to the
advancement of technical clinical assessments. Finally, we discuss the gaps in the research,
challenges for engineers and clinicians, and provide suggestions for future directions
towards self-administered, automated assessments.

ll. Timed Up and Go Overview

The timed up and go test is a widely used method of evaluating basic mobility maneuvers
[5]. It is based on the get up and go (GUG) test that was originally proposed by Mathias et
al. [6] in 1986. The GUG test begins with the subject seated in an armchair. The subject
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rises from the chair, walks 3 meters in a linear path, performs a 180° turn, walks back to the
chair, and sits down (see Fig. 1). Typical instructions given to the subject are: “When | say
‘go’, 1 want you to stand up and walk to the line, turn, and then walk back to the chair and
sit down again. Walk at your normal pace” [4]. GUG performance is subjectively evaluated
by the observer on a five-point ordinal scale: “normal”, “very slightly abnormal”, “mildly
abnormal”, “moderately abnormal”, and “severely abnormal” [6]. The TUG is a timed
version of the GUG that attempts to address the subjectivity of the ordinal scale with the
introduction of an objective measure, the total time to complete the task [4]. For the TUG,
an examiner records the number of seconds it takes for the subject to perform the task using
a stopwatch. Several clinical trials and research has discovered that this duration measure is
representative of an individual’s ambulatory abilities, balance, and possibly risk of falling

[5].

The TUG test has become one of the most popular functional assessments for several
reasons. First off, the TUG tests several different mobility skills. These include sit-to-stand
and stand-to-sit chair transitions, turning, straight-ahead gait, balance control, and the ability
to sequence tasks [7]-[9]. The TUG requires minimal materials and setup. All that is
required is a chair, 3 meters of walking space, and tape for marking the turnaround point.
Furthermore, the TUG is simple to score, requiring minimal training and no expertise in
mobility analysis. In the seminal TUG paper, Podsiadlo et al. [4] found the TUG to have
good test-retest reliability, inter-rater reliability, and concurrent validity. More recently,
Hafsteinsdottir et al. [10] and Rydwik et al. [11] reviewed TUG studies for analysis of test
reliability, validity, and responsiveness.

A. TUG Case Study: Parkinson’s Disease

Parkinson’s disease (PD) is a degenerative disorder of the nervous system that can cause
slowed movement, tremor, impaired posture and balance, and rigid muscles [12], [13].
Because of the turning, gait, and sequencing involved, the TUG test has been deemed a
highly suitable examination for assessing motor symptoms in PD [14]. Gait in particular is
sensitive to changes in PD: patients have slower walking speeds, take short shuffle steps,
and higher inter-stride variability [15]. In general, patients with PD have higher TUG times
than healthy individuals [16]-[18]. Several studies have found the duration to complete the
TUG test correlates well with moderate-to-severe PD [16], [19]-[21], but does not correlate
well with early-to-moderate stage PD [18], [22]. Later we discuss how technology can
address this insensitivity of the original TUG and compute gait parameters to quantify PD-
affected movement.

B. TUG Case Study: Falls Risk Assessment

As the elderly population continues to grow, fall prevention is becoming more and more
paramount. Several clinical assessments have been developed to quantify an individual’s
risk of falling [23] or have been found to be correlated with falls risk [24]. The TUG test is
one such examination that is utilized extensively in the clinic for falls risk assessment [25]-
[27] ; however, the validity of the TUG as a viable fall predictor has been argued, with
evidence provided that supports both sides of the debate. In support of TUG-based falls
assessment, Shimada et al. [24] demonstrated that fallers take significantly longer (p =
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0.011) than non-fallers to complete the TUG test. The correlation between TUG time and
fall likelihood has been indicated by other studies as well [28]-[31]. In addition, certain
components of the TUG have been demonstrated to correlate with fall risk, including the
180° turn [32] and the sit-to-stand movement [33], [34]. On the contrary, studies have
reported that the time to complete the TUG was not significantly different amongst fallers
and non-fallers [35], [36] and did not predict falls among relatively well-functioning older
adults [37], [38].

C. Limitations

It is evident that the TUG test is an important standardized test with several benefits, but the
TUG is not without limitations:

»  The duration measure is not always sensitive to falls risk in healthy older
populations [35]-[39].

e With three highly different subtasks (chair transition, straight-ahead gait, and 180°
turn) there is opportunity for various movement strategies. For example, the 180°
turn introduces variability as people with different gait and balance impairments
compensate during turns differently. The subject may turn on the spot or in a curve,
as is often the case with the use of an assistive device such as a walker [40].

»  Movement deficiencies exhibited on the complex subtasks are ignored. The effects
of a new medication or therapy could go unnoticed when only analyzing the
course-grained measurement of duration [41].

e Three meters is not long enough to produce high reliability and discriminate
amongst healthy and PD populations [42].

» The TUG is fairly sensitive to subject and environmental conditions. For example,
test-retest reliability is low when subjects wear different footwear [43]. A similar
conclusion has been formed regarding the usage of assistive devices during the
TUG test [44].

»  The choice of chair can introduce variability. For example, if the chair has arms
they can be used for assistance rising from or lowering to the chair [41]. For this
reason, several studies opt to explicitly use armless chairs [4], [6], [45], [46].

There are several limitations that are not specific to the TUG and are common amongst other
clinical assessments, including variability amongst instructions given, subjectivity amongst
examiners, and documentation differences [47]. It is known that performance in a lab setting
does not fully represent the abilities of an individual [40], as it does not replicate ecological
conditions [14]. People are more aware of the “test” situation in a laboratory or clinical
setting and thus are more conscientious of their performance, often resulting in better
performance [3].

D. TUG Variations

Several variations of the TUG have been proposed to address the limitations of the standard
TUG and to perform additional assessments. A second task has been added to the TUG,
producing timed up and go-dual tasks (TUG-DT) [31]. For several studies, the second task
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involves a cognitive component. Beauchet et al. [48] reported that gait parameters are
affected by which cognitive task is chosen as the secondary task to walking. The countdown
task requires the use of working memory [49], which consequently has the highest
perturbation on gait parameters [48]. See Table | for a summary of proposed TUG variants
and their descriptions.

lll. Search Strategy

Three formal searches were carried out in the Institute of Electrical and Electronics
Engineers (IEEE) Xplore digital library, the Association for Computing Machinery (ACM)
digital library, and the National Center for Biotechnology Information PubMed digital
library. Keywords searched included various combinations of: 1) one term describing the
TUG test (“timed up and go”, “get up and go”, “TUG”, “GUG”, or “GUGT”) and 2) one

term related to technology (“instrument”, “automate”, “sensor”, “inertial”, “accelerometer”,
“gyroscope”, “ambient”, “video”, “camera”, or “Kinect”). Of the papers gathered via search,
the references to related work were followed recursively if they involved instrumenting the

TUG test or one of its variations.

A systematic literature search was performed and studies were included based on the
following criteria: 1) an English version of the publication was available; 2) the study
involved the timed up and go or an assessment similar to the TUG sequence of actions
(including at least a chair transfer and ambulation); 3) the study utilized a technology to
extract additional TUG information beyond the total duration; and 4) dissertations, theses,
and reviews were not included. Studies that included human participants and provided
reference data were sought but not required. Often there were several studies published by a
set of authors using the same technological implementation for instrumenting the TUG test.
For these cases, we discuss the paper that best represents the implementation and provide
references for further reading. In total, 30 uniquely instrumented TUG papers satisfied these
criteria and were included in the review.

IV. TUG Technologies

In the recent decade, technology has become more advanced and inexpensive than ever
before. Recent research has focused on custom designing technology and adapting off-the-
shelf solutions to medical applications. For this paper, technology utilized for the timed up
and go test has been divided into three main categories: video-based (7 studies), wearable
(18 studies), smartphone-based (4 studies), and ambient technologies (1 study). The
following sections provide a brief description and discussion of the feasibility of each
technology for automated assessment in the home and clinic. For the benefits and limitations
of each technology, see Table II.

A. Video-based

In the growing area of tele-assessment, Durfee et al. [50] explored the feasibility of a video
conferencing system for a two-way connection between different locations. At one location,
a therapist administered and evaluated joint range-of-motion, manual muscle test, Berg
balance scale (BBS) sit-to-stand, BBS forward reach, and the TUG test. At the remote
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location, another therapist scored the assessments via the video conferencing system. For all
assessments except the range of motion test, no significant differences between the co-
located score and the remote score were found. Tele-assessments and tele-rehabilitation are
viable options to allow people to receive medical services in their home.

Berrada et al. [51] implemented a video camera system to research the feasibility of
automating the TUG in the home with a no-configuration-required technology. The TUG
test utilized a couch in the living room of a test-home. A camera was mounted to provide a
side view of the TUG area in front of the couch. The system appeared to struggle with
accurate test timing; however, a benefit of this approach includes the use of a couch as it is a
more ecological representation of chair transfers performed in the home.

Two years later, Skrba et al. [52] also performed research on automating the TUG test using
video cameras. For this study, two webcams captured subject side and back views. From the
side view, total walk duration and number of steps taken were automatically calculated.
Stability into and then out of the turn was computed from the rear facing camera. One of the
results of the study was significant classification of fallers and non-fallers by use of the walk
duration and the time between turning and sitting back down in the chair. A stability factor
to describe the balance of the turn was computed by extracting the subject’s silhouette out of
the video data and tracking the center of the head. The lateral motion and maximum
displacement during the turn are a few of the metrics used to compute the stability score.

Similarly, Wang et al. [53] utilized video-based technology to specifically analyze the turn
portion of the TUG test. Two webcams were used to compute the number of turn steps, time
to complete the turn, and a measure called “appears steady?” described as “moving fluently
without hesitation”, to quantify the 180° turn. The turn times as computed by the camera
system were compared to physical therapist scored times for seven participants, yielding a
mean difference of 0.11 seconds and standard deviation of 0.27 seconds.

1) TUG and Kinects—In 2010 Microsoft released the Kinect, a webcam-like motion
sensor for the Xbox 360. The Kinect was a major advancement for natural user interfaces, as
it no longer required a game controller or any hardware attached to the body. In addition, the
Kinect offers skeleton tracking and depth sensing features that can potentially alleviate a
portion of the privacy concerns of video cameras [54]. A study by Demiris et al. [55] on
older adults’ perceptions of video cameras found shape extraction and silhouette images to
be an acceptable form of in-home, video-based technology.

The first TUG study using Kinects was Lohmann et al. [56] and their proposed Skeleton
TUG (STUG) test. Two Kinect sensors and their skeleton tracking modes were used to
record the standard 3 meter TUG test (see Fig. 2). The researchers detected ten events of the
TUG: start moving (M), end uprising (Ug), start walking (Ws), start rotating (Rs), start
turning (Ts), max turn (Ty), end turning (Tg), end rotating (Re), start lowering (D), and end
moving (Mg). The events start moving, start walking, start turning, end turning, and end
moving were manually labeled in the video sequence and compared to the sSTUG computed
times. The results yielded a mean difference of 0.1 seconds and a much lower standard
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deviation at 0.15 seconds compared to 0.68 seconds for stopwatch measures for five sSTUG
participants.

Kitsunezaki et al. [57] augmented the TUG and 10 meter walk test with a Kinect. Like
Lohmann and colleagues, it was reported their Kinect processing algorithms have high
precision, 0.33 seconds average difference when compared to stopwatch times. Additionally,
this study compared three different possible locations for the Kinect: in front of, to the side
of, and above the chair. It was concluded that placing the Kinect 4 meters directly in front of
the chair minimized timing errors. Since this distance is only 1 meter greater than the
required walking length of the TUG, the system setup is small enough to be installed in
homes.

Another clinical assessment similar to the TUG, the Tinetti test [58], has also been
instrumented with Kinect sensors. Recently, Cippitelli et al. [59] used a single Kinect sensor
to track the specific Tinetti tasks of sitting in the chair, rising from the chair, and beginning
to walk. With the Kinect system, joint angles for the head, shoulder, knee, ankle, hip, and
elbow are reported. Joint angles are especially important to track over time as decreased
range of motion is associated with falls in the elderly [60].

2) Summary—Table Il summarizes the research contributions with this technology. Of
the seven video-based TUG studies reviewed, three utilized Kinect sensors (42.86%).
Automatically and accurately computing mobility-related parameters by video cameras are
laying the ground work for longitudinal functional assessment. For example, if testing could
be self-administered in the home then duration, stability factor, and number of turn steps
could be collected regularly. The rate of data acquisition could be daily, a frequency much
higher than trips to the clinic. Changes in these values could be tracked over time and
present a detailed model of an individual’s health. Improvement or decline detected in these
parameters could be indicative of cognitive or functional debility and noticed at onset.

One of the major benefits of video-based sensing solutions is there is no requirement to
place any sensors on the body. This is especially important for the future of automated
clinical assessments in the home. As we have seen, several video-based TUG researchers are
already working on installing TUG technology in the home.

B. Wearable Sensors

With the advent of wireless technologies such as Bluetooth, WiFi, and Zigbee, wearable
sensors have become quite popular for activity logging and healthcare applications. For
example, inertial measurement units (IMUs) are movement tracking devices that contain
accelerometers and gyroscopes. An accelerometer measures acceleration in meters/second?
and a gyroscope measures angular velocity in degrees/second. IMUs have been utilized
quite extensively for instrumenting the TUG test. The studies have been grouped together
based on the subject populations the technology was used to investigate.

1) Parkinson’s Disease—The largest body of research published on instrumenting the
TUG test comes from Salarian and colleagues working on iTUG, the instrumented timed up
and go [22], [41], [61]-[65]. The iTUG is comprehensively represented by Salarian et al.
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[41]. The iTUG was extended from the standard 3 meter TUG length to 7 meters to allow
for more gait cycles during the walking phase. To observe total body movement, several
inertial sensors are mounted on the body: one bi-axial gyroscope on each forearm, one uni-
axial gyroscope on each shank, one uni-axial gyroscope on each thigh, and one bi-axial
gyroscope and tri-axial accelerometer on the sternum (see Fig. 3).

The iTUG is broken down into four sections: sit-to-stand, steady-state gait, turning, and
turn-to-sit. Each component is automatically detected in the sensor signals and has a set of
parameters computed for each body part involved. For example, the 180° turning phase
consists of duration, trunk peak angular velocity, average step time, maximum step time, last
step time before turn, and number of steps. For the full set of computed metrics, see [41,
Tab. 1]. The system has been utilized to study 12 subjects with idiopathic, early-to-moderate
stage PD and 12 healthy age-matched controls. Gait, turns, and turn-to sit sections of the
iTUG demonstrated significant differences between the two populations. Cadence was found
to be the most reliable metric (p = 0.94) and other measures of gait exhibited high reliability
as well. With the additional sensors on the arms that are not included in most technological
TUG studies, the authors discovered range and amplitude of arm-swing to be sensitive to the
early stages of PD, whereas the standard TUG total duration was not sensitive enough to
pick up on the early PD changes. The research and success surrounding iTUG led to a
commercial sensing company, APDM [66]. APDM has an extensive customer list, greatly
contributing to the use of iTUG in the clinic and in research.

2) Falls Risk—The TUG test has widely been used to determine falls risk and to classify
fallers and non-fallers. Narayanan and colleagues [67]-[69] were one of the first to
instrument the TUG test with inertial sensors for falls risk detection. They proposed a
battery of common clinical assessment that could be self-administered and performed daily
in the home. They called this set the “directed routine” and it consisted of the following five
clinical assessments: 3 meter TUG test, near-tandem standing balance, alternative step test,
five times sit-to-stand chair transfer, and simple reaction time. While performing these
assessments subjects wear a PreventaFall Ambulatory Monitor (PFAM) which contains a
single tri-axial accelerometer on their waist. To start the routine, the subject presses a button
on the PFAM and audio cues begin guiding them. The collected acceleration signals are
uploaded each evening and processed on a remote server. Physicians can then access the
data and monitor the status of subjects via a web interface.

The total TUG duration is computed by analyzing the mediolateral acceleration signal. The
acceleration signal is divided into each TUG component: time to stand, time to reach the 3
meter turnaround point, time to turn around, time to reach the chair, and time to sit down in
the chair. The system was evaluated with 36 elderly participants. An estimation of falls risk
with a linear least squares model achieved a root mean squared error of 0.69 (o= 0.58, p <
0.0002) [68].

In another seminal paper, Greene et al. [70] proposed the qTUG, the quantitative timed up
and go test, to compute falls risk. Two tri-axial IMUs were placed on the front of the
midpoint of each shank (see Fig. 1). Temporal gait parameters including cadence, number of
gait cycles, stride time, swing time, stance time, step time, double support percent, and
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single support percent were computed from the inertial signals. Additional temporal
parameters from the TUG components were calculated: TUG time, walk time, turn time,
return time, walk-turn time ratio. Forty-four parameters from the sensors were computed in
total, 29 of which were able to differentiate between fallers and non-fallers with statistical
significance (p < 0.05). For a complete listing of these parameters and measured values, see
[70, Tab. 3]. Additionally, using the computed IMU metrics the authors were able to achieve
a mean test accuracy of 76.8% for retrospectively estimating falls risk. This method is
reported as more accurate than the total TUG duration and BBS prediction. An additional
paper discussing the reliability of gTUG for falls risk assessment was published by McGrath
etal. [71].

3) Hemiplegia—*For investigating Hemiplegic subjects, Higashi et al. [45] attached one
IMU on the lower back and another IMU on the upper thigh of the leg that takes the first
step when initiating gait. In total, 30 participants, 10 healthy and 20 hemiplegic, performed
the TUG while wearing the sensors. Of the 20 hemiplegic participants, 10 had gait levels
classified as independent and the other 10 were classified as supervised. The TUG tests were
video recorded for scoring by a therapist at a later time. In addition to total TUG duration,
therapists were instructed to record the following component times: standing-up, walking,
turning, and sitting-down. These times were measured by analysis of the sensor signals and
compared to the therapist times. A good correlation (r = 0.998) was found between the two
scoring mechanisms. In addition, metrics such as cadence, acceleration root mean square
(RMS), and acceleration coefficient of variation (CV) were calculated for the gait
component of the test. Using the RMS and CV values, the hemiplegic participants with
independent gait were able to be distinguished from the supervised hemiplegic participants
with statistical significance (p < 0.01).

4) Disability Levels—SankarPandi et al. [72] recently undertook a study to investigate the
predictive utility of a single wrist worn accelerometer for disability levels. The disability
level was computed by summing 17 responses to questions regarding ADLSs. If the
participant and/or caregiver stated they could perform the task in question, such as walking
at least 400 yards, a one was scored, zero otherwise. Forty features extracted from the wrist
acceleration signals were used to classify disability levels with a mean accuracy of 62.16%,
which was higher than the 39.10% accuracy achieved by the total TUG duration alone.
Sixteen features were representative enough of the population to discriminate all disability
levels and different features were found to be more significant depending on the subject’s
gender.

5) Cognitive Impairment—Gillain et al. [73] investigated an IMU-based TUG on
populations of healthy controls, participants with mild cognitive impairment (MCI), and
participants with Alzheimer’s disease (AD). A single Locometrix tri-axial accelerometer
was attached on the lower back at the level of the L3 vertebra. The gait parameters of speed,
stride frequency, stride length, stride regularity, and stride symmetry were reported for the
TUG test and for TUG-DT (counting down sequentially from 50). Several gait parameters
were useful for differentiating amongst the three subject groups. For example, TUG-DT gait
speed was found to differentiate the three participant groups. AD participants had lower
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stride length and gait regularity than MCI and healthy groups. MCI participants exhibited
lower stride frequency than the healthy participants.

Furthermore in the area of cognitive impairment research, work by Greene et al. [70] served
as a foundation for a longitudinal study published in 2012 by Greene and Kenny [74]. In this
work, the gTUG was utilized to predict cognitive decline as measured by the mini mental
state examination.

6) Summary—Table IV summarizes the 18 wearable sensor studies reviewed. Of these
studies, eight used only accelerometers (44.44%), seven used IMUs (38.89%), one used
inertial sensors plus magnetometers (5.56%), one used an accelerometer and magnetometer
(5.55%), and one used surface electromyography (EMG) (5.55%). Eleven of the studies
utilized only a single sensing unit (61.11%), two studies utilized two sensors (11.11%), and
five studies utilized three or more sensors (27.78%). The most common location to mount a
sensor was the lower back (55.56%), close to the center of mass. The next most common
choice was the lower limbs, a choice which yields a high number of gait parameters. Five
studies [41], [72], [75]-[77] investigated accelerometers or gyroscopes on the upper limbs
and only one study [78] researched movements of the head.

Several of the studies report high numbers of computed metrics, with the most common
parameters being TUG subtask durations, number of steps, cadence, stride length, and peak
angular velocity. For most of the studies these parameters are post-processed and do not
generate a performance report (hard copy or digitally). Ideally, we would prefer results to be
generated automatically by the system, as a fully automated assessment requires. The
commercial solution APDM is a system containing wireless IMUs, an access point, docking
station, and software to be run on a laptop. The software automatically creates a report on
the laptop that includes comparisons to normative TUG data. The entire instrumented TUG
testing process from beginning to results takes less than 5 minutes [79]. Although the system
is clinician-administered, the APDM solution is a vital step towards self-administered,
automated assessment in the home.

C. Smartphones

The advent of smartphones has incurred a large shift in research efforts to focus on mobile
computing and utilizing the sensors embedded in the device. There are several advantages of
smartphones for clinical assessment (see Table II). For example, similar to IMUs,
smartphones contain tri-axial accelerometers and gyroscopes. Five studies have already been
published in the last 3 years utilizing the inertial sensors in smartphones to augment the
TUG test.

Mellone and colleagues [80]-[83] utilized the accelerometer in an Android-based
smartphone and designed an elderly-friendly user interface to self-administer the TUG test.
The interface contains a button to start the exam and data collection and a button to stop.
The authors intend to automatically upload the data to a remote server for access and
analysis by interested parties such as clinicians. The smartphone was attached to the lower
back of 49 healthy adults as they completed a 7 meter TUG test [82]. Twenty-eight
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parameters were computed from the acceleration signals. The implementation did not make
use of the phone screen to display results or allow for automated assessment.

Fontecha et al. [84] attached a smartphone to the waist of 20 elderly subjects. The authors
developed an application that runs on the phone and collects data for the TUG test and the
gait portion of the Tinetti test. The acceleration data is processed to produce “dispersion
measures” which include acceleration mean, standard deviation, amplitude, absolute mean
difference, variance, and CV. These metrics are combined with patient medical information
to produce a frailty assessment. Future work involves displaying the results on the screen for
medical professionals to analyze. Another study by Cuesta-Vargas [85] explored the ability
of the iPhone inertial sensors to discriminate between two groups of elderly subjects as they
performed the 10 meter extended TUG.

The closest implementation to a self-administered, automated TUG application for
smartphones is called smartphone-TUG (sTUG) by Milosevic et al. [86]. The sTUG is
composed of a user interface for controlling the test and displaying the results to the user
(see Fig. 4). Parameters reported include total duration, component durations, maximum
trunk angle change, and maximum angular velocity during sit-to-stand and stand-to sit. User
experience reports were not included in the study so it is unclear how feasible the solution is
for the elderly to use on their own.

1) Summary—Table V summarizes the smartphone implementations of the TUG test.
Android is the most commonly chosen platform for instrumenting the TUG (80%). Of the
several sensors available in smartphones, only the accelerometer and gyroscope were
utilized. The smartphone solutions presented are working towards a self-administered,
automated TUG test that can be performed at home. Milosevic et al. [86] was able to
produce this application and report on ten parameters related to durations and angular
velocities; however, the system did not quantify how the elderly handled administering the
exams themselves. Connectivity to healthcare professionals who are able to interpret the
changes exhibited in TUG performance would also strengthen the automated solution.

Smartphone solutions, like all technology solutions seen thus far, offer computation of
several additional parameters beyond total TUG duration. With the screen on the
smartphone, these results have the potential to immediately be available for the examinee to
interpret; however, research has not yet determined of what interest these parameters are to
the elderly who perform the tests. Do individuals understand what “maximum angular
velocity during the lift up phase” [86] is and how to interpret changes in these values? Is
there interest in understanding these values? Now that we can collect this data, process it,
and produce measurements, perhaps the next step is to critically analyze what this means for
our elderly and subject populations.

D. Ambient Sensors

The last sensing modality is ambient sensors, which are neither video-based nor are required
to be worn on the body. Ambient sensors include temperature, infrared motion, light, door,
object, and pressure sensors. There is a large body of research surrounding the application of
ambient sensors in smart homes [87]. Ambient technology has been utilized to estimate gait
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velocity, specifically using infrared motion sensors [88], [89], but the work has not been
extrapolated to automating the TUG test (though mapping in-home gait speed to TUG
duration using a Kinect has been researched [90]). There are several reasons for why this
could be the case, such as the starting and stopping of the test would be difficult to
determine without someone explicitly notifying the system. Also, multiple people in the
sensor field of view could cause anomalies in the data stream.

The only ambient-based technological TUG (that is, not based on video recording or
wearables) we found is ambient-TUG (aTUG) proposed by Frenken and colleagues [40],
[91]. Frenken and colleagues sought to develop a TUG technology to more accurately assess
functional ability by testing in the home. To do this, they augmented a chair with several
sensors. Four force sensors are placed in the legs of the chair to monitor weight distribution.
An infrared light barrier under the armrests detects when the examinee’s back has made or
left contact with the chair backrest. Under the chair a laser range scanner estimates the
distance the subject is from the chair. All of the data is collected and processed with a
microcontroller system mounted to the chair. The system was validated by comparing the
aTUG trials of five elderly subjects to stopwatch and video camera measurements. The
aTUG had a mean error of 0.05 seconds and mean standard deviation of 0.59 seconds. It was
also concluded that only a single light barrier on the backrest of the chair is required to
automate total TUG duration.

An assessment-specific device such as the aTUG could be of use to a clinic where several
TUG tests occur daily. Since the aTUG chair does not require any wearable sensors or
caregiver supervision, it could be a viable technology for elderly to self-administer;
however, the setup requires a special piece of furniture and optionally a light barrier to be
installed at the 3 meter mark. To increase the utility of a technology-infused chair, aTUG
features could be incorporated into a “smart chair”. Such a chair could have several
functions including collecting biometrics (heart rate, blood pressure, etc.) and tracking
physical activity to justify its size and cost in the home.

V. Discussion

Of the highlighted TUG research described previously, several trends exist. Most studies are
examining the proposed technology in cross-sectional studies with PD and falls risk
participants (see Table VI for a breakdown of participant populations); however, there is
potential for technological assessment beyond the information gained in a snap shot. The
parameters computed from the instrumented TUG and other clinical assessments can be
useful to track changes in cognition and functionality over time. Greene et al. [74] explored
the applications of the instrumented TUG for assessing cognitive decline over a period of 2
years. The authors alluded the results of the study “may also form part of a tool for
longitudinal monitoring of cognitive function” [74]. The future of research can take this next
step and move towards continuous monitoring systems for longitudinal assessment.

A. Component Analysis of Timed Up and Go

The original TUG provided only one performance metric, the total duration. Even before
technology infiltrated the TUG assessment several variations had been proposed to time
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individual components of the test [46], [92]. This provided finer-grained assessment and
more insight into the mobility issues different populations struggle with. For example,
strength could be quantified during the sit-to-stand and stand-to-sit movements, gait could
be analyzed by computing velocity over the 3 meter distance, and balance could be assessed
in the time and approach taken to complete the 180° turn. By adding video cameras or
inertial sensors to the TUG test, parameters related to timing, gait, balance, and even limb
tremor are extracted out of a test that previously only yielded the total duration. These
metrics are able to be mined out of the sensor signals because the signals are effectively
partitioned into the individual components of the TUG test: the chair transitions, linear
walking, and 180° turn. Several of the TUG studies included individual analysis of each
component because each of these subtasks can be viewed as standalone activities. For
example, in regards to chair transfers, Millor et al. [93] recently published a review of sit-to-
stand and stand-to-sit movements instrumented with motions sensors. Furthermore, linear
walking has been studied comprehensively in the literature [94], [95].

B. Towards Automated Assessment

The rise of the internet and web of things has greatly advanced the feasibility of self-
administered assessments. Tele-rehabilitation using webcams and an internet connection are
allowing people to participate in therapy sessions and meet with their physicians from home.
We saw this technology used for a new area of healthcare, tele-assessment, with the TUG
research performed by Durfee et al. [50]. Data collected by means of any technology, such
as object sensors, can be automatically uploaded to a remote server. The data can then be
processed and viewed by experienced medical professionals to gain additional insight into
patient progress.

The innovation of the smartphone further advanced this process by putting a microprocessor
powerful enough to do data crunching into the hands of the patient. The solution is mabile,
allowing exercises and assessments to be instrumented, logged, and analyzed anywhere. The
smartphone system can even be self-contained, requiring no extra sensors or internet to
compute TUG performance metrics and display them to the user. Milosevic et al. [86]
demonstrated this with the sSTUG. Technology needs to push towards these simple, self-
contained systems if we want people to use our hardware and software. Automated
assessment of rehabilitation exercises, therapy programs, and clinical measures are a large
part of the future of scalable healthcare. The systems need to strive for portability, ease of
use, and clinically significant information. To meet these requirements we need to look to
medical professionals and seek out what tools would be beneficial. How do clinicians
envision themselves using technology to assist their profession? How do clinicians envision
their patients using the technology? Due to cost limitations such as money and time (training
and in practical use), the automated systems we develop in the future need to have a high
utility to cost ratio. This is critical if we hope to see technology in the clinic and in the
homes of those who wish to live independently longer than if the technology was not
available.
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C. Challenges for Future Work

Technologies that aim to address the needs of healthcare have to meet several criteria in
order to be valuable to medical professionals and accepted by users. Often there is a division
between how the engineer and the clinician view these requirements. To bridge this gap,
there are several difficulties along the path towards automated assessment:

Developing technology with a high acceptance rate in the home, specifically for
elderly and disabled populations [55], [96], [97].

Designing wearable sensors to be smaller, lighter, and easier to use for elderly and
disabled populations. Ease of use includes low maintenance and an exceptionally
long battery life, to the point of no replacement/recharge required.

Designing creative methods of attaching wearable sensors to the body. Elderly
individuals are more enthusiastic about sensors embedded into their clothing or
accessories than about wearing the technology separately [96]. The fairly new areas
of smart garments and sensor embedded patches/bandages are directions to look for
in the future [98].

Integrating and blending technology into the environment so users are not directly
aware of it. As Mark Weiser stated, “The most profound technologies are those that
disappear. They weave themselves into the fabric of everyday life until they are
indistinguishable from it” [99].

Extending monitoring and assessment beyond the home and clinic into community
environments.

Minimizing the required number of sensors to decrease the cost, complexity, and
maintenance.

Driving the cost of these systems down for the individual. Seniors are most
concerned with the expense of ambient technology and they emphasize they do not
want to pay for it [96].

Securing data and protecting privacy. Although a majority of seniors are not
concerned with their health-related information being transmitted wirelessly [96],
data about daily routines, functional and cognitive status, and medical information
are potentially personally identifiable and need to be protected.

Designing creative user interfaces. A screen is only one way to convey information
and we need to explore newer designs such as artificially intelligent avatars or
haptic interfaces.

Presenting healthcare information to patients. People of all ages are often interested
in seeing data collected about them. We need to provide intuitive, simple interfaces
for people of all technical-abilities to be able to access and understand their data.

Educating/training clinicians and patients to use the software and hardware.

Ensuring patient adherence to data collection protocols for data integrity purposes.
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As exhibited by this literature review, the combination of technology and a popular clinical
assessment has proven to provide beneficial additional information to healthcare providers.
This information is being used to provide finer-grained assessment, medical population
classification, and fall risk prediction. Furthermore, the technology is enabling healthcare
data to be collected in the home via tele-assessment and self-administered exams. The
interdisciplinary nature of this area incurs additional challenges, but the results are beneficial
for patient care.
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+Z Accel

Fig. 1.

Experimental setup for instrumenting the timed up and go with inertial sensors and cameras
(left). The red cross on the floor denotes the turnaround point. Shimmer inertial sensor (5.4
cm x 1.9 cm x 3.2 cm) with coordinate axes (right). Greene and Kenny (2012) [74].
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[sit 1]]

Sit down Walk back

Fig. 2.
The Skeleton TUG. The dashed and dotted areas are the view and detection area of Kinect

one and two respectively. Labels Mg — Mg correspond to component detected events. Labels
al —al2 are TUG actions. Lohmann et al. (2012) [56].
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Remove steps in
turns and transitions
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Analyze Gait
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» Detect Turns » Analyze Turns
> Detect > Analyze
Sit-to-Stand Sit-to-Stand
A

Diagram of how inertial sensors were used for the iTUG analysis algorithms. Acceleration is
represented by a and angular velocity by o. Salarian et al. (2010) [41].
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Fig. 4.
Smartphone TUG application displaying the TUG parameters computed. Milosevic et al.

(2013) [86].
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TABLE |

Summary of TUG variations in chronological order.

Article TUG Variant Description
O’Brienetal. (1997)  Extra chair Added an additional chair at the 3 meter mark.
[100]
Lundin-Olsson et al. TUG-manual Subjects carry a glass of water while walking and place it
(1998) [101] back on the table when returning to the chair.
Wall et al. (2000) Expanded TUG Increased length to 10 meters and times each of the subtasks

[46]

Shumway-Cook et al.

(2000) [31]

Medley and
Thompson (2005)
[102]

Silsupadol et al.
(2006) [103]

Vaillant et al. (2006)

[104]

Demura and
Uchiyama (2007)
[105]

Nordin et al. (2008)
[106]

Maranh&o-Filho et al.

(2011) [107]

Cuesta-Vargas et al.
(2013) [108]

Sprint et al. (2014)
[109]

TUG-dual task
w/cognitive

TUG-environment

TUG-dual task
w/cognitive
Extra turning

TUG-obstacle

GUG-modified
TUG-dual task
w/cognitive

Water-TUG

Ecological TUG

of the TUG separately.

Subjects count backwards by 3’s from a randomly chosen
number in the range 20 to 100.

Subjects walk over varying carpet thickness. Simulated by 2
foam mats, 1 meter wide and %2 and % inch thick
respectively.

Subjects were asked simple arithmetic questions such as
“What is 3 plus 2?”

Subjects walk around the chair before sitting down.

Subjects step over a box, turn 180°, step back over the box
and return to the chair. Increased length to 5 meters.

Additional descriptions to each of the items on the original
fall-risk 5-point ordinal scale.

Subjects to recite alternating letters of the alphabet while
they performed the TUG.

TUG inside a 1 meter-deep swimming pool.

TUG in an ecological environment including a vehicle
transfer at the 180° turnaround point.
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TABLE Il

Benefits and limitations of technologies utilized for instrumenting the TUG.

Technology Benefits Limitations
Hardware is not required to be attached ~ Cameras need to be well-positioned.
to or worn on the body.
Synchronized with other technologies. ~ Viewing area can become blocked.
Often wall-powered, so no need to Difficulties can arise with multiple people
Video-based change batteries. in the area [52], [56], [57].

Facilitates tele-assessment.

Re-playable for clinician scoring at a
later time.

Depth information is available.

Need sufficient lighting.

Surface of the floor can be problematic for

depth estimation using Kinect [59].

Privacy is a concern in the home [55].

Wearable inertial
sensors

Small form factor.

Comfortable attachment minimizes
user awareness.

Units contain several sensors (i.e.
accelerometers, gyroscopes, etc.).

Do not require skin surface contact.
Inexpensive.
Attachable anywhere on the body.

Portable; the testing space is not
constrained.

Wireless.

Need to be routinely charged.

Difficult to self-mount sensors on one’s
own body.

Need to be well-positioned and oriented.

Sensors are noisy and suffer from drift.
May require calibration.
May be easily noticeable.

May be uncomfortable or interfere with
natural movement.

Low processing power.

Smartphone-
based

Contains a superset of the sensors in an
IMU.

Mounted on the body or carried in
pockets or bags.

Automatically sync via the internet
connection.

An interactive display.
High processing power.

Easy to use. The elderly population is
learning how to use them [110].

Need to be routinely charged.
Need to be well-positioned and oriented.

To upload data, WiFi or a cell phone
service is required.

Training is required.
May require calibration.

Large in size.

Ambient sensors

Hardware is not required to be attached
to or worn on the body.

Facilitates continuous monitoring.

Integrates into the environment and can
be unnoticeable.

Ability to track home-related metrics
such as electricity consumption.

Data collection is limited to the
environment they are mounted in.

Requires technical installation.

Multiple people or pets in the area can
cause complications.

Low resolution for computing movement
parameters such as stride length.
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Summary of instrumenting the TUG test with video-based technologies in chronological order. M = male, D =

dimensional.

Article

Population and Sample
Size

Description of
TUG Technology

Study Findings

Berrada et al.
(2007) [51]

Durfee et al.
(2007) [50]

Skrba et al.
(2009) [52]

Wang et al.
(2011) [53]

Lohmann et al.
(2012) [56]

Kitsunezaki et
al. (2013) [57]

Cippitelli et al.
(2014) [59]

N/A

10 healthy (2M, 18-35
years).

29 fallers and 23 non-
fallers (18M, mean age
70.9 years).

7 healthy (age range 25-
88 years).

5 age-related medical
conditions (2M, 70-84
years). 4 healthy (4M, 29-
31 years).

6 healthy.

N/A

1 video camera.

Video and audio
conferencing
system.

BioMOBIUS with
2 webcams.

2 calibrated digital

cameras.

2 Kinects.

1 Kinect.

1 Kinect.

Timing in the video sequences is

noisy.

No significant differences between
TUG scores assessed locally and

remotely.

Discrimination of fallers and non-

fallers by using automated

component timings and head

positioning during turning.

180° turn time extracted from video
exhibited a mean difference of 0.11
seconds compared with therapist

times.

High timing precision when
compared with human stopwatch
time. Timing of subtask components.

The differences between Kinect and
human scored stopwatch times and
the times were averaged to 0.33

seconds.

Analysis of head, shoulder, knee,
ankle, hip, and elbow joint angles.
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TABLE IV
Summary of instrumenting the TUG test with wearable sensors in chronological order. M = male, D =
dimensional.
Avrticle Population and Description of TUG Study Findings

Sample Size

Technology

Narayanan et
al. (2007) [67]

Higashi et al.
(2008) [45]

Gillain et al.
(2009) [73]

Marschollek et
al. (2009)
[111], [112]

Greene et al.
(2010) [70]

King et al.
(2010) [78]

Salarian et al.
(2010) [41]

Weiss et al.
(2010) [18]

Chiari (2011)
[113]

Jallon et al.
(2011) [114]

Al-jawad and
colleagues
(2012) [115],
[116]

Cuesta-Vargas
etal. (2013)
[108]

N/A

10 healthy. 20
hemiplegic.

14 healthy (mean age
73.53 years years). 14
MCI (mean age 72.85
years). 6 Alzheimer’s
(mean age 73.66
years).

110 geriatric (29M).

142 non-fallers and
207 fallers. (103M,
72.4 + 7.4 years)

12 healthy (24-35
years). 16 fallers (9M,
79.2 + 9.24 years)

12 early-to-moderate
stage PD (7M, 60.4 +
8.5 years). 12 age-
matched healthy (3M,
60.2 £ 8.2 years).

17 PD (15M, 66.8 £
5.9 years). 15 age-
matched healthy (5M,
67.6 £ 9.6 years).

20 early-to-mid PD.
20 healthy.

19 subjects.

10 healthy (4M, 63.2
+10.1 years). 10
early stage PD (8M,
58.8 £ 9.5 years). 10
advanced stage PD
(TM, 66.2+4.8
years).

10 healthy (5M, 22 +
3.1 years).

1 3D accelerometer mounted at
the waist.

11MU at L2 vertebra and 1
IMU on 1 upper thigh. A video
camera records the tests.

1 3D accelerometer at L3
vertebra.

1 3D accelerometer located at
the trunk.

1 IMU mounted on the front of
each shank at the midpoint
level. A video camera records
the tests.

1 3D accelerometer (e-AR)
worn on the ear.

7 inertial sensors attached on
the forearms (2D gyroscope),
shanks (1D gyroscope), thighs
(1D gyroscope) and sternum
(3D accelerometer and 2D
gyroscope). Small data-logger
in a waist-worn pack.

1 3D accelerometer worn on the
lower back between the L3 and
L5 vertebrae.

1 accelerometer mounted at the
L5 vertebra.

1 3D accelerometer and
magnetometer on the chest.

1 IMU placed on the lower
back.

7 EMG sensors on the right
side of the body.

At home, self-administered
TUG. Data automatically
uploaded and accessible via
a web interface.

Using acceleration signal
metrics, hemiplegic subjects
with different gait levels
could be differentiated.

Several gait parameters in
the single and dual task
TUG tests were different
amongst the 3 population
groups.

Able to classify fallers and
non-fallers by utilizing gait
parameters extracted from
the acceleration signals.

Large set of TUG
component and gait
parameters. Retrospectively
estimated falls risk with
76.8% accuracy.

Metrics computed could
differentiate between fallers
and non-fallers.

Each TUG component is
automatically detected. Gait,
turns, and turn-to sit
sections of the iTUG
demonstrated significant
differences between the 2
populations.

Analysis of sit-to-stand and
stand-to-sit movements with
parameters such as range,
jerk, duration, and median
standard deviation.

92.5% classification
accuracy for discriminating
the PD and the non-PD
populations.

Graph-based Bayesian
classifier distinguished TUG
phases with near 85%
accuracy.

Able to detect different
TUG subtasks with small
mean absolute errors.

Different maximum
voluntary isometric
contractions on land versus
water TUG.
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Avrticle Population and Description of TUG
Sample Size Technology

Study Findings

Mariani et al. 10 mild-to-moderate 13D IMU mounted to the Parameters computed are
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1duasnuen Joyiny

(2013) [14] PD (64 + 7 years). 10  upper shoe. able to distinguish between
age-matched healthy the control subjects and the
(66 + 7 years). PD subjects.

Najafi et al. 8 peripheral 1 accelerometer integrated into  Falls risk group took

(2013) [76] neuropathy (2M, 77 +

7 years).

Strohrmannet 3 children with
al. (2013) [77]  cerebral palsy or
stroke.

Tmaura et al. 40 elderly (age = 65

(2013)[117] years).

Caldara et al. 13PD (6469
(2014) [75] years). 4 healthy
(64.3 £ 4 years).

SankarPandi et 321 elderly (122M,
al. (2014) [72]  mean age 88 years).

a shirt at the chest level.

10 IMUs attached to the waist,
torso, and limbs.

3D accelerometer and 3 1D
gyroscopes were attached near
L2 vertebra and to both thighs.

3D accelerometers, gyroscopes,
and magnetometers were placed
on the spine, each forearm, and
each lower leg.

1 accelerometer mounted on the
right wrist.

significantly longer to
perform stand-to-sit task. A
0.40 second (0.85%)
systematic error for TUG
duration was achieved.

Computed gait parameters
are predictors of a motor
assessment score.

The high falls risk subjects
took significantly longer
(15.77 £ 1.41 seconds)
compared to the lower falls
risk subjects (10.09 + 1.86
seconds).

Several features were
computed.

Forty features were used to
classify disability levels
with a mean accuracy of
62.16%.
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TABLE V
Summary of instrumenting the TUG test with smartphone devices in chronological order. M = male, D =
dimensional.
Article Population and Description of TUG Study Findings
Sample Size Technology
Palmerini et 49 healthy Android smartphone worn on  Parameters were computed and
al. (2011) [82] (58.9 +16.5 the lower back by means of analyzed with principle
years). an elastic belt. Utilized the component analysis.

Fontecha et al.
(2012) [84]

Cuesta-Vargas
(2013) [85]

Milosevic et
al. (2013)

20 healthy elderly
(10M mean age
81.8 years, 10F
mean age 85.6
years).

N/A

3 PD. 4 healthy.

accelerometer.

Android smartphone attached
to the waist. Utilized the
accelerometer.

iPhone. Utilized the
accelerometer and gyroscope.

Android smartphone attached
to the chest. Utilized the
accelerometer and gyroscope.

Acceleration metrics are
computed and combined with

patient records to provide a frailty

assessment.

Higher degree of precision in
differentiating between frail
elderly subjects and elderly,
physically active subjects.

Self-administered, automated

TUG application. Records inertial
data during the TUG and displays

the results to the user.
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TABLE VI

TUG test studies based on a population with a medical condition.

Population Article
Salarian et al. (2008) [62], Horak et al. (2009) [61], Zampieri et al. (2009) [63], Salarian
et al. (2010) [41], Weiss et al. (2010) [18], Zampieri et al. (2010) [22], Chiari et al.

PD (2011) [113], Zampieri et al. (2011) [3], Al-jawad et al. (2012) [115], Mancini et al.
(2012) [65], Mariani et al. (2013) [14], Milosevic et al. (2013), Palmerini et al. (2013)
[42], Caldara et al. (2014) [75]

Fallers/Falls Narayanan et al. (2008) [68], Skrba et al. (2009) [52], Greene et al. (2010) [70], King et

Risk al. (2010) [78], Narayanan et al. (2010) [69], McGrath et al. (2011) [71], Weiss et al.
(2011) [39]

Cognitive Gillain et al. (2009) [73], Greene et al. (2012) [74]

Impairment

Hemiplegia  Higashi et al. (2008) [45]

Multiple Spain et al. (2012) [64]

Sclerosis

Neuropathy  Najafi et al. (2013) [76]
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