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Abstract

Strongly nonlinear degrade-and-fire (DF) oscillations may emerge in genetic circuits having a 

delayed negative feedback loop as their core element. Here we study the synchronization of DF 

oscillators coupled through a common repressor field. For weak coupling, initially distinct 

oscillators remain desynchronized. For stronger coupling, oscillators can be forced to wait in the 

repressed state until the global repressor field is sufficiently degraded, and then they fire 

simultaneously forming a synchronized cluster. Our analytical theory provides necessary and 

sufficient conditions for clustering and specifies the maximum number of clusters that can be 

formed in the asymptotic regime. We find that in the thermodynamic limit a phase transition 

occurs at a certain coupling strength from the weakly clustered regime with only microscopic 

clusters to a strongly clustered regime where at least one giant cluster has to be present.

I. INTRODUCTION

Many gene regulatory networks contain negative feedback loops as their core elements [1]. 

The negative feedback provides robustness and noise resistance to signaling pathways [2]. 

They also lie at the center of many natural rhythmic circuits (such as circadian clocks [3]) 

and synthetic gene oscillators [4–6]. In our recent work [7] the delayed negative feedback 

was identified as the mechanism of oscillations in the synthetic two-gene oscillator [5]. It is 

well known that delayed autorepression can lead to oscillatory gene expression even with 

only a single regulatory element [8–12]. Typically the period of delay-induced oscillations is 

comparable with the delay time, and thus this mechanism seemingly could not explain rather 

slow oscillations observed in gene circuits. However, it turns out that in a strongly nonlinear 

regime, the period of oscillations is determined by the rate of enzymatic degradation of the 

repressor protein and therefore can be arbitrarily longer than the transcriptional and 

translational delay. The essential mechanism of oscillations in this circuit is based on the 

alternation of two regimes: slow degradation of repressor protein, and the fast production of 

the repressor (firing) that occurs only when the repressor is degraded below a certain critical 

concentration; hence we termed these sawtooth-like oscillations “degrade-and-fire” (DF) in 

analogy with integrate-and-fire oscillations in neuronal circuits. Bacterial cells containing 

PACS number(s): 87.18.Cf, 05.45.Xt, 87.16.Yc

HHS Public Access
Author manuscript
Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 March 
30.

Published in final edited form as:
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 November ; 84(5 Pt 1): 051916. doi:10.1103/PhysRevE.
84.051916.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the DF circuit demonstrated robust oscillations, but due to cell-to-cell variability and 

stochastic effects, in the absence of cell-cell communication the bacterial colony quickly 

becomes desynchronized. In our subsequent work [13] we succeeded in synchronizing gene 

oscillators across the bacterial colony; however, the synchronized regime was achieved with 

a different circuit design that incorporated a quorum-sensing machinery producing small-

molecule Acyl-Homoserine Lactone (AHL), which served as signaling element necessary 

for cell-cell synchronization.

In this paper we study synchronization of DF oscillators through a purely co-repressive 

interaction. To enable analytical calculations, we replace the original nonlinear delay-

differential model of the DF oscillator [7] by a discontinuous piecewise linear model that 

assumes that the concentration x degrades from the maximum value (which can be scaled to 

1) linearly with unit rate, ẋ= −1 (mimicking enzymatic decay with high enzyme affinity), 

until it reaches the (small) threshold value η > 0, after which repressor concentration x is 

immediately reset to 1 (“fire”), and the process repeats. It is easy to see that the protein 

concentration oscillates with period 1 − η. This model closely resembles the classical 

“integrate-and-fire” (IF) neuron model, which has been extensively studied in the literature 

[14–17]. We introduce global co-repressive coupling of DF oscillators by assuming that 

each DF oscillator increases the repressor field of all other oscillators in proportion to its 

own repressor field. Equivalently, it can be interpreted as if all DF oscillators contribute 

their respective repressor concentrations to a global “repressor field,” that in turn is added to 

the repressor field of individual oscillators and therefore delays their firing. This mechanism 

is qualitatively similar to the inhibitory coupling of IF neurons that has been studied by 

Ernst et al. [17]. However, the important difference is that the oscillators are coupled all the 

time, and not just during the firing events, and as we see below, the dynamics of co-

repressive synchronization of DF oscillators is fundamentally different from those of 

inhibitory coupled IF neurons. In particular, a critical value of coupling strength exists at 

which a phase transition from the no-clustering regime to the strong clustering regime 

occurs.

Consider a population of N DF oscillators coupled through a common repressor field. We 

postulate that the dynamics of the concentration of repressor protein xi is given by the 

following rules:

i. If positive, xi degrades linearly with rate 1, i.e., ẋi=−1, or remains constant if it has 

reached 0,

ii. When the locally averaged concentration χi(t) = (1−ε)xi(t) + εX(t) [where 

and 0 ≤ ε ≤ 1 is the coupling strength parameter] reaches 

threshold η, the ith oscillator fires, and its concentration is reset to 1, i.e., xi(t+) = 1.

With these simple evolution rules, one can readily see that all oscillators must fire 

indefinitely (i.e., there cannot be “oscillator death” regime for any of the oscillators). Indeed, 

starting from an arbitrary configuration  for which all χi > η, all concentrations decay 

toward 0 with time (those that have reached xi = 0, remain at zero) and so do all χi. Thus the 

oscillator with the lowest xi (possibly more than one if several oscillators have identical 
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concentrations xi) eventually fires when the corresponding χi reaches η. After that, the 

oscillator j with new lowest xj has to fire when its χj reaches η, and so on. It is also clear that 

if any two oscillators in a population are in sync at certain time t*, i.e., xi = xj, they will 

remain in sync for all t > t*. What is not obvious, however, is under which conditions 

oscillators that are initially out of sync will synchronize in the course of the dynamics, and 

what the properties of the resulting clusters are. To answer these questions, we begin with 

the simple case of two oscillators.

II. INTERACTION OF TWO DF OSCILLATORS

In this case oscillator i (i = 1,2) fires when χi (1−ε/2)xi+εx3−i/2=η. Without loss of 

generality, we can assume that initially one oscillator has just fired [i.e., (x1, x2) = (x, 1) with 

η < x ≤ 1] and denote tf (x) > 0 the firing time associated with this configuration. The 

dynamics can be described through the return map R between ordered concentration pairs 

just after firings, (x,1) ↦ R(x,1) := (1 − tf (x),1).

The two-dimensional dynamics of two DF oscillators is contained in a parameter-dependent 

subset of the unit square [0,1]2 (Fig. 1). For ε = 0, firing occurs when either of the individual 

concentrations xi = χi touches the threshold η. A simple computation shows that R2(x,1) = (x,

1) for all x; i.e., we have a continuum of periodic orbits equivalent to the rigid rotation on a 

two-dimensional torus [Fig. 1(a)].

For ε > 0, the dynamics changes drastically, as expected. Instead of a continuum of neutral 

periodic orbits, a single stable periodic orbit emerges that attracts all trajectories, except for 

the unstable periodic orbit lying on the diagonal x1= x2 [Fig. 1(b)]. These are direct 

consequences of Lemmas 2 and 3 below. Furthermore, it can be shown that a unique and 

globally stable periodic orbit exists in arbitrary systems of two coupled DF oscillators with 

any monotonous degradation of both concentrations. Note that this result implies a 

somewhat unexpected corollary that two initially distinct oscillators never synchronize and 

always remain distinct. As seen from Fig. 1(c) and 1(d), the two oscillators in the asymptotic 

regime are always in antiphase, and, for large ε, one oscillator remains repressed (xi = 0) 

almost the entire time when the other repressor is present (more precisely, it fires when the 

other concentration reaches the small value 2η/ε) and vice versa.

III. MANY COUPLED DF OSCILLATORS

Now we turn to the analysis of the clustering dynamics of a population of N co-repressively 

coupled DF oscillators. Before we proceed with analytical results, we illustrate the typical 

behavior of the system numerically. Figure 2 shows the time series of 50 oscillators with 

initially distinct values of x for η = 0.01 and different values of the coupling parameter ε. 

For small ε = 0.01 [Fig. 2(a)], all oscillators fire before they ever reach zero, and so they 

remain distinct (no clustering). For larger ε = 0.03 [Fig. 2(b)] some oscillators reach zero, 

and some of them (not all) synchronize, and thus asymptotically, only eight clusters remain. 

Note that this number is not universal, as it depends on specific initial conditions. For ε = 

0.05 [Fig. 2(c)], only two clusters remain. Their “weights,” however, are not equal, in this 

example one cluster contains 24 oscillators, and another 26 oscillators. Again, this weight 

distribution is nonuniversal. And for very large ε = 0.5 [Fig. 2(d)] oscillators produce the 
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repressor protein in almost exact antiphase, one repressor is present, and the other one is 

absent.

By grouping oscillators with identical value of xi into one cluster, the population dynamics 

can be described via  where nk ∈ {1,…,N} denotes the size of the cluster k and 

xk the corresponding repressor concentration (K ⩾ N is the total number of clusters). In this 

viewpoint the cluster size distribution {nk} obviously remains unaffected in time unless two 

clusters k and k′ fire together.

As before, we consider the map between consecutive firings. Any ordering in {(nk,xk)} is 

irrelevant because of the permutation symmetry in this system. However, it is more 

convenient to deal with ordered values of xk. Thus we assume that 0 < x1 < x2 <⋯< xK−1 < 

xK=1. Given {nk}, this defines the state configuration set where the firing map  is 

effectively defined, viz., 

. In order to 

maintain the ordering of protein concentrations in time, we must include cyclic permutations 

of indices in the firing map dynamics. Similar considerations have been used in the analysis 

of the population dynamics analysis in [15]. The absence of clustering requires that, when 

starting in , the after-firing configuration has to lie in  (where all indices are 

understood mod K), and this should hold for each k = 1,…,Kper where Kper is the minimal 

size distribution period. This property globally holds in state configuration sets provided that 

the coupling strength is small enough.

Lemma 1

 for all k = 1,…,Kper iff

(1)

In particular, for εη < N/(N − 2), which is the minimal right-hand side in (1) over all cluster 

distributions {nk}, no clustering can ever occur, independently of the initial configuration. 

Notice that N/(N − 2) > 1 and → 1 as N → ∞. Lemma 1 is rigorously proven in Appendix 

A.

The nonclustering condition (1) can be intuitively understood as follows. The only way two 

clusters can merge is when one cluster reaches zero (collapses) and remains at zero at least 

until the following cluster also reaches zero. It is easy to see that in the worst case scenario 

two clusters 1 and 2 should be very close to zero when the other K − 2 clusters are very 

close to 1. In the limit x1,2 → 0,x3,…,xK →1, after x1 has collapsed, the value of x2 is equal 

to [N − εη(N − n1 − n2)]/(Nεη) when χ1 reaches η, and in order to avoid merging of n1 and 

n2, this value has to be positive. Of course, the same condition has to be satisfied for all 

consecutive pairs nk,nk+1, hence the minimum in inequality (1).
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Independently of (1), we may ask about the fate of the trajectories for which no clustering 

occurs. Since the sequence of merging events is always finite, this actually would determine 

every possible asymptotic regime. In absence of clustering, the firing map in  becomes 

, where tf still denotes the firing time. [This 

map is actually K − 1-dimensional because .] Since the image 

belongs to , one needs to iterate further until the point returns back to ; hence 

the dynamics to study is the return map . It can be 

shown (see Appendix B) that this map is always a pure contraction.

Lemma 2

For every and 0 < ε ≤ 1, there is a norm in for which 

 is a global contraction.

It follows that, in absence of clustering, every trajectory initially in  must approach a 

unique periodic orbit (whose single element in  is the fixed point of the return map). 

More generally, every trajectory in a population of N oscillators must converge to the 

periodic orbit associated with some {nk}. Hence, the asymptotic cluster size distributions 

and periodic orbits are in one-to-one correspondence. Accordingly, to get asymptotically 

attainable cluster distributions, it suffices to compute the existence domains of the 

corresponding periodic orbits. These domains are given by the following statement.

Lemma 3

The periodic orbit in  exists iff

(2)

This claim is proved in Appendix C where we also give the explicit expressions for the 

periodic orbit. Note that when nK = N − n1 (i.e., K = 2), we have ζ({nk})=+∞, which means 

that every two-cluster periodic orbit exists for any ε. In particular, for n1=n2=1 this 

observation implies the result for two coupled oscillators presented above.

For K > 2, the critical value ζ({nk}) is minimal for the (equi-)distribution where all nk = 1 

(in this case K=N), and the corresponding minimum is ζc = 2N/(N−2). So all possible 

periodic orbits exist for εη up to ζc. For larger εη, some periodic orbits disappear, certainly 

the one associated with equidistribution, and the number of clusters K must eventually be 

less than N.

A closer look at the formula (2) reveals that when {nk} is only composed of microscopic 

clusters, i.e., when , the corresponding critical value ζ({nk}) approaches 2 in 

the thermodynamic limit N → ∞. Therefore, such distributions do not perdure 

asymptotically beyond εη ≃ 2 when N is large, and at least some of the clusters size nk reach 
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O(N) in the course of time. Moreover, distributions that contain macroscopic cluster(s) (i.e., 

nk ≃ ρkN with ρk > 0 for some k) all have critical value ζ({nk}) larger than 2 in the 

thermodynamic limit. Thus, there is a sharp transition in the system at a certain εc = ζc 

(which is close to 2η for large N), from a dynamical regime in which all kinds of cluster size 

distributions may exist asymptotically, to a regime where every asymptotic distribution 

contains at least one giant O(N) cluster.

IV. MAXIMAL NUMBER OF CLUSTERS

The transition at εη = ζc can be quantitatively described by estimating the number of 

asymptotic clusters as a function of εη. Since the precise number actually depends on the 

initial condition and can be as little as 2, the appropriate quantity to compute is the maximal 

possible number Kmax. It can be proven (see Appendix D) that for any given K ⩾ 3 and N ⩾ 

K (and N ≠ 6 if K = 3), the critical value  in (2) reaches its maximum for the 

distribution consisting of K − 1 unitary clusters of weight nk = 1 and one big cluster nK = N 

− K + 1. In this case, we have

and therefore all distributions with K clusters exist for 0 ≤ εη < ζmax. This immediately 

yields the maximum number of clusters at a given N and εη:

(3)

This result indicates that a kind of second order phase transition takes place at εη = ζc with 

Kmax that behaves like  slightly above the threshold. Formula (3) 

implies that for each 1 ≤ K≤ Kmax(εη), there exists a nonempty set of initial conditions that 

produces a stable periodic trajectory with K clusters. However, the “typical” number of 

clusters emerging from an arbitrary set of initial conditions can be much less than this upper 

bound. We performed numerical simulations of the full model with initial conditions 

randomly selected from the [0,1]N hypercube. Figure 3 shows that the typical number of 

clusters for a given ε can be well approximated by the number Ke corresponding to the 

uniformly distributed initial condition xi=i/N. However, the number of asymptotic clusters 

depends strongly on the width of the distribution of initial states. We performed simulations 

for initial conditions xi equidistributed between 1 − δ and 1 and found that the number of 

asymptotic clusters strongly increases as the width of the initial distribution δ gets smaller 

and approaches the values close to the upper bound Kmax [Fig. 3(a), inset].

We addressed the robustness of the clustering transition against noise. DF oscillators are 

most sensitive to noise during the firing, so we modeled this by resetting xi to a random 

number uniformly distributed in [1 − η, 1 + η] (η characterizes the noise strength). In this 
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case, the clusters are not “exact,” since after firing identical xi become different; however, 

for small noise groups of oscillators remain closely correlated. We can characterize the 

degree of correlation by the coefficient of variation of the mean field X(t), CV = [〈X2〉 − 

〈X〉2]1/2/〈X〉. CV is small in the nonclustered regime but increases rapidly as soon as the 

clustering occurs [Fig. 3(b)].

V. CONCLUDING REMARKS

We presented an analytically solvable model of co-repressively coupled degrade-and-fire 

oscillators in a strongly nonlinear regime. At a certain coupling strength this model exhibits 

a phase transition from a regime when any cluster distributions including the nonclustered 

state can be attained to the regime of strong clustering characterized by the appearance of at 

least one giant O(N) cluster. This phenomenology is reminiscent of the synchronization in 

the Kuramoto model of globally coupled oscillators [18] or populations of integrate-and-fire 

neurons [14–17]; however, the details of the transition are different. In particular, in the 

Kuramoto and IF models with identical oscillators synchronization occurs for any positive 

coupling strength, while in the array of co-repressively coupled DF oscillators the 

nonclustered regime is stable for sufficiently small coupling strength.

Our model neglected the variability in parameters of individual oscillators. It also ignores 

the spatial localization of coupling or the time delays in exchange of the repressor 

concentrations among the oscillators. It is well known that these effects may play significant 

role in the synchronization phenomena [17,19,20]. We plan to address these effects in our 

future work. The experimental realization of coupled gene oscillators [13] incorporated a 

different (co-excitatory) mechanism of coupling through a quorum-sensing mechanism. 

However, we believe that co-repressive coupling may also be realized experimentally, if, for 

example, oscillators produce an enzyme that degrades a freely diffusing inducer or the 

quorum sensing molecule activates a repressor protein. Our results demonstrate that a strong 

clustering can be expected in this case, and large out-of-phase synchronized clusters are 

likely to emerge.
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APPENDIX A: PROOF OF LEMMA 1

Recall that  denotes the mapping in the ordered configuration set  that defines the 

new (ordered) configuration after firing. Recall also that εη := ε/η.
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We first prove that (1) is a sufficient condition. Assume that initially . Prior 

to firing, we have . Accordingly, the quantity χ1 

reaches η at time tf defined by

The quantity tf is the actual firing time provided that x1(tf) ⩾ 0, viz., tf ≤ x1. The latter is 

equivalent to

(A1)

Using that 0 ≤ xk − x1 ≤ 1 for state configurations in , a sufficient condition for this 

inequality is . Applying cyclic permutations, we conclude that, for every 

configuration in any of the , the lowest cluster of oscillators fires before (or exactly 

when) it reaches 0 if

(A2)

When this condition is violated, cluster configurations with all coordinates xk, k⩾2, 

sufficiently close to 1 and x1 sufficiently close to 0 satisfy the inequality 

 Accordingly, the concentration x1 reaches 0 before χ1 

reaches η, and, to prevent clustering, we have to make sure that χ2(tf) > η i.e., tf < x2 if tf 

still denotes the time when x1 fires. For t⩾x1, we have . The 

condition χ1(tf) = η defines the time firing as follows , 

where ηɛ=η/ɛ. Now, the inequality tf < x2 turns out to be equivalent to

(A3)

which is certainly satisfied when . Solving this inequality for all 

permutations {nk+l} gives the desired condition (1) on the coupling parameter.

We now show that  maps  into  when (1) holds. This consists in checking 

three conditions:

i. First, we have x2 − tf > 0 either because x1 − tf ⩾0 and x2 > x1 or simply because of 

(A3) when (A2) fails.
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ii. Then, the strict ordering x2 < ⋯ < xK−1<1 implies a similar ordering for the 

coordinates of R{nk}x where x = (x1,…,x).

iii. Finally, we have

(A4)

where we used x2 > x1 and 1 ⩾ x1 – tf to obtain the inequality. Thus the last 

inequality in the definition of  is satisfied for , and the proof is 

complete.

Finally, that (1) is a necessary condition is easy to check. Indeed, when , 

initial conditions in  with x1 and x2 sufficiently close to 0 and the other xi close enough 

to 1 simultaneously violate (A1) and (A3). Accordingly, the clusters n1 and n2 fire 

simultaneously, and a K′-cluster distribution results with K′≤ K−1. In particular, the image 

 cannot belong to . The proof is complete.

APPENDIX B: PROOF OF LEMMA 2

Recall that  denotes the firing map acting in 

 in the absence of clustering. The proof of Lemma 2 essentially consists in showing 

that, due to the dissipative nature of the coupling, all eigenvalues of the linear parts of each 

map  lie inside the unit circle.

We first prove contraction for the individual map . Its form depends upon whether the 

initial condition x = (x1,…,xK) satisfies (A1) or not.

Stability in the domain where x satisfies (A1)

When only considering the first K − 1 coordinates, we obtain

for all k = 1,…,K − 1. Applying the change of variable x ↦ y defined by
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the linear part of the previous expression becomes  where

(We used .) The corresponding (K − 1) × (K −1) 

matrix is a companion matrix whose characteristic polynomial immediately 

follows by reading the bottom line, namely,

The polynomial coefficients  are positive and decaying (as l decreases) 

when 0 < ɛ ≤ 1. By a classical result in numerical analysis (see, e.g., Ref. [21], p. 116), this 

property implies that  is Schur stable, viz., all its roots lie inside the unit disk.

Stability in the domain where x does not satisfy (A1)

In this case, the map reads

for all k = 1,…,K − 1. After applying the same change of variable as before the 

corresponding linear part becomes

now based on . The associated characteristic 

polynomial in this case reads
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As before, the polynomial  has positive and decaying coefficients; hence all 

roots of  lie inside the unit disk.

Proof that the return map is a contraction

Given that both spectral radii  and  are less than 1, the end of the proof is 

quite standard. Take any norm |·| in ℝK−1. We have  (see, e.g., Ref. 

[22]). Take δ > 0 sufficiently small so that  and let tδ enough be large so that

Consider the analogous  for the operator  and take  [this requires 

electing δ so that both inequalities  and  simultaneously hold]. 

By choosing  in ℝK−1, we conclude that the linear parts of  have norm 

‖·‖ less than 1, viz.,  is a global contraction.

Finally, the return map  will be contracting for the 

norm ‖xs‖1/s where s is any integer larger than each sδ of the  and δ is such that all 

these maps are contracting. The proof is complete.

APPENDIX C: PROOF OF LEMMA 3

Lemma 3 is a consequence of existence conditions for the periodic orbit associated with 

each cluster size distribution {nk}. This analysis of these conditions directly follows from 

the explicit computation of periodic orbits coordinates.

Without loss of generality, we study the solution in  of the equation

(C1)

for any K-cluster configuration . For the sake of notation, we use the symbol Rℓ 

instead of  and R0 = Id.

Periodic orbits have a property that remarkably simplifies their analysis; namely, all 

coordinates fire from the same value. In particular, this implies that they either all fire before 

reaching 0 or all reach 0 before firing. To see this, recall that tf(x) denotes the firing time for 
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x. The firing map definition obviously implies (RKx)K = 1, but also (RKx)K−1 = 1 − tf(RK−1x) 

since (RK−1x)K−1 = 1 and tf (RK−1x) is the firing time of the configuration RK−1x. By 

repeating the argument for the other coordinates (RKx)k, we easily obtain the following 

expression:

(C2)

Together with the periodicity assumption RKx=x and the firing map definition, this 

expression implies

By induction, we conclude that successive firing levels (Rℓx)1 − tf(Rℓx) do not depend on l = 

0,…,K−1, and the announced alternative follows. To proceed, we consider both cases 

separately.

Case 1: All coordinates fire before reaching 0

In this case, we assume that tf(Rℓx) ≤ (Rℓx)1 for all l = 0,…,K−1, and we accordingly solve 

the equation (C1), i.e., RK(x) = x.

Using the notation τk = xk+1 − xk, it is convenient to rewrite the periodic orbit coordinates as 

follows:

which in particular yields xK=1. In addition, periodicity conditions (C1) and (C2) imply

(C3)

To proceed, we use the assumption  to rewrite 

 as follow:

where
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Accordingly, the definition of the firing map implies 

for all k = 1,…,K and then 

 since we are assuming 

tf(Rx) ≤ (Rx)1 Repeating this argument inductively, we obtain

(C4)

and

(C5)

From equation (C3), it results that  for all l = 1,…, K−1, Which is equivalent to

Using again the firing map definition we have

and, together with the relation , the previous relation thus simplifies to

for ℓ = 0,…,K−2. For ℓ = 1,…,K−2 we can use relations (C4) and (C5) to get (Rℓx)2−(Rℓx)1 

= τℓ+1 and (Rℓx)1= τℓ+Δℓ−1. Accordingly, the previous relation results in

For ℓ = 0, using the expressions of x1 and tf(x) the previous equality becomes

Since all Δℓ = Δ the are equal, we finally get the condensed expression  for all 

1 ,…, K−1.
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In order to compute Δ we introduce the latter into the definition of Δ0 via the coordinates xk. 

This gives a first-order equation for Δ, whose solution is

where . Direct combinatorics implies

showing that . Notice that Δ is well defined when ɛ < 1 since ΣK < 1. 

Moreover, we have Δ < 1 when η < 1. From the expression of Δ, we immediately get 

To conclude the analysis in the present case, it remains to check the conditions on 

parameters, for which we have

Using (C4) and (C5), the first inequality amounts to Δ > 0, viz., . As for the second 

conditions, the only nontrivial restriction is (Rℓx)1 > 0 for all = 0,…,K−1, since the other 

ones are automatically satisfied from the definition of R and the nonclustering assumption. 

Again, (C4) and (C5) show that  for all l = 1,…,K−1. For ℓ = 0, we have 

, i.e., x1 > 0. Summarizing, the periodic orbit passing 

exists with all coordinates firing before they reach 0 iff

Case 2: All coordinates reach 0 before firing

This case can only occur when . We claim that the solution reads

(C6)
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for all k = 1,…,K − 1 and obviously xK = 1. To check this assertion, according to (C2), it 

suffices to verify that

We shall indeed show by induction that this relation holds for all k = 0,…,K − 1. Since we 

now assume that tf (x) > x1 we have . Using (C6) and 

the definition of ΣK we obtain

which gives the desired result for k = 0. The other cases proceed similarly by induction.

The existence conditions now become

and

The inequalities xk < xk+1 for all k = 1,…, K − 1 are equivalent to the following ones:

which certainly hold when . Moreover, x1 > 0 is equivalent to 

, and naturally, we obtain x1 < tf(x) iff ηɛ < ΣK.

For ℓ > 0, the only nontrivial constraint in  is (Rℓx)1 > 0, i.e., (Rℓ−1x)2 > 

tf(Rℓ−1x), since all other constraints follow from the definition of the firing map and the 
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nonclustering assumption. Therefore, all that remains to be checked is tf(Rℓx) ≤ (Rℓx)2 for all 

ℓ = 0,…, K − 1.

By induction we get . Using the explicit 

expression above, we obtain

for all ℓ = 0,…, K − 1. Altogether, we conclude that the existence condition in the case when 

all coordinates reach 0 before firing reduces to

APPENDIX D: MAXIMIZING CONFIGURATIONS

Lemma 4

Given K ⩾ 3 and N ⩾ K (and N ≠ 6 if K = 3), the K-cluster configuration that maximizes the 

critical value ζ({nk}) is the one defined by

(D1)

This result is not as obvious as it may first appear. Indeed, collapsing extensive clusters 

together and splitting off unitary clusters in a way to keep the total number K constant 

increases the left term in the expression of ζ({nk}) [see (2)] but simultaneously decreases the 

right term; so the overall shift of the critical value needs to be carefully evaluated. In 

addition, Lemma 4 does not hold in the case K = 3 and N = 6 since one can check that ζ({1, 

1, 4}) < ζ({2,2,2}).

Proof

To show that the configuration (D1) minimizes the denominator in ζ ({nk}), we can assume 

without loss of generality that {nk} is a permutation of the configuration  where 1 ≤ 

qk ≤ qk+1 and . Let ℓ ≤ K − 1 be the largest index for which qk = 1. We separate 

the cases  and .

If , then we have ℓ > K − ℓ; i.e., the configuration {qk} has more clusters with a 

single unit than it has clusters with more than one unit. Thus every permutation {nk} must 

have two consecutive clusters with a single unit. In this case, the quantity
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reaches its global maximum. Moreover, adding units to the largest cluster qK by taking off 

units from smaller clusters qk has the effect to increase the quantity . Thus the 

configuration (D1) minimizes the denominator in ζ ({nk}) over all permutations of 

increasing configurations {qk} with . The corresponding minimum is

To deal with the case , we begin by showing that for every K-cluster configuration 

we have . Consider the following alternative. Either all  or there is 

a pair (nk,nk+1) for which . In the second case, by contradiction there 

must be another pair (nk′,nk′+1) where  (otherwise we would have Σk 

nk > N which is impossible) implying that

In the first case, if , then we have

Otherwise there must be k such that  (otherwise we would again have Σk nk 

> N) and then again

Thus in all cases, we have , which implies the desired inequality.

Still for , the configuration that maximizes the sum  is
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[Notice that the assumption that  has exactly ℓ sites for which qk = 1 implies that N − 

2(K − 1) + ℓ ⩾ 2.] Altogether we conclude that when , the denominator of ζ ({nk}) 

is certainly not smaller than

Now, the quantity Qℓ − (K − 1)(2N − K) increases with N provided that 

. This inequality holds for every  when K ⩾ 5. 

Moreover, the quantity  also increases with N for K ⩾ 2. Thus the quantity 

Qℓ − Q increases with N, and to ascertain that Q is a global minimum, it suffices to check 

that each Qℓ − Q is non-negative for N = 2K − ℓ. This amounts to verify that the following 

inequalities hold:

where

and

The right-hand side in the inequality above is a third-order polynomial in ℓ that is decreasing 

between 0 and  when K ⩾ 5. Moreover, it is easy to check that
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for every K ⩾ 4; i.e., we indeed have Qℓ ⩾ Q for every  when K ⩾ 5.

For the cases K = 4 and K = 3, the proof needs to be improved because the quantity 

 actually decreases with N when this integer is large. We begin with assuming K 

= 4 and check separately cases j = 0, 1, and 2.

For K = 4 and j = 0, the inequality 2(K − 2)⩾K − 1 shows that Q0 − Q increases with N. 

Moreover, we have just checked in the general case that Q0 ⩾ Q for all N ⩾ 2K when K = 4; 

thus Q is also a global minimum in this case.

For K = 4 and j = 1, since , we still have Q1 − Q increases 

with N. By numerically computing the values Q1 and Q for N = 7 = 2K − 1, we conclude that 

Q remains a global minimum in this case.

For K = 4 and j = 2, we claim that given an increasing configuration (1, 1,q,N − q − 2) with 

, the minimum S is maximal for the permutation (1, N − q − 2,1,q). 

Indeed, up to a cyclic permutation, there are three distinct permutations, and (1, N − q − 2, 

1, q) is the only one that has nonconsecutive “1.” For (1, N − q − 2, 1, q), we have 

 due to the assumptions on q, and the corresponding denominator of ζ({nk}) reads

This quantity is convex for q between 2 and  (as a product of two positive 

functions, one increasing with decreasing derivative and the other one decreasing with 

decreasing derivative). Thus we only have to check that the values for q = 2 and 

 are not smaller than the value for q = 1. Direct calculations reveal that the 

former quantity eventually grows with N faster than the latter when N is large enough. A 

numerical check shows that these values for q = 2 and  are not smaller than the 

value for q = 1 provided that N ⩾ 6 (which is the minimal N for j = 2), and so the proof is 

complete for K = 4.

For K = 3, there are two types of configurations to consider, namely, the ordered ones 

(q1,q2,q3) and those of the form (q1,q3,q2). For (q1, q2, q3), due to the assumption qi ≤ qi+1, 

the minimum S is given by . For (q1,q3,q2), depending on the sign of , 

the minimum S is either  or . Since both these quantities are never smaller 

than , the nonordered configuration always minimizes the denominator of ζ({nk}).
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Using that  for the configuration (q, N − 2q − p, q + p) (where 

 and ), we get that the denominator of the critical value 

is at least

(D2)

Using similar arguments as above, one concludes that this quantity is convex for p between 

0 and . Therefore, it reaches its minimum at the boundaries of this interval.

For p = 0, the quantity (D2) becomes

which is again convex with q between 1 and . Moreover, the value for  grows 

faster with N than the value for q = 1 does. A numerical investigation reveals that the former 

is not smaller than the former provided that N ⩾ 7, i.e., ζ(1, N − 2, 1) ≤ ζ(q, N − 2q, q) for all 

 when N ⩾ 7.

For , (D2) becomes

Using once again the convexity argument, we obtain that this quantity reaches its minimum 

for either q = 1 or . In the first case we want to check the inequality

Again, as N increases, the l.h.s grows faster than the right-hand side, and numerics show that 

the inequality holds for all N ⩾ 10. For , one can prove that the corresponding 

inequality holds for all N ⩾ 7. Therefore, we have shown that (1, 1, N − 2) maximizes ζ(n1, 

n2, N − n1 − n2) provided that N ⩾ 10. For N between 4 and 9, we have listed all three-

cluster configurations and checked that the property remains valid, except for N = 6, as 

stated above.
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FIG. 1. 
(Color online) (a, b) Typical phase trajectories of two coupled DF oscillators (solid red line 

indicates periodic orbits and dashed blue and green lines two transients). Simple arrows 

indicate motions between firings when both concentrations decay with rate 1. Triple arrows 

denote firings when the trajectory jumps from critical line χi = η to xi = 1. (a) ɛ = 0, every 

trajectory is periodic. (b) ɛ > 0, for every initial condition except x1 = x2 the system 

asymptotically converges to a unique periodic trajectory passing through (x*,1), where x* = 

1 − 2(1 − η)/(4 – ɛ) (thick red line). (c, d) time series of two coupled DF oscillators for η = 

0.01 and different values of ɛ: (c) ɛ = 0.01; (d) ɛ = 0.5.
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FIG. 2. 
(Color online) Typical time series of 50 coupled DF oscillators and of their mean value X(t) 

(thick/blue line) for η = 0.01 and different values of ɛ: (a) 0.01; (b) 0.03; (c) 0.05; (d) 0.5.
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FIG. 3. 
(Color online) (a) Number of clusters in the asymptotic regime for 1000 coupled oscillators 

with η = 0.01 and 1000 different random initial conditions for each ɛ. The solid blue line 

indicates the upper bound (3), and the solid red line shows the number of clusters Ke(ɛ) for 

the uniform initial distribution. Inset: The number of clusters as a function of the initial 

distribution width δ for ɛ = 0.03; (b) time-averaged mean field 〈X〉 and the coefficient of 

variation CV as a function of ɛ for δ = 0.01 and firing noise η = 0.05 for 10 000 oscillators 

and 500 periods.

Fernandez and Tsimring Page 24

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


