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Abstract

Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states 

(extrinsic noise) degrade information transmitted through signaling networks. We analyze the 

ability of temporal signal modulation, that is dynamics, to reduce noise-induced information loss. 

In the extracellular signal-regulated kinase (ERK), calcium (Ca2+), and nuclear factor kappa-B 

(NFκB) pathways, response dynamics resulted in significantly greater information transmission 

capacities compared to non-dynamic responses. Theoretical analysis demonstrated that signaling 

dynamics has a key role in overcoming extrinsic noise. Experimental measurements of 

information transmission in the ERK network under varying signal-to-noise confirmed our 

predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic 

noise induced information loss. By curbing the information-degrading effects of cell-to-cell 

variability, dynamic responses substantially increase the accuracy of biochemical signaling 

networks.
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The role of biological signaling networks is to reliably transmit specific information about 

the extracellular environment to downstream effectors, allowing the cell to adjust its 

physiological state to changing conditions. The stochasticity of molecular interactions that 

underlies various forms of “noise” in biological systems can interfere with signal 

transduction and degrade the transmitted information. How signaling networks perform their 

core functions in the presence of noise is a fundamental question. Information-theoretic 

approaches allow estimating the maximal possible information transmission capacity of 

noisy biochemical networks (1–11). Previous applications of such methods to the analysis of 

signaling networks suggested that due to noise, cells lose most of the information about the 

concentration of ligands (12–14). Thus far, the information-theoretic analyses of signaling 

networks have been based on scalar measurements performed at a single time point. 

However, the information on activating ligands is often encoded using a dynamic signal 

represented by a multivariate vector that contains a single cell’s response at multiple time 

points (15–18).

To test the hypothesis that dynamic responses contain more information than static 

responses, we performed single live-cell measurements of three key signaling pathways 

(Fig. 1): ERK, Ca2+, and NFκB (19). Fully automated computational image analysis (19) 

allowed us to measure the response of 910,121 individual live cells (Fig. S1–6, Tables S1–

3). The large sample size was instrumental for analyzing high-dimensional multivariate 

responses. In all three pathways there was substantial variability within the dynamic (Fig. 

1CDE) and non-dynamic (Fig. 1F) single cell responses across multiple concentrations of 

activating ligands.

To analyze the implications of noise on information loss we used an information-theoretic 

approach to calculate the information transmission capacity of a dynamic signaling network. 

The information transmission capacity [also referred to as channel capacity (20)] is 

measured as the maximal possible mutual information between the measured response and 

the activating ligand concentration. To calculate the mutual information between a dynamic 

response (a vector) and the ligand concentration (a scalar), we expanded on a previously 

described algorithm (14). The algorithm uses continuous multi-dimensional response data 

and a k-nearest-neighbor approach to estimate the conditional probability density for each 

cell’s response (19). We thus estimated the information transmission capacity of the 

dynamic response and of several types of static responses. For all single time point static 

scalar responses we found transmission capacity (<1 bit) (12, 13) (Fig. 2A). However, across 

all three signaling pathways, the dynamic response had significantly higher information 

transmission capacity than several scalar responses previously described (21, 22) (Fig. 2BC, 

Student’s t-test p-value <0.05 for all comparisons, Fig. S16, Table S6). These estimates 

should be considered as lower bounds because they do not exclude variability resulting from 

experimental imperfections.

To elucidate the origins of the enhanced information transmission capacity of dynamic 

signaling responses we developed a mathematical theory using information-theoretic 

formalism (19). The theory explicitly accounts for the information-degrading effects of 

intrinsic and extrinsic noise sources in the context of multivariate responses. Intrinsic noise 

adds to uncertainty in all dimensions (i.e. time points) independently from one another. In 
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contrast, the extrinsic variability in cellular states produces fluctuations that are constrained 

by the signaling network that generates the dynamics. Therefore, the fluctuating components 

generated by extrinsic noise at different time points are deterministically dependent on one 

another. As a result, intrinsic and extrinsic noise sources have different effects on the 

information transmission capacity of multivariate responses. In the case of purely intrinsic 

noise, additional measurements increase the information logarithmically due to simple 

ensemble averaging (12). In the case of purely extrinsic noise, sufficient number of 

dynamical measurements can provide complete information about the a priori uncertain 

internal state of the cell and therefore lead to a substantial gain in the information about the 

activating ligand (Fig 3A).

To test our analytical prediction that the multivariate dynamic response can completely 

eliminate the information loss that results from introduction of extrinsic noise (19) we used 

computer simulations of ERK responses based on a published kinetic model (19, 23) (Fig. 

S14). We generated sets of simulated ERK activity trajectories in response to an increasing 

number of ligand concentrations. We varied model values for ERK and Mitogen-activated 

protein kinase kinase (MEK) according to a uniform distribution (+/−20% mean value) to 

mimic extrinsic noise and measured the information transmission capacity. Our analysis 

supported the analytical prediction and showed that while the univariate response, based on 

maximal ERK dynamics, had limited information transmission capacity, the dynamic 

multivariate response can transmit complete information about ligand concentration (Fig. 

3B). An intuitive demonstration for the limitation of univariate response and the ability of 

multivariate response to overcome extrinsic noise is shown in Fig. 3C and D. Superficially, 

the trajectories of two populations of simulated responses of ERK activity to two input 

concentrations of Epidermal growth factor (EGF) appear overlapping (Fig. 3C), but in fact, 

they are completely separable when considering joint distributions (24). Plotting the 

distribution of ERK activity at t=9 and t=24 minutes on a two-dimensional plane (Fig. 3D) 

shows that the responses to a single varied parameter input lies on a one-dimensional curve 

within a two-dimensional space. The two one-dimensional manifolds for different inputs are 

completely separated from each other (inset), but overlap considerably in any one-

dimensional projection. This simple example demonstrates how the extrinsic variability of a 

single parameter can in principle be completely eliminated using measurements from only 

two time points.

The accuracy of a response can be characterized by its signal-to-noise ratio (SNR). The 

mutual information and the system’s SNR are related, however this relationship is strongly 

affected by the noise properties (intrinsic vs. extrinsic) and the type of the response. Our 

analytical theory predicts different relationship between mutual information and SNR for 

three different types of responses: (i) scalar responses that do not distinguish between 

intrinsic and extrinsic noise, (ii) multivariate responses without any dynamic component 

(redundant measurements) that can only reduce intrinsic noise, and (iii) dynamic responses 

that combine the benefits of redundant measurements with efficient mitigation of extrinsic 

variability. We varied the SNR in the ERK network by partial inhibition of the ERK kinase 

MEK with six different dosages of the inhibitor U0126. At each MEK inhibition level we 

measured ERK response to eight EGF levels. A total of 48 conditions were measured in four 
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biological replicates (Fig. S24). At each MEK inhibitor level we calculated the mutual 

information and the SNR from single cell responses (19). In total, Fig. 4 contains 535,107 

cell responses (Table S4,5). As expected, for a scalar response, the formula relating the 

mutual information and the overall SNR is in very good agreement with our experimental 

measurements. The theoretical prediction of mutual information for the redundant 

measurement case requires knowledge of intrinsic to extrinsic noise ratio (IER). IER was 

estimated in two ways by: (i) quantifying the fluctuations in the later (quasi-stationary) 

portion of the response time series of our ERK data (Fig. S22C) (ii) using data for repeated 

measurements of single cell responses (25) (Fig S22). The predicted mutual information 

based on redundant responses required IER values that are 2–4 orders of magnitude higher 

than experimentally estimated IER (19)(Fig S17). In contrast, the measured mutual 

information values were in good agreement with the theoretical prediction for a dynamic 

response based on a computational ERK model (19)(Fig. S19). Overall this analysis 

demonstrates that the substantial information gain from multivariate measurements is indeed 

the direct result of the dynamic nature of ERK response.

The robustness of biological systems is epitomized by their ability to function in the 

presence of large variability in cellular states (26, 27). Signaling dynamics allow 

biochemical networks to mitigate variability in the cellular state and thereby maximize the 

information transmission capacity of signaling networks. Although the theory and 

observations presented here focus on the information transmission capacity of the dynamics 

of a single signaling molecule, the extension of our analysis to the case of multiple signaling 

molecules responding to one ligand is straightforward. Not all of the information contained 

in the dynamical responses may actually be used by cells. Yet, because reliable information 

transmission is a fundamental function of cellular signaling networks, it is plausible that 

evolutionary pressures shaped the cellular machinery to maximize the reliable decoding of 

multivariate dynamic signals.
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Figure 1. Single cell measurement of the dynamic response of ERK, Ca2+ and NFκB
A. Overview of single cell data analyzed in this work. B. Examples of single cell response 

dynamic trajectories. CDE. Temporal histograms of several representative dosages for ERK 

(C) Ca2+ (D) and NFκB (E). Color intensity reflects the probability density of a cellular 

response magnitude at each time point. Y-axis in BCDE is the same for each pathway and is 

of Arbitrary Units representing the FRET/CFP ratio reported by the EKARev ERK 

biosensor (C), intensity of Ca2+ indicator dye Fluo-4 (D), and ratio of nuclear to cytoplasmic 

localization of an EYFP-p65 reporter (E). F. Violin plot of the maximally separable static 

response in the three signaling pathways. Shape width shows response distribution (areas are 

equal), and point is the median response in each condition.
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Figure 2. Information transmission capacity of static and dynamic ERK, Ca2+ and NFκB 
responses
A. Information transmission capacity calculated from static scalar response distribution 

based on single time point measurements. B. Information transmission capacity calculated 

from multivariate dynamic responses as a function of the dimension of the multivariate 

vector. The multivariate vector was subsampled using a uniform grid centered on the middle 

time point (Fig. S20) C. Comparison of the multivariate vector (V) measurement to the 

following scalar responses: maximum response amplitude (A), maximum response time (T), 

maximal rate of response (D), ratio of maximum response amplitude to initial response 

amplitude (R). Error-bars are s.e.m from 6 biological replicates for ERK, 4 for Ca2+, and s.d. 

from 5 jackknife iterations for NFκB (Table S1–3). The multivariate vector information 

transfer was significantly greater than all scalar measures (p-values <0.05, Student’s t-test, 

Table S6).
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Figure 3. Theoretical decomposition of information loss caused by intrinsic and extrinsic noise
A. graphical representation of the analytical expression for the gain in mutual information 

from overcoming intrinsic (cyan) and extrinsic (magenta) noise sources obtained from 

random linear gaussian inputs and outputs with three parameters (19). B. information 

transmission capacity of dynamic (orange) and static (maximal response, purple) responses 

calculated using simulated trajectories from the computational model of ERK (22) with only 

the extrinsic noise contributing to cell response variability. C. Example of ERK trajectory 

variability for two different inputs levels (red and blue). Variability was generated using a 

uniform distribution of a single parameter, MEK values that was varied by +/- 20%. D. Two 

dimensional histogram (center) and marginal distributions (left and bottom) for the two 

input levels (shown in red and blue) at two time points (T=9 & 24min) from the trajectories 

in C. Because only a single parameter was varried, the responses vary on a one-dimensional 

curve. As a result, although the univariate marginal distributions show substantial response 

overlap, the two dimensional distribution shows completely seperated response levels 

(inset).
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Figure 4. Measured information gain is a result of ERK dynamics ability to mitigate extrinsic 
noise
Experimental measurement of the mutual information between ERK response and EGF 

measured as a function of the response signal-to-noise (SNR). Each marker represents 

calculations of SNR and mutual information from the dynamic (dot) and maximal scalar 

(cross) responses of cells from an 8-well dose-response experiment. Shown data are 

calculated based on 535,107 single cell responses from 29 experiments with six doses of 

MEK inhibitor U0126 (Table S4–5). Lines represent theoretical predictions of the mutual 

information as a function of SNR for three types of responses: static scalar (red line), 

redundant measurements where the multivariate response has no dynamics (dark and light 

blue lines) calculated based on two independent estimates of IER (19)(Fig S22), and 

dynamic response (orange) that can mitigate both intrinsic and extrinsic noise (Fig S19).
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