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Abstract: An improved single sided Rayleigh wave (R-wave) measurement was suggested to
characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations
were performed to clarify the behavior of R-waves interacting with surface breaking crack with
different depths and degrees of inclinations. Through analysis of simulation results, correlations
between R-wave parameters of interest and crack characteristics (depth and degree of inclination)
were obtained, which were then validated by experimental measurement of concrete specimens
instigated with vertical and inclined artificial cracks of different depths. Wave parameters including
velocity and amplitude attenuation for each case were studied. The correlations allowed us to
estimate the depth and inclination of cracks measured experimentally with acceptable discrepancies,
particularly for cracks which are relatively shallow and when the crack depth is smaller than
the wavelength.

Keywords: reinforced concrete; surface breaking crack; surface Rayleigh wave; velocity index;
amplitude index; excitation frequency

1. Introduction

Civil structures are susceptible to various kinds of defects such as cracking, spalling, creeping,
honeycombing, voids and delamination of cover. Cracks are normally formed due to one or a
combination of factors such as drying shrinkage, thermal contraction, restraint (external or internal) to
shortening, subgrade settlement, and applied loads. Severe cracking often affects serviceability and
the integrity of a structure.

Numerous studies have been conducted to assess surface breaking cracks in concrete.
Sham et al. [1] proposed a contactless short-duration pulsed thermography Flash Thermography
(FT) method for surface crack detection. It was concluded that the FT is able to detect surface cracks
with widths between 0.5 mm and 1 mm. However, for smaller crack (0.1–0.5 mm) detection, addition
of adding water was required. Matsuyama et al. [2] developed a Stack Imaging of spectral amplitudes
Based on Impact-Echo (SIBIE) method to identify the presence of voids in delaminated areas and
evaluate the depth of surface cracks. An extended Surface Wave Transmission (SWT) method to
characterize the depths of surface-breaking cracks in concrete bridge was previously carried out by Kee
and Gucunski [3]. The comparison between 3D finite element simulation and actual reinforced concrete
bridge decks’ measurements was reported with an average error of 10%–15%. In addition, Yin et al. [4]
studied a noncontact vision-based sensing method with which cracks in a full-scale reinforced concrete
slab could be detected through image analysis.

The unique features of Rayleigh waves (R-waves), for example, their low attenuation and higher
energy of possession than bulk waves, facilitate detection at long propagation distances. These features
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make R-waves a promising tool for non-destructive evaluation of concrete. The R-wave depth of
propagation depends on its wavelength and it exhibits strong dispersion behavior, e.g., velocity varies
with frequency of wave. Thus, for a medium with a velocity varying with depth, the R-wave velocity
depends on the frequency and is known as dispersion. It is believed that the dispersion and diffraction
characteristics of R-waves can be utilized to provide useful information on the propagation medium,
for example, the existence of a defect [5].

With regards to applications of R-wave in non-destructive testing of concrete, Kim and Kwak [6]
proposed a wavelet-component analysis technique for the measured waveforms. Its accuracy was
comparable to other conventional signal processing methods, besides offering improved reliability
due to successful elimination of various noises and reflection waves. Willcocks et al. [7] extended
the existing half space theory to analyze layered structures of finite depth. It was indicated that the
new proposed Spectral Analysis of Surface Wave (SASW) tool was applied to estimate the physical
properties of concrete and hybrid structures of unknown layer configurations and the detection of
damage in structures of known physical dimensions. On the other hand, Chai et al. [8] studied the
feasibility of impact-generated R-waves to measure deep surface-opening cracks in concrete structures
with varying vertical crack depths. The authors established correlations between the amplitude factors
and crack depth-to-wavelength ratio. Subsequently, the accuracies were compared with the results
of Primary wave (P-wave) time of flight method. In addition, Lee et al. [9] explored the possibility
of a new method to determine and extract R-wave component from transient elastic waves based on
an algorithm that employs matched filtering of center of energy (MFCE). The authors reported that
experimental results are in good agreement with the numerical findings, confirming the feasibility of
the proposed method in crack depth estimation. Alver and Ohtsu [10] examined the possibility of
ultrasonic methods for subsurface damage detection in concrete specimens with varying depths. Both
the numerical and experimental analyses showed R-wave and P-wave velocities were not responsive
to the subsurface damage. Thus, the rendering establishment of correlations between wave attenuation
rate and crack depth is still uncertain. A complementary stack imaging technique was applied for
subsurface crack depth identification using ultrasonic echo. In addition, the suitability of R-waves
for use in tomographic reconstruction of concrete interior was also previously studied [11]. It was
reported that the single-sided measurement enabled defect visualization inside concrete, where the
sensitivity relied on the penetration depth of R-waves.

The available concrete crack assessment methods were found to have their own limitations.
For example, some methods only focus on detection in a qualitative manner, while others are
confined to evaluating shallow cracks in plain concrete at laboratory scale, which are not sufficiently
cost-effective to be adopted on a mass scale. Various issues have arisen in rationalizing the elastic wave
methods, in particular to the R-waves based methods for assessment of cracks in concrete structures.
In this study, the aim is to improve the R-waves based method through quantitative examination of
the behavior of waves propagating concrete containing surface breaking cracks. To investigate the
effect of concrete inhomogeneity on R-waves’ propagation, steel bars were included to simulate the
actual reinforcement arrangement of a concrete. Key parameters of R-waves that are sensitive against
changes in crack depth and degree of inclination were identified and analysed. Through regression
analyses, correlations between the R-waves’ parameters and properties of cracks were obtained and
validated with experimental measurements. The correlations could facilitate in situ measurements and
characterization of surface breaking cracks.
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2. Numerical Simulations

2.1. Model Description

Numerical simulations were carried out with a commercial software Wave2000 [12] that provides
solutions to the two dimensional (2D) elastic wave propagation problems based on the method of finite
difference. The fundamental equation governing the 2D propagation of stress waves is as follows:
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where ρ is material density, λ is the first Lame constant, µ is the second Lame constant, η is shear
viscosity, φ is bulk viscosity, ∇ is the gradient of operator, ∇‚ is the divergence operator, B is the partial
differential operator, t is the time and w is a two dimensional column vector whose components are
the x and y components of displacement of the medium at location (x, y), that is:

w “ rwx px, y, tq wy px, y, tqs1 (2)

where ’ denotes matrix transpose. The time function was Sine Gaussian pulse and the specific
expression used for waveform is:
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2
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where p(t) = 0 for t ! 0 and t > Duration, A is the amplitude, the time constant a is inversely
proportional to the bandwidth (decreasing the time constant a increases the bandwidth), f is the
nominal center frequency of the waveform, and Duration is the time interval for which the signal is
defined. A reinforced concrete model of 500 mm (width) ˆ 300 mm (depth) in size was modelled in
the simulation, as illustrated in Figure 1. The material and acoustic properties used in the model are
tabulated in Table 1. An assumption has been made where the materials used are considered as elastic
as all properties of concrete and rebars are uniform. Since the numerical model is a 2D model and the
wave spreading is not taken totally into account, for example, geometrical spreading. To account for
this, additional attenuation factors, namely shear viscosity (η) and bulk viscosity (φ), are considered.
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Table 1. Mechanical properties of the model materials obtained from experimental measurements.

Material
First Lame

Constant, λm
(GPa)

Second Lame
Constant, µm

(GPa)

Density, ρ
(kg/m3)

Poisson
Ratio, v

P-Wave
Velocity, CP

(m/s)

R-Wave
Velocity, CR

(m/s)

Concrete 10.82 15.98 2313 0.202 4300 2311
Steel 124.82 83.59 7850 0.299 6099 3219

Infinite boundary conditions were configured to prevent reflection of the wave from reaching the
edges of the model. This is to avoid confusion during results’ analysis, since the reflected components
could converge with the incoming ones, causing the actual change in waveforms. In the simulation,
the input of the wave was configured as pin-point excitation on the top surface, of which the dominant
frequency was varied to enable investigation of multiple cases. The simulations were implemented
with one excitation that yielded a sine cycle wave propagating from one side to the other side of
the model. The effect of crack on wave propagation, attenuation and pulse velocity was studied.
The simulated waveform recording frequency was about 5 ˆ 106 samples per second. Three sensors
were fixed on one side of the crack and another three were placed on the other side. The distance
between sensors, d, was kept at 40 mm. The variations being investigated include angle of inclination,
vertical depth, frequency of excitation and approximate R-wave wavelength, as given in Table 2.
A similar procedure for the simulation can be found in [13].

Table 2. Orientation, degree and depth of cracks.

Depth of Crack, d (mm) Frequency of Wave, F
(kHz)

Corresponding R-Wave
Wavelength, λ (mm)

Degree of Inclination θ against
the Horizontal Plane, (˝)

30 to 150 at 30 increment 10, 20, 30, 40, 50, 60, 80,
100, 150

221, 114, 78, 59, 47, 39, 29,
24, 16 30, 60, 90, 120, 150

2.2. Waveform Results

The Rayleigh wave is generally detectable since it corresponds to a strong peak following the first
arrival of the P-wave which is of certainly lower amplitude. In addition, R-wave velocity was also
computed, which adopts the R-wave arrival time difference between the first burst peaks detected
from two sensors. Figure 2 shows waveform data obtained from simulating models without crack:
one composed of concrete only while the other with inclusion of steel reinforcements. The excitation
frequencies used were 10 and 150 kHz. At 10 kHz excitations, the two sets of waveforms were almost
identical to each other in terms of propagating speed and amplitude (Figure 2a,c), On the other hand,
at 150 kHz excitations, R-waves were found to be propagating slightly faster in the steel reinforced
concrete sound model, although the amplitude did not seem to differ much from those propagating the
plain concrete model (Figure 2b,d). The differences between arrival times of R-waves were found to be
approximately 7% at most between the two sets of waveforms with different excitation frequencies.
Negligible influence by the presence of steel reinforcements on the propagation behavior of R-waves
is reckoned, due to their small coverage relative to the total area by concrete in the model. Both the
longitudinal and transverse reinforcements took up just 5% area of the 300 mm ˆ 500 mm model,
rendering insignificant relative displacement between steel and concrete which can be neglected.
In addition, the highest frequency of the excited wave is 150 kHz, corresponding to a wavelength of
16 mm (twice the rebar diameter of 8 mm), and causing to the propagation to be insensitive to the
reinforcement [14]. It is also to be noted that, in this study, the R-wave parameters, namely velocity
and amplitude acquired from simulation models with cracks, would be normalized with the ones
from the sound model of identical reinforcement arrangements to eliminate any possible influence on
waveforms by the presence of reinforcements.
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Figure 2. Simulated waveforms collected for steel reinforced concrete model using (a) 10 kHz and
(b) 150 kHz excitations as well as the plain concrete model using (c) 10 kHz and (d) 150 kHz excitations.

Examples of simulated waveform results of the cracked concrete model acquired from excitation
frequencies of 10 kHz and 150 kHz are given in Figure 3. The strongest cycle belongs to the Rayleigh
mode, which follows the weak longitudinal arrivals that were observed, especially for higher excitation
frequencies. From the figure, distorted waveforms recorded by sensors after the crack (S4, S5 and
S6) indicated a larger decrease in amplitude and are hardly visible (waveforms were magnified by
a factor of 5 in Figure 3f,g and a factor of 10 in Figure 3j) compared to the ones from the sensors of
the homogeneous concrete model or even to those sensors before the crack (S1, S2 and S3), which
are quite clear. This shows that a very small part of the energy is transmitted through the crack.
The depth of the crack has greatly influenced the amplitude recorded by sensors after the crack and
their relationship is found to be inversely proportional. Besides, the arrival of R-waves has obviously
been delayed, especially in the deeper crack cases (150 mm) due to the longer pathway that has to
be taken to the corresponding sensors. The crack acted as a void which does not allow the waves to
pass through. Therefore, a longer pathway and lower velocity are expected. It is worthy to note that
the orientations of the surface breaking crack can be identified from the simple arrangement of the
waveforms recorded by all the sensors. For example, the waveforms obtained from sensors before
the crack show a consistent delay of R-wave peak for the 90˝ vertical and 150˝ inclined crack cases,
while in the case of 30˝ inclination cracks, distorted waveforms were recorded from sensors located
before the crack as can be seen in Figure 3g,h due to the convergence between reflected body waves
from the crack and the coming Rayleigh wave. In addition, one can notice that the arrival of R-wave
peaks for sensors located after the crack behaves in an inverse manner for the 150˝ inclination crack
(see Figure 3i,j). From the simulated wave motion, the generated waves were seen to travel along
the crack face down to the crack tip, before being projected upward to reach the concrete top face
on the other side of the model to form R-waves. The projection was complicated as observed and
it would be highly possible for the wavefront energy to reach sensors S5 and S6 first depending on
the crack inclination degree and depth. Under such circumstances, R-waves would propagate in two
directions on the concrete top face and, sensor S4 would record its arrival later on. Hence, in the results’
analysis that will be discussed in Section 2.3, the sum of R-wave velocity from all the sensors was taken
into account in order to cater for the uncertainty in the sensor acquisition sequence. It is understood



Sensors 2016, 16, 337 6 of 22

from the findings that the behavior of the wave following interaction with the crack has significant
angle dependences and the effect of this angular dependence is clearly defined in the R-wave arrival
times. Based on this measurement configuration, the change of R-wave propagation trend could be
used to identify the inclined direction of the crack. It is clear that the behavior of the wave following
interaction with the defect has a significant angle dependence.Sensors 2016, 16, 337 6 of 22 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Simulated waveforms collected for 30 mm vertical (90°) crack model using (a) 10 kHz and 
(b) 150 kHz excitations; for 150 mm vertical (90°) crack model using (c) 10 kHz and (d) 150 kHz 
excitations; for 150 mm inclined 30° crack model using (e) 10 kHz and (f) 150 kHz excitations; for  
150 mm inclined 150° crack model using (g) 10 kHz and (h) 150 kHz excitations. 

Waveform data recorded from sensors S3 (left hand size of crack) and S4 (right hand side of 
crack) at excitation frequency of 30 kHz is depicted in Figure 4, for the vertical crack (90°) and the one 
inclining at 150°. For the vertical crack, waveforms obtained from the sensor on the left hand side of 
the crack did not exhibit much difference in terms of amplitude and R-wave arrival time. 
Nevertheless, for waveforms obtained by sensors at the right hand side of the crack, delay of arrival 
time of Rayleigh peaks as well as the decline in amplitude were noticed. The delay and decline 
became significant as the depth of the crack increased. From the results, it is evident that the crack 
depth has influence on the change in wave propagation behavior. The variations of amplitude for the 
shallowest crack depth of 30 mm and deepest crack depth of 150 mm were reported as 10.45%, 

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)
Rayleigh Peak

S3
S2

S1

S4

S6

30 mm vertical crack (10 kHz)

S5

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)

Rayleigh Peak

S3
S2

S1

S4

S6
30 mm vertical crack (150 kHz)

S5

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)
Rayleigh Peak

S3

S2

S1

S4

S6
150 mm vertical crack (10 kHz)

S5

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)

Rayleigh Peak

S3
S2

S1

S4

S6
150 mm vertical crack (150 kHz)

S5

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)
Rayleigh Peak

S3
S2

S1

S4

S6
150 mm inclined 300 crack (10 kHz)

S5

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)

Rayleigh Peak

S3
S2

S1

S4

S6
150 mm vertical crack (150 kHz)

S5

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)
Rayleigh Peak

S3

S2

S1

S4

S6
150 mm inclined 1500 crack (10 kHz)

S5

0 50 100 150 200 250 300

Am
pl

itu
de

Time (μs)

Rayleigh Peak

S3
S2

S1

S4

S6
150 mm inclined 300 crack (150 kHz)

Figure 3. Simulated waveforms collected for 30 mm vertical (90˝) crack model using (a) 10 kHz and
(b) 150 kHz excitations; for 150 mm vertical (90˝) crack model using (c) 10 kHz and (d) 150 kHz
excitations; for 150 mm inclined 30˝ crack model using (e) 10 kHz and (f) 150 kHz excitations;
for 150 mm inclined 150˝ crack model using (g) 10 kHz and (h) 150 kHz excitations.
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Waveform data recorded from sensors S3 (left hand size of crack) and S4 (right hand side of
crack) at excitation frequency of 30 kHz is depicted in Figure 4, for the vertical crack (90˝) and the
one inclining at 150˝. For the vertical crack, waveforms obtained from the sensor on the left hand
side of the crack did not exhibit much difference in terms of amplitude and R-wave arrival time.
Nevertheless, for waveforms obtained by sensors at the right hand side of the crack, delay of arrival
time of Rayleigh peaks as well as the decline in amplitude were noticed. The delay and decline
became significant as the depth of the crack increased. From the results, it is evident that the crack
depth has influence on the change in wave propagation behavior. The variations of amplitude for
the shallowest crack depth of 30 mm and deepest crack depth of 150 mm were reported as 10.45%,
77.61%, 16.73% and 85.95%, respectively, for 90˝ and 150˝ cases. This is explainable since the elastic
wave with a propagation frequency of 30 kHz is able to pass directly underneath the crack depth
of 30 mm with minor scattering and attenuation due to its wavelength (78 mm) greater than the
crack depth. Similar results are found in [15] as low frequencies pass underneath the crack, while
higher frequencies which are transmitted are more likely to have travelled along the crack faces.
Additionally, the corresponding percentage of delay in arrival time of R-wave peaks was calculated
as 10.43%, 23.94%, 12.64% and 29.62%, respectively, for the same cases. Similar results were reported
from a previous study, confirming the influence by crack depth to the velocity and amplitude of the
R-waves [16].
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Figure 4. Waveforms collected at the third sensor (S3) and fourth sensor (S4) (a) vertical (90˝) surface
breaking crack and (b) inclined (150˝) surface breaking crack for 30 kHz excitations.

2.3. Correlations of Waveform Parameters with Crack

In previous researches, the crack depth is essentially divided by the major wavelength of
R-waves in order to offer a parameter that gives flexibility and broader coverage in comparison
and assessment [8,17–22]. In this paper, the said parameter results are presented in Figure 5. The
velocity indices, VI for each propagation was computed using the following equation:

VI “

ř6
j“2 VC, 1„j

ř6
j“2 VS, 1„j

(4)

where
ř6

j“2 VC, 1„j and
ř6

j“2 VS, 1„j are summation of R-wave velocities from sensor S1 to the other
respective sensors, for crack and the sound model, respectively. It is noticeable that a velocity index of
1.0 indicates that the propagation of R-waves is the same as in the sound model condition and has not
been disturbed by the crack.
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Figure 5. Velocity index versus d/λ for crack cases (a) 30˝ inclined; (b) vertical (90˝) and
(c) 150˝ inclined.

It is found that the velocity index decreased as the ratio of crack depth-to-wavelength, d/λ
increased, in logarithmic regressions for crack cases of 30˝ and in linear regressions for the vertical
one, respectively. A dissimilar trend is observed in which the velocity index decreased in polynomial
regressions for cases of cracks inclining more than 90˝. The figures also indicated that higher excitation
frequencies will result in higher values of velocity indices. Similar findings were reported from previous
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studies, suggesting that although waves with higher frequencies experience stronger attenuation than
lower ones, their propagation velocity is faster in inhomogeneous media like concrete [23,24] passing
through the thickness transmission of P-wave, as well as R-waves [25]. Based on the findings, the
velocity index could be considered as a useful parameter for identifying the existence of a crack and
quantifying its depth. From the results, it is also suggested that even higher frequencies with lower
penetration depth are still applicable for deeper crack identification.

To evaluate the effect of cracks on the amplitude of R-wave, amplitude index, AI (Figure 6) was
calculated using the following:

AI “

´

ř6
i“4 AC, i{

ř3
j“1 AC, j

¯

´

ř6
i“4 AS, i{

ř3
j“1 As, j

¯ (5)

where Ac is R-wave amplitude in model with crack and AS is R-wave amplitude in the sound model.
The amplitude index is also presented in a dimensionless form for better assessment adaptability.
From the results, it is noted that the amplitude index of all crack cases decreased as the ratio of crack
depth-to-wavelength, d/λ increased, in a polynomial regression trend. Apart from this, the amplitude
index becomes lower as the frequency increases due to the tendency for higher frequency components
simply to lose their energy via absorption, scattering and also attributed to distortion by the crack.
Generally, the amplitude index seemed to decrease with regards to the degree of inclination from 30˝

to 150˝. It supports the phenomenon that more energy was blocked from being detected on other
side of the crack as the degree of inclination of the crack increased. The attenuation of amplitude
manifested to be a more suitable parameter for crack characterization than velocity index since the
discrepancy between the homogenous and cracked models was greater and more noticeable than it
was for velocity. This agrees well with the previous findings [26,27].
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Figure 6. Amplitude index versus d/λ for crack cases (a) 30˝ inclined; (b) vertical (90˝) and
(c) 150˝ inclined.

The amplitude index also appears to lose its sensitivity towards the detection of crack depth of
150 mm. The energy of the wave is not proportional to the amplitude but to the square of the amplitude.
This implies that the major energy of R-wave propagates in shallower zones. Hence, despite the fact
that the penetration depth of R-waves which is considered to be one wavelength and larger than the
crack, the energy passing below the crack is insignificant, and, therefore, the waveform readings for
the larger cracks do not show any discrepancy [16].

2.4. Correlations of Waveform Parameters with Degree of Inclination

The velocity and amplitude indices versus the crack inclination degree are shown in Figures 7
and 8. It seems that both the velocity and amplitude indices decreased in polynomial trends as the
degree of inclination increased. In addition, it can be seen that the lowest indices were obtained for
the case of crack inclining at 150˝, while the highest values were found from the one inclining at 30˝.
On the other hand, the amplitude index for the first two cases (Figure 8a,b) displayed a comparable
decrease, contrary to the trend observed for other crack cases (depth of greater than 90 mm). Generally,
both the velocity and amplitude indices decreased as the degree of inclination increased from 30˝ to
150˝, proving that large energy content has been blocked due to an increase in effective vertical depth
as crack inclination increased. In addition to this, it is also confirmed that the drop of velocity with
the increase of crack inclination was due to the fact that R-waves, in particular those with effective
penetration depth less than the crack vertical depth, took longer to propagate to the other side of the
crack. It was considered that the results obtained would be of real benefit for the same measurement
setup. The results may also be applied to other setup conditions with adequate adjustments, especially
the scaling between the crack depth and sensor distance.
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Figure 7. Velocity index versus different degree of inclination for crack depth of (a) 30 mm, (b) 90 mm
and (c) 150 mm.
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Figure 8. Amplitude index versus different degree of inclination for crack depth of (a) 30 mm; (b) 90 mm
and (c) 150 mm.

3. Experimental Verification

3.1. Specimen and Instrumentation

Four reinforced concrete specimens were prepared (300 ˆ 300 ˆ 500 mm). One of the specimens
was the control with no defect, while the other three comprised of one artificial crack inclining at 30˝,
60˝ and 90˝ (vertical crack), respectively, as measured against the horizontal plane. Additionally, 120˝

and 150˝ can be measured from the other side of the crack of 60˝ and 30˝ inclinations. The artificial
crack was formed by hanging a polystyrene foam board in the concrete mould before pouring concrete.
Steel bars of 10 mm in diameter were arranged in meshes of 100 ˆ 100 mm and 170 ˆ 150 mm at both
tension and compression zones, respectively. The reinforcement meshes were placed at a depth of
50 mm from the bottom and top surfaces before casting. The concrete mixture was prepared using
ordinary Portland cement, a maximum aggregate size of 20 mm, and water to cement ratio of 0.53.
After casting, the specimens were cured under air-dried condition. At 28 days, the concrete achieved
an average compressive strength of 31.1 MPa and a Young’s modulus of 21 GPa based on testing
procedures as prescribed in BS EN 12390-3: 2002 and ASTM C469-10, using cylindrical specimens
prepared in accordance with ASTM C469.

A digital data acquisition system (NI PXIe-4492 by National Instruments Corporation) was
employed in the experiment measurement. Six accelerometers (352A60 (PCB Group Inc. with a
frequency range of 0.005–60 kHz were mounted on the top surface of concrete specimen using petrol
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gel couplant. The arrangement of sensors was identical to the configuration adopted for numerical
investigations. The specimen cross sectional dimensions, density, Lamé constants and modulus of
elasticity were similar to those of numerical models. Figure 9 shows the experimental set up. It was
considered that any distortion of waves as recorded by accelerometers S3, S4 and S5 would be governed
by the presence of the crack. In the experimental measurements, generations of waves were made
by impact excitations from steel balls of different ball diameters (19 mm, 15 mm, 13 mm, 10 mm and
9 mm). The purpose was to have wave excitations of different dominant frequencies. Figure 10 shows
the measurement arrays and are labeled A, B, C and D. The crack has varying depths depending on
measurement location.
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3.2. Results Discussions

Steel balls with diameters of 19 mm, 15 mm, 13 mm, 10 mm and 9 mm were used as impact
sources in the experimental measurements. The forcing function associated with an impact event
of these balls exhibits consistent and broad spectral content with dominant frequencies of 11.1 kHz,
13.4 kHz, 15.3 kHz, 18.2 kHz and 19.5 kHz, respectively. For the control and vertical surface breaking
crack (90˝) concrete block specimens, excitations from both sides were considered for each array. The
results were then averaged. However, only one side excitation was taken for each array for the inclined
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surface breaking concrete block specimen (30˝, 60˝, 120˝ and 150˝) due to the intrinsic geometrical
limitation. An example of the time domain traces measured on array A on the upper face of the control
specimen is shown in Figure 11a. In addition, time domain traces measured at the same array location
for the specimen with vertical crack (crack depth of 125 mm), and on array B (crack depth of 100 mm)
as well as on array D (crack depth of 25 mm) are also depicted in Figure 11b–d, respectively. From
the figures, one can notice that there is a delay in the arrival of Rayleigh peaks for all cases. Apart
from that, the delay of Rayleigh peaks between S3 and S4 becomes longer when the depth of surface
breaking crack is increased. From the point of view of amplitude, a significant reduction of amplitude
is noticeable when comparing the amplitude recorded from sensors after the crack to those recorded
from sensors before the crack. Nevertheless, due to intrinsic attenuation, reductions of amplitude are
also reported for sound concrete cases. It is noted that the elastic wave might have traveled down
other shorter paths in concrete medium and been diffracted by the crack tip, rather than traveling in a
“straight and direct” direction underneath the crack along the measurement array. This affects mostly
the first arrival of P-wave and causing it to be insignificant as compared to that coming from other
travel paths and possibly produced more erroneous estimations. Similar findings were also reported
in a previous study [8].
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Figure 11. Time domain traces collected on array A for (a) control specimen and (b) specimen with
vertical crack and (c) on array B for latter concrete specimen and (d) on array D for the specimen with
the crack.

Figure 12 illustrated the general procedure involved in the crack depth estimation. Amplitude
and velocity indices were calculated by using Equations (4) and (5) with the same signal processing
and data analysis procedures as mentioned in the previous section. Since the wavelength can be known
and obtained from the excitation frequency used, the estimated depth or degree of inclination can be
numerically derived from AI and VI correlations obtained from simulation result analysis. The actual
and experimental measured crack depths as well as their discrepancies are depicted in Figures 13
and 14 based on an evaluation using velocity and amplitude indices. In general, the amplitude index
provided a more accurate estimation, with discrepancies in all measurement cases being lower than
those obtained from an evaluation using the velocity index. In addition, the largest discrepancy
was found from measuring the specimen with vertical cracks especially for the two deeper depths
(d = 100 mm and 125 mm). It is noticeable that for all cases when the propagation wavelength is
smaller than the crack depths, the corresponding discrepancy values between the actual and estimated
crack are lower. Apart from that, it shows that the depth of the crack was underestimated if compared
to the actual ones. The propagation of elastic waves in concrete medium could be more complicated
compared to the 2D simulation; the elastic wave may have been propagated down other shorter
pathways in concrete medium and diffracted by the crack tip, rather than traveling in a “straight
and direct” direction from below the crack. However, the discrepancy between estimated and actual
depths/degree of inclination was within ˘18%, suggesting that the proposed method could be useful
for crack depth and degree of inclination estimation.
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Figure 13. Comparison between actual and experiment measured crack depth based on velocity index 
for (a) inclined 30°, (b) vertical 90° and (c) inclined 150°. 
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Figure 13. Comparison between actual and experiment measured crack depth based on velocity index
for (a) inclined 30˝, (b) vertical 90˝ and (c) inclined 150˝.
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Figure 14. Comparison between actual and experiment measured crack depth based on amplitude 
index for (a) inclined 30°; (b) vertical 90°; (c) inclined 150°. 
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Figure 14. Comparison between actual and experiment measured crack depth based on amplitude
index for (a) inclined 30˝; (b) vertical 90˝; (c) inclined 150˝.



Sensors 2016, 16, 337 19 of 22

Figures 15 and 16 show the discrepancy between actual and experimentally measured degree
of inclination for velocity and amplitude indices, respectively. It can be seen from the figure that the
determination of the degree of inclination of surface breaking crack was greatly influenced by the
crack depth. Few factors contributed to the discrepancy. First, the sample surface is relatively flat,
but still has a slight local curvature; this can lead to incomplete and inconsistent contact between the
surfaces of the accelerometers and the specimen. Second, even though the contact pressure on the
accelerators is maintained as constant as possible, the contact condition varies in each measurement
due to the inherently porous nature of the concrete surface. Third, the specimen has localized minor
surface cracks or unseen voids that are possibly due to the hardening of concrete binder over time.
In addition, the discrepancy can be due to the intrinsic attenuation caused by the material since the
concrete is known to be an inhomogeneous material and geometrically spreads when the waves pass
through the specimen. Finally, the variation of the signal shape due to the above-mentioned error
sources causes some difficulty in consistent windowing of the signals.
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Figure 15. Comparison between actual and experimentally measured degree of inclination based on
velocity index for (a) 30 mm crack depth and (b) 90 mm crack depth.
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Figure 16. Comparison between actual and experimentally measured degree of inclination based on
amplitude index for (a) 30 mm crack depth and (b) 90 mm crack depth.

4. Conclusions

The interaction of wave propagation with the surface breaking crack is studied both numerically
and experimentally in this paper. The study is focused on the determination of the surface breaking
crack depth and also its degree of inclination. Two parameters—namely, velocity and amplitude—were
calculated and extracted from simulated time domain waveforms and the corresponding established
correlations were verified through experimental measurements. The overall results exhibit a good
qualitative agreement regarding the relationship between the proposed parameters and surface
breaking crack depth as well as the degree of inclination with a maximum discrepancy of around
16%. From the analyses, the amplitude index seemed to be more sensitive towards the changes in
crack depth and also the degree of inclination, especially when the wavelength is greater than the
crack depth due to its higher penetration ability. Apart from the proposed wave parameters used
for crack characterization, the feasibility of other parameters, such as the central frequency, peak
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frequency, coherence, the cut off frequency and phase velocity, are worth exploring. In addition,
the parameters used for simulations can be better defined to overcome the discrepancies between
the actual and measured values such as the intrinsic geometrical attenuation and the viscoelasticity
of concrete materials as well as the three-dimensional (3D) propagation behavior of elastic waves.
An interesting future work could focus on the neural network for simultaneous identification of crack
depth and degree of inclination. Apart from this, a real site investigation, especially for a large concrete
specimen, could look at different sizes or forms of cracking or deterioration. It is recommended that
cross-checking the proposed parameters will enhance their reliability in crack characterization.
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