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Abstract: Global Navigation Satellite Systems (GNSSs) were originally introduced to provide
positioning and timing services for terrestrial Earth users. However, space users increasingly rely
on GNSS for spacecraft navigation and other science applications at several different altitudes from
the Earth surface, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit
(GEO), and feasibility studies have proved that GNSS signals can even be tracked at Moon altitude.
Despite this, space remains a challenging operational environment, particularly on the way from
the Earth to the Moon, characterized by weaker signals with wider gain variability, larger dynamic
ranges resulting in higher Doppler and Doppler rates and critically low satellite signal availability.
Following our previous studies, this paper describes the proof of concept “WeakHEO” receiver; a
GPS L1 C/A receiver we developed in our laboratory specifically for lunar missions. The paper also
assesses the performance of the receiver in two representative portions of an Earth Moon Transfer
Orbit (MTO). The receiver was connected to our GNSS Spirent simulator in order to collect real-time
hardware-in-the-loop observations, and then processed by the navigation module. This demonstrates
the feasibility, using current technology, of effectively exploiting GNSS signals for navigation in
a MTO.
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1. Introduction

GNSS receivers have been successfully adopted as key elements of the navigation systems for
many space borne missions. Typically, they are used in LEO where the availability of the GNSS
signals is very good and high accuracy positioning can be achieved. Using a GNSS receiver as the
core navigation system enables greater autonomy of a spacecraft and reduces the burden and costs of
network operations [1]. For this reason, the autonomous navigation capabilities of GNSS are extremely
appealing, not only for LEO but for higher altitude Earth orbits as well. It is even possible for spacecraft
orbiting at altitudes beyond the GNSS constellations to receive weak signals from the opposite side of
the Earth. These receivers are picking up the spillover of the main lobe of the GNSS transmit antenna
pattern around the Earth mask and also signals from the weaker side lobes of the antenna pattern.
Research presented in [2–8] shows feasibility studies of GNSS as navigation system for space missions
in High Earth Orbits (HEO) and beyond up to Moon altitude. Other research work, such as [9–12]
and [13] has proposed GNSS receivers designed for such missions and the demonstration of a receiver
positioning in HEO is detailed in [14]. In [15–17] experimental demonstrations are described that show
the GNSS signals availability even at higher orbits than GEO. Research continues to investigate the
potential of using GNSS for lunar missions, in particular for Earth-Moon transfer orbits.

Sensors 2016, 16, 347; doi:10.3390/s16030347 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 347 2 of 21

In this paper, we describe the GPS L1 C/A hardware receiver, named “WeakHEO” receiver,
which we have designed and developed as a proof of concept for lunar missions at the ESPLAB
EPFL. Firstly, the hardware architecture of the receiver is presented followed by a description of
the defined mission and expected GNSS signal environment in which the receiver has to operate.
The high-sensitivity acquisition and tracking algorithms of the receiver are then described before
concluding with navigation test results from the receiver.

2. The WeakHEO Receiver Architecture

The architecture of the WeakHEO receiver is shown in Figure 1. The system comprises of three
main elements as follows.

‚ A tri-band (L1, L2, L5) RF front end, which amplifies, filters and down converts the GNSS signals
to an intermediate frequency (IF) where they are sampled. The reported initial implementation is
focused on processing and utilisation of the GPS L1 C/A code signal. However, a triple frequency
L1, L2, L5 front end (an early version of the front end in [18]) was selected to allow future
expansion to these frequencies. A high sampling rate is used to enable the receiver to support
precision tracking architectures and additional wider bandwidth signals in the future. A common
IF frequency of 53.78 MHz is used for all three bands and signals are sampled at 40.96 MHz with
4-bit resolution. The RF front is driven by a stable, low-phase noise Oven Controlled Crystal
Oscillator (OXCO).

‚ A DE3 FPGA platform. An FPGA platform was required to allow custom designs of the
acquisition and tracking engines within the receiver. The WeakHEO receiver uses the same
development platform and builds on the FPGA-based architecture of the “Signature” receiver
developed by ESPLAB in EPFL [19]. Its core component is a Stratix III FPGA (Field Programmable
Gate Array) receiving the parallel sampled data from the RF front end. The FPGA contains a
softcore NIOS II (32bit RISC) processor and performs all the high sensitivity acquisition, tracking
and navigational data decoding processes. Raw measurements (pseudoranges, pseudorange rates,
signal parameters, time, etc.) are passed to the PC through a UART interface at a rate of 0.1 Hz.
Note that this rate has been chosen in order to allow the real-time processing of the navigation
solution on the PC (currently programmed in Matlab). In the next version of the receiver, a faster
update rate will be selected. An external memory (DDR2 SDRAM) connected to the FPGA is also
used as buffer for the acquisition.

‚ A PC, The PC then performs the navigation solution in real time or can record and compute the
orbital filter calculations offline.
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Figure 1. Architectural components of the WeakHEO receiver. 

2.1. Operations of the Receiver 

The operations of the receiver are performed in several steps as follows: 

(1) The navigation software on the PC determines which GPS satellites are visible and estimates the 
Doppler for each satellite. This information is then sent to the FPGA through the UART interface. 
This allows a reduction of the frequency search space for the acquisition thus a reduction of the 
acquisition time. 

(2) The acquisition searches the satellites in view within a frequency search space around the coarse 
Doppler given. Once a satellite is acquired, there is a transition phase before the tracking to 
determine the position of the bit edge. Following this, tracking is started and the Time Of Week 
(TOW) is decoded from the received navigation data. 

(3) The measurements (pseudoranges, pseudorange rates, satellite PRN, estimated C/No and TOW) 
are sent to the computer by the FPGA at a rate of 0.1 Hz and a PVT solution is computed. 

2.2. Description of the Mission Scenario 

The reference trajectory for our study is a direct Earth-Moon Transfer Orbit (MTO). The initial 
position and velocity with the respect to the Earth Centered Inertial frame (ECI) are reported in Table 
1, as well as some characteristics assumed for the host spacecraft. The full trajectory is propagated 
from the initial conditions by the PosApp software of our Spirent GSS8000 simulator, taking into 
account gravitational effects from the Earth, Sun and Moon, atmospheric drag and the solar radiation 
pressure. The reference trajectory is represented by the blue portion of the MTO shown in Figure 2. 
The reference orbit has been validated using the System Tool Kit (STK) [20]. Figure 3 shows the 
relation between altitude and time during the considered MTO and also the GPS satellites altitude. 
  

Figure 1. Architectural components of the WeakHEO receiver.

2.1. Operations of the Receiver

The operations of the receiver are performed in several steps as follows:

(1) The navigation software on the PC determines which GPS satellites are visible and estimates the
Doppler for each satellite. This information is then sent to the FPGA through the UART interface.
This allows a reduction of the frequency search space for the acquisition thus a reduction of the
acquisition time.

(2) The acquisition searches the satellites in view within a frequency search space around the coarse
Doppler given. Once a satellite is acquired, there is a transition phase before the tracking to
determine the position of the bit edge. Following this, tracking is started and the Time Of Week
(TOW) is decoded from the received navigation data.

(3) The measurements (pseudoranges, pseudorange rates, satellite PRN, estimated C/No and TOW)
are sent to the computer by the FPGA at a rate of 0.1 Hz and a PVT solution is computed.

2.2. Description of the Mission Scenario

The reference trajectory for our study is a direct Earth-Moon Transfer Orbit (MTO). The initial
position and velocity with the respect to the Earth Centered Inertial frame (ECI) are reported in Table 1,
as well as some characteristics assumed for the host spacecraft. The full trajectory is propagated from
the initial conditions by the PosApp software of our Spirent GSS8000 simulator, taking into account
gravitational effects from the Earth, Sun and Moon, atmospheric drag and the solar radiation pressure.
The reference trajectory is represented by the blue portion of the MTO shown in Figure 2. The reference
orbit has been validated using the System Tool Kit (STK) [20]. Figure 3 shows the relation between
altitude and time during the considered MTO and also the GPS satellites altitude.
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Table 1. Initial position and velocity of the considered receiver trajectory and spacecraft parameters.

Parameters Values

ECI Initial position (km)
`

2395.52 ´5298.28 ´3022.82
˘

ECI Initial velocity (km/s)
`

10.19 3.58 1.72
˘

Departure date 2 July 2005, 00:34:18
Mass of the spacecraft (kg) 1000

Reference surface (m2) 20
Radiation pressure coefficient 1
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2.3. GNSS Signal Characteristics

2.3.1. Simulation Models and Assumptions

In our simulations we have modelled a GPS constellation consisting of 32 GPS satellites, allocated
in the six orbital planes according to [21]. Realistic GPS L1 C/A signals are generated by our Spirent
GSS8000 full constellation simulator, where the signal power level at the receiver Pr is modelled as [22]:

Pr “ PICD `OG ` 20ˆ log10

ˆ

R0

R

˙

´ Ltx ´ Lrx (1)
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where:

PICD “ ´128.5 dBm
is the guaranteed minimum signal level for the GPS L1 C/A signals on
the Earth according to [21].

OG “ `3 dB

is the global offset, chosen to obtain in simulation the performance
obtained when real signals are received. Typically, the transmitted signal
power levels are from 1 to 5 dB higher than the minimum received
ones [23], for this reason an intermediate value of 3 dB has been chosen.

R0
is the reference range used for inverse-square variation calculation and
equal to the range from a receiver to the GNSS satellite at zero elevation.

R is the range from GNSS satellite to the receiver.

Ltx

is the loss from the GNSS satellite transmit antenna in the direction of the
receiver. 3D GPS antenna patterns have been modelled, as described in
our previous study [24,25].

Lrx is the loss from the receiver antenna in the direction of the GNSS satellite.

2.3.2. Signal Power and Dynamics

In this section we report some significant simulation results from our previous studies [13,24],
and [26] used to define the main receiver characteristics. Figure 4 shows the received power levels of
all the GPS L1 C/A signals as a function of the time, during the full considered trajectory. As shown
in Figure 5, the fourth strongest GPS L1 C/A signal (at least four ranges are required to compute the
3D position) at receiver antenna reaches approximately a minimum power level of ´168.5 dBm. For
this reason, a very high sensitivity receiver architecture is required. Moreover, the carrier frequency is
affected by Doppler shifts and Doppler rates (see Figures 6 and 7 respectively) of up to 20 kHz and up
to 4 Hz/s respectively at the Moon altitude (where the signals are weaker) and of up to 60 kHz and up
to 65 Hz/s at the beginning of the MTO (where the signals are stronger), requiring a certain robustness
against high dynamics for the receiver.

The identified minimum power level of ´168.5 dBm of the fourth strongest signal during the
full considered MTO can be seen as a power sensitivity value required for the receiver to acquire and
track at least four signals (and then provide the navigation solution) with a certain probability. Then,
assuming a receiver antenna gain of 10 dBi, we have targeted a sensitivity of at least´159 dBm, slightly
higher than the minimum required.

According to [27], it is possible to calculate the carrier-to-noise density ratio C/N0 (in dB-Hz)
from the received power Pr (in dBm) by using the following formula, valid for a front-end noise figure
of 2 dB and an effective antenna temperature of 130 K:

C{N0 “ Pr ` 174 (2)

A received signal level of ´159 dBm then corresponds to a C/N0 of 15 dB-Hz.
However, when a GNSS simulator is used, the effective antenna temperature is the room

temperature, which increases the noise. In that case, the carrier-to-noise ratio can be obtained as

C{N0 “ Pr ` 172 (3)

A received signal level of ´157 dBm then corresponds to a C/N0 of 15 dB-Hz for testing with the
GNSS simulator.
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2.4. Geometric Dilution of Precision (GDOP) and Ranging Errors

As described in [24] in detail, the achievable navigation accuracy at Moon altitude is strongly
limited by a very poor relative geometry between the receiver and the transmitters (very large GDOP
values) and large ranging errors. For instance, at Moon altitude, simulations in [26] show GDOP values
much higher than 1000 for an acquisition sensitivity of 15 dB-Hz. Due to the very low carrier to noise
ratio C{N0 values, when processing GPS L1 C/A signals, the code tracking thermal range jitter σtDLL
can achieve values larger than 6 m [24]. A detailed characterization of GDOP and ranging error for
different sensitivity values and different GNSS signals is provided in [24].

2.5. GPS Acquisition

2.5.1. Acquisition Strategy

The three main acquisition methods for GNSS signals are the serial search (SS), the parallel
frequency search (PFS), and the parallel code-phase search (PCS) [28]. Compared to the PCS and
the PFS methods, the acquisition time of the SS method is extremely long, therefore, the SS was
not considered. Compared to PCS, PFS has two main drawbacks. Firstly, an extra loss due to the
integration before the fast Fourier transform (FFT) and secondly a loss due to the mismatch between
the replica code chipping rate and the received code chipping rate, especially important for long
integration times [28]. Since the sensitivity is of prime importance in high altitude space applications,
these additional losses are not acceptable, and therefore the PCS technique was selected.

The acquisition structure of receiver is illustrated in Figure 8. In acquisition, the receiver uses
coherent accumulations, which are the length of a full navigation data-bit (20 ms for GPS C/A code).
The results are then non-coherently accumulated to gain further sensitivity. To reduce the effect of
the data-bit transitions a number of different accumulations are formed with different starting points.
Ideally, for GPS C/A code we would have 20 accumulations spaced 1 ms apart. However, to limit the
impact on the FPGA resources we form 10 accumulations spaced 2 ms to achieve a balance between
performance and the available resources.

Following the results of Section 2.3.2, the sensitivity targeted is 15 dB-Hz, slightly higher than
the minimum required to acquire at least four signals. Using the methodology proposed in [27], the
theoretical analysis of the acquisition parameters is presented in Table 2. This is used to estimate
the total required integration time required for a successful acquisition. In acquisition, the receiver’s
sampling rate of 40.96 MHz is decimated to 4.096 MHz as a compromise to improve processing
performance. The resolution in the code search is one sample so this results a resolution around ¼
of a chip. A higher sampling frequency requires more samples to be processed but results in a fine
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resolution in the code search domain. A lower frequency means less samples to process but poorer
resolution with higher losses from the code misalignment. In tracking the full sample rate of 40.96 MHz
is used to allow precision tracking from narrow correlator spacings. A frequency step of 25 Hz has been
selected, again as compromise for the performance. Finally, the maximum tolerable Doppler rate error
is defined as the Doppler rate, which implies a shift of one frequency bin during the integration time.
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Table 2. Theoretical acquisition parameters.

Quantity Value

C/N0 (dB-Hz) 15
Sampling rate (MHz) 4.096

Quantization (bit) 4
Quantization loss (dB) 0.05

Coherent integration time (ms) 20
Coherent gain (dB) 46

Frequency search step (Hz) 25
Worst case frequency mismatch loss (dB) 0.91

Code search step (chip) 0.25
Worst case code alignment loss (dB) 1.16

Data bit alignment loss (dB) 0.92
Squaring loss (dB) 5.73

Final desired SNR (dB) 16
Non-coherent gain required (dB) 26.77

Number of non-coherent integration 475
Total accumulation time (s) 9.5

Maximum tolerable Doppler rate error (Hz/s) 2.63

2.5.2. Acquisition Hardware Implementation

The FPGA implementation of the acquisition is shown in Figure 9. The Nios II processor is used to
manage and configure the different blocks (e.g., the acquisition module is configured with parameters
such as Doppler frequency, PRN code, number of integrations, etc.), and to analyze the data provided
by the acquisition module to decide if a signal has been detected. The acquisition module processes the
input data using the PCS method as shown in Figure 8 and provides acquisition statistics (peak value,
mean value, standard deviation, etc.) to the Nios II processor. Since the integration time is very long
(9.5 s), the amount of data to save is significant (around 39 M samples). Therefore, a DDR2 SDRAM
external to the FPGA is used to save this data.
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In high sensitivity acquisition, the acquisition time can be very long and the transition between the
acquisition and the tracking becomes difficult. Thus, we propose to acquire the signal twice, reducing
the frequency search space after the first step.

The time spent to search one frequency bin is defined as:

TFB “
fSTI

fFPGA
“

4.096ˆ 106 ˆ 9.5
163.84ˆ 106 “ 237.5 ms (4)

where fS is the sampling rate, TI is the total integration time, and fFPGA is the clock frequency of the
FPGA. For the first acquisition, the frequency search space considered is ˘35 kHz. With a frequency
step of 25 Hz, there are NFB ,1 = 2801 frequency bins, thus the time to search the entire frequency search
space is:

TA,1 “ TI ` NFB,1TFB “ 9.5` 2801ˆ 237.5 10´3 “ 674.5 s (5)

According to Figure 7, the Doppler rate is less than 4 Hz/s after the initial few hours of the MTO.
Therefore, during the first acquisition the frequency of the received signal may have shifted by up to
2700 Hz (4 Hz/s ˆ 675 s). For the second acquisition, the frequency search space is then ˘2700 Hz,
which corresponds to NFB ,2 = 217 frequency bins. The time to search the frequency search space of the
second step is:

TA,2 “ TI ` NFB,2TFB “ 9.5` 217ˆ 237.5 10´3 « 61 s (6)

During this time, the frequency of the received signal could have shifted by up to 244 Hz, which
is still too large to start correctly the tracking. However, provided we recorded the time between the
two consecutive acquisitions, the Doppler rate can been estimated by looking at the evolution of the
Doppler frequency, or from the evolution of the code delay. From Figure 7, we can assume the Doppler
rate is constant during a short time interval and therefore it is possible to initialise the tracking from
these results.
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2.5.3. Acquisition Aiding from Navigation

For a standalone receiver, some aiding can still be obtained from the navigation result. The a priori
knowledge consists of:

- Position (from the last known position stored in memory),
- Time (from the real-time clock),
- Reference frequency (since the receiver oscillator offset is determined by the navigation solution)
- Approximate GNSS satellite positions and velocities (calculated from the almanac data stored

in memory).

Therefore, the frequency search uncertainty for the acquisition mainly depends on the time
uncertainty, receiver velocity and position uncertainties, and almanac uncertainty, which will be
discussed below.

Time Uncertainty

By time, we mean the time of week (TOW) from the navigation data. This can be delivered as
the GPS week and seconds of the week. Provided the receiver is tracking at least one satellite above
15 dB-Hz the time can be decoded and considered to be known within 1 s. The rate of change of
the Doppler frequency is up to 4 Hz/s according to Figure 7. Therefore, for 1 s of error in time, the
corresponding error in the Doppler estimation is up to 4 Hz. Once a navigation fix is achieved, as we
are using a stable OCXO our time knowledge will not drift quickly in periods of poor GNSS visibility
(around 1 ms/day) and so is likely to be much better.

Receiver Velocity Uncertainty

According to our post processing simulations, whose assumptions are described in [25], when
the GPS solution is not filtered through any orbital forces model, the receiver velocity uncertainty
can reach approximately 700 m/s at Moon altitude, that means that the corresponding frequency
uncertainty is 700 m/s/0.19 m = 3684 Hz (0.19 m being the wavelength of the L1 C/A signal).

Receiver Position Uncertainty

According to our simulations, when the GPS solution is not filtered through any orbital forces
model, the receiver position uncertainty can reach peaks of 80 km at Moon altitude (neglecting a very
few higher peaks). Using the equations given in Section 3.6.5 of [27], the corresponding frequency
uncertainty is (3800 m/s ˆ 80 km)/(380 000 km ˆ 0.19 m) = 4.2 Hz, where 3800 m/s is the GPS satellite
speed, 380,000 km is the distance between the Earth and the Moon, and 0.19 m is the wavelength of
the L1 C/A signal.

Almanac Uncertainty

The precision of the ephemeris is very high, so the frequency uncertainty induced by the ephemeris
can be ignored. According to Section 3.6.6 of [27], if the almanac data are used for frequency assistance,
the frequency uncertainty is 60 Hz.

Total Search Uncertainty

According to the analysis above, the total frequency uncertainty is about ˘3692 Hz. Note that
for the position and velocity uncertainty, to be conservative we have considered the worst case that is
obtained at Moon altitude; in fact it is the highest altitude of the trajectory and it corresponds to the
highest GDOP and accordingly to the highest position and velocity errors.
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2.6. GPS Tracking

2.6.1. Bit Synchronisation and Navigation Data Decoding from very Weak Signals

Following the acquisition stage, the acquisition engine passes its estimates of Doppler, Doppler
rate, code offset and bit position to the tracking channel and is then free to look for the next satellite.
The position of the navigation data bit edge must be located and confirmed. This is necessary as
although the acquisition uses full navigation data bit length accumulations of 20 ms, it only computes
10 branches spaced 2 ms apart to reduce complexity. In the tracking channel 20 branches, spaced
1 ms apart are then formed and accumulated to confirm the bit edge position. During this process the
tracking channel operates a low bandwidth FLL (0.2 Hz) initialised with the estimation of Doppler,
Doppler rate, code offset and bit position from the acquisition engine. Following confirmation of
the bit edge position, decoding of the navigation data bits is started. The theoretical probability of a
navigation data bit error of the C/A code signal assuming carrier phase tracking is given by [23]:

PB “
1
2

er f c
´

a

c{n0τa

¯

(7)

where er f c is the complementary error function, c{n0 is the carrier to noise density ratio (scalar) and
τa is the accumulation time (20 ms for C/A code). The probability of a bit error is 0.13 at a C{N0 of
15 dB-Hz and 0.056 at 18 dB-Hz. A C{N0 of 27.5 dB-Hz is required to give a probability of bit error of
10´6. As each subframe is 300 bits long, this probability would result in less than one contaminated
subframe in every 3000. However, as shown in [29,30], the fact that the message is regularly repeating
can be exploited to effectively increase the accumulation time and reconstruct the message at weaker
signal levels.

The data decoding procedure can be divided into two steps, the first step is frame synchronization
(finding the preamble), the second step is to decode the desired data from multiple subframe repetitions.
As depicted in Figure 10, each GPS frame contains 5 sub-frames. Every sub-frame has 6 s duration. It
starts with a known 8 bit preamble and consists of 10 words. Each word has 30 bits. The preamble
marks the beginning of each sub-frame and is repeated every 6 s.
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The following steps are used to find out the position of the preamble from received data (see
also Figure 11).

(1) Store 20 frames (i.e., 20 ˆ 30 s, or 100 sub-frames, i.e., 30,000 bits) of original demodulated data in
a vector A.

(2) Search for all the preamble-like sequences. Find all the likely preambles of vector A, and store
these correlation values in vector B. Due to the possible 180˝ phase ambiguity induced by phase
tracking and the chance of cycle slips with weak signals, positive and negative correlations are
searched for.

(3) Matrix C is generated by reshaping the correlation vector B into sub-frame length rows. Each
column then represents a possible preamble location in the sub-frame. The size of this matrix is
300 ˆ 100. The absolutes values of matrix C are then accumulated down the columns to form a
vector D.
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(4) The three largest correlations of vector D are recorded. The largest value should be the correct
position of the preamble, however, with weak signals other possible locations may need to
be checked.

(5) The first position is assumed correct, the vector A reshaped into a matrix of sub-frame length
rows and the sub-frame number from each successive sub-frame is checked after column wise
accumulation. If the sub-frame number is incrementing correctly, this position is declared correct
and used in subsequent processing. Otherwise, the other probable positions of the preamble
are checked.
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Assuming the signal is tracked consistently throughout, after preamble correlation and
column wise accumulation, the right position of preamble will be found and the sub-frame will
be synchronized.

Once the subframe is synchronised it is possible to reconstruct the desired data items from the
stored data by accumulation down the column. The parity of each word in the matrix can then be
checked individually. If the parity check is passed, the word is decoded and its position marked.
The choice of 20 entire navigation frames is made so that sub-frames 1 to 3 will be repeated 20 times
resulting in a probability of bit error in the accumulated data of less than 10´6 at 15 dB-Hz. It is likely
that time and ephemeris parameters can be provided by the platform and only frame synchronisation
is required. Therefore, we have only decoded the time of the week in our hardware implementation to
demonstrate the principle.

The success rate of the acquisition engine with signals of different carrier to noise density ratios
(C/No) is shown in Figure 12. Here 25 trials were performed at each signal level and the success rate
recorded for the acquisition, bit synchronization, and data decoding stages. The signals were generated
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with our Spirent GSS800 simulator and the output power is displayed in Figure 12. The decoding
of the time of the week is used to determine if frame synchronisation was successful. Using typical
derivations from [23,31] the detection threshold is chosen such that the probability of detection is
theoretically 0.95 at 15 dB-Hz and probability of false alarm is 10´3.The acquisition results of Figure 12
are slightly worse but within 1 dB of the expected values. Clearly, the receiver is limited by its ability
to synchronise and decode the navigation data before the acquisition limit is encountered. Despite this,
at 15 dB-Hz the receiver is still able to acquire and decode the navigational data with a success rate of
around 60% for each attempt.
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2.6.2. Weak Signal Tracking

The WeakHEO receiver is assumed to be a stand-alone receiver with a low rate communication
interface to the spacecraft platform. Therefore, knowledge of the full navigational data sequence
is not assumed and data wipe-off is not used. Data wipe-off allows the use of pure (non-squaring)
PLL discriminators to be used in tracking for lower jitter and a larger pull-in range compared to
Costas-type discriminators.

Typical expressions for the jitter of conventional GNSS tracking loop can be found in [23,32].
Figure 13a shows the expected PLL jitter and a conservative loss of lock threshold for a third order
Costas PLL, assuming thermal and oscillator noise (based on the WeakHEO OCXO) are the only error
sources and an integration time of 20 ms. This indicates that in the presence of navigation data flips we
need to use bandwidth as low as 1 Hz to operate at 15 dB-Hz. The code tracking loop of the receiver
is a first order loop aided by the carrier loop and uses a bandwidth of 0.1 Hz. Figure 13b shows
the DLL jitter for the dot-product power discriminator with a 0.1 Hz, a 20 ms integration time and
different early-to-late correlator spacing d. Correlator spacings of 0.25 chip or greater are required to
maintain code tracking at 15 dB-Hz. If an adaptive spacing is used, smaller correlator spacings can be
used at higher signal levels to reduce the pseudorange jitter. It should be noted that using such low
bandwidths to improve the performance in weak signal environments lengthens the time between
statistically independent measurements from the code and carrier loops [32]. This is not critical for this
application. These low bandwidths are suitable for operation at altitudes significantly above the GNSS
constellation; however, during the first part of the MTO the line-of-sight jerk can be as high as 6 ms´3.
The received signal strength is far greater at this point but still requires a carrier loop PLL bandwidth
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of around 5 Hz to tolerate this jerk [32]. Therefore, when conventional approaches to GNSS tracking
are used for this application the carrier loop bandwidth will need to be adjusted during the MTO.Sensors 2016, 16,, x 14 of 21 
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Conventional tracking models the incoming system as having deterministic dynamics by typically
using fixed tracking loop bandwidths. An alternative method, which provides more flexibility is based
on Kalman filter theory. Rather than assuming deterministic dynamics, the Extended Kalman Filter
(EKF) assumes that the signal dynamics follow a linear stochastic model. This allows an adaptive
scheme where the response to dynamics is adjusted based on the signal conditions. Therefore, the
ranging processor is designed to adapt the tracking loop bandwidths as a function of the measured
C/N0, to maintain the optimum trade-off between noise resistance and dynamics response. It should
be noted that this is not exclusively possible with the EKF based tracking and can be applied to
conventional tracking. However, this is performed implicitly when using the EKF approach as part of
its dynamic model.

A number of variations on EKF tracking have been developed for both code and carrier
tracking [29,33–35]. Comparing EKF tracking to conventional architectures is troublesome as the
non-linear models used in the EKF implementation are effectively constantly adapting its tracking
bandwidth. Generally, jitter comparisons are made with conventional architecture under different
dynamic conditions. However, this does provide to opportunity to choose scenarios and tracking
loop settings to exaggerate the benefits of one technique over another. An attempt to compare the
techniques by experimentally determining the steady-state bandwidth of the EKF and finding the
equivalent performing PLL is found in [36]. Here, the EKF is demonstrated to be able to track the
carrier phase down to 10 dB-Hz, around a 7 dB improvement under equivalent conditions. Tests with
software receiver implementations of conventional and EKF tracking in [37] show around a 4 dB to
7 dB improvement in sensitivity for the EKF approach.

The EKF is well suited to applications such as the one considered here where the platform has
predictable dynamics and the receiver’s oscillator can be measured and modelled. For the WeakHEO
receiver we have implemented a first order EKF for carrier phase tracking as detailed in [29]. The EKF
is only used for the carrier tracking and conventional tracking is used for the code loop to minimise
the computational load.

In [26] we show how Doppler and Doppler rate aiding from an integrated orbital filter can be used
to improve sensitivity of conventional FLL tracking to around 11 dB-Hz. This is considered suitable
for a stand-alone receiver as the orbital filter can be integrated into the receiver’s navigation software.

Figure 14 shows double difference measurements of the WeakHEO DLL jitter taking with our
GNSS simulator with varying carrier to noise density ratios. Reasonable agreement with the theoretical
values can be found.
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2.7. GPS Navigation

An orbital filter has been implemented that integrates the GPS observations with an orbital
forces model, by means of an adaptive Extended Kalman filter (EKF). The EKF integrates the least
square single-epoch position and velocity solutions that are computed using the pseudoranges and
the pseudorange rates output by the WeakHEO GPS receiver, together with the position and velocity
predicted by an orbital forces model. The resultant filtered navigation solution can efficiently mitigate
the effect of the very high GDOP and large ranging errors; indeed, it is significantly more accurate
than the unfiltered least square single-epoch solution, as shown in Section 3. Thus, it can be used to
aid the GPS receiver to acquire and track weak GPS signals while experiencing high dynamics. A
detailed description of the orbital filter and its aiding to the acquisition and tracking modules can
be found in [26]. In a different configuration, less simple but potentially more efficient, the EKF can
integrate directly pseudoranges and pseudorange rates provided by the tracking loops together with
their prediction provided by the orbital forces model. This has been investigated in our previous
study [25], which also describes the performance of our orbital filter when it uses signals transmitted
by the GPS-Galileo combined constellation. A comparison of the two configurations is described
in [38].

As described in [24], during a MTO, once the receiver is above the GPS constellation, the GPS
accuracy strongly decreases with the altitude. Both pseudorange error and GDOP worsen as the
receiver goes further from the GPS constellation. For this reason, if the covariance matrix of the
measurements R is composed of constant variance values over time, the filter cannot be tuned properly
during the full MTO (Figures 6 and 7 of [38] shows the effect of modelling R as constant matrix).

As described in [38], the covariance matrix R of the filter has to be adapted to the GPS
measurements accuracy. Indeed, the R matrix is modelled as function of the GDOP multiplied by the
estimated pseudorange error. The adaptive strategy is illustrated in Figure 15. From the estimated state
computed at the previous time-step, the filter estimates the GDOP and the noise on both pseudorange
and pseudorange rate measures to update the covariance matrix R.
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3. WeakHEO Navigation Performance 

In order to test the achievable performance in terms of position and velocity determination we 
have selected two representative portions of the MTO, each of one-hour duration. 

The first portion starts approximately at 36,000 km of altitude (altitude of the Geostationary 
Earth Orbit) and a second portion starts approximately at the average distance of the Moon from the 
centre of the Earth of 384,400 km, very close to the apogee of the MTO. Figures 16 and 17 illustrate 
the ECI 3D position and velocity accuracy, respectively, of a least square (LS) single-epoch solution, 
a pure propagated (Pp) solution (obtained only propagating the initial condition through the orbital 
forces model), and the orbital filtered (OF) solution, which integrates by means of the developed 
adaptive EKF the LS together with the Pp solution. The LS solution is as expected very noisy due to 
the noise, which affects pseudorange measurements and it increases with the altitude because of the 
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3. WeakHEO Navigation Performance

In order to test the achievable performance in terms of position and velocity determination we
have selected two representative portions of the MTO, each of one-hour duration.

The first portion starts approximately at 36,000 km of altitude (altitude of the Geostationary Earth
Orbit) and a second portion starts approximately at the average distance of the Moon from the centre
of the Earth of 384,400 km, very close to the apogee of the MTO. Figures 16 and 17 illustrate the ECI
3D position and velocity accuracy, respectively, of a least square (LS) single-epoch solution, a pure
propagated (Pp) solution (obtained only propagating the initial condition through the orbital forces
model), and the orbital filtered (OF) solution, which integrates by means of the developed adaptive
EKF the LS together with the Pp solution. The LS solution is as expected very noisy due to the noise,
which affects pseudorange measurements and it increases with the altitude because of the increasing
GDOP (see Figure 18). On the other side, the Pp position solution has a significant drift due to the
error in the initial condition; in fact, after about 250 s the position error reaches 50 m as expected
because of the initial 0.2 m/s error in the initial velocity. (0.2 m/s ˆ 250 s = 50 m). The OF solution is
several times more accurate; the GPS measurements prevent the orbital propagation solution drifting,
while the orbital propagation smooths the GPS solution. Figures 19–21 illustrate the same quantities
but for the MTO portion at Moon altitude. In this case as well, the benefit of the orbital filter is even
more significant since the OF solution is more than one order of magnitude more accurate than the
LS solution.

Note that the Hardware in the Loop (HIL) tests have not been carried out over the full MTO
duration as it lasts almost 5 days and we currently do not have that simulation capability. Instead, the
full MTO test has been performed in post processing by simulating pseudorange and pseudorange rate
measurements (see Figures 10 and 11 in [26]) to assess the OF performance. Then, several HIL tests we
performed for the same portion and for different potions of the full MTO allowed us to determine that
a 1 h test duration is well enough to let the OF converge. Afterwards, we have performed HIL tests for
several representative portions of 1 h durations to assess the acquisition, tracking, data decoding, and
finally navigation performance (as reported in this section) of the WeakHEO receiver for the signals
encountered in a lunar mission. It is also important also to keep in mind that the current WeakHEO
receiver is only a proof of concept and thus not the final device ready to operate in a lunar mission, for
which clearly more and longer tests will be required.
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Figure 20. 3D velocity error for the considered portion at Moon altitude for: the single-epoch least
square (LS) solution (in blue); the orbital filtered (OF) solution (in red); and the propagated (Pp)
solution (in green).
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4. Conclusions

Following our previous feasibility studies of GNSS as navigation system to reach the Moon,
this research paper describes the proof of concept of the GPS L1 C/A “WeakHEO” receiver for lunar
mission, wholly developed in our laboratory in the last two years. After highlighting the characteristics
of the GPS L1 C/A signals for the considered MTO, which have been identified in our previous
research work, the requirements and constraints in the receiver design are defined. Afterwards, the
general receiver architecture is described, providing a more detailed description of the acquisition,
tracking and navigation modules. These modules are specifically designed for use with the dynamic
environment and signal conditions seen in high altitude space applications, and the architecture
presented is capable of performing acquisition, tracking, data synchronization and demodulation
down to a level of 15 dB-Hz. This is verified on the hardware with tests using representative RF signals
produced by a GNSS simulator. The navigation module makes use of an adaptive orbital filter, which
exploits an orbital forces model to filter the noisy GPS least square single-epoch solutions and is able to
significantly increase the navigation accuracy to a few hundred meters at Moon altitude. The filtered
navigation solution can then be used to aid the acquisition and tracking modules allowing higher
sensitivities also in high dynamics.

5. Future Work

The performance will be further improved in the new “WeakHEO 2” version of our receiver, where
the available hardware resources will be increased, allowing the integration of the navigation module
into the processor within the FPGA. This will allow the orbital filter to provide aiding to the acquisition
and tracking modules at a high rate to improve performance as shown in [26]. The orbital filter of
the “WeakHEO 2” receiver will directly filter the raw pseudorange and pseudorange rate observations
instead of the single-epoch least square solution, with an expected higher navigation accuracy also
in case of less than four GPS observations available. In addition, the iteration rate of the navigation
output will be increased from 0.1 Hz to 1 Hz and the number of tracking channel increased from 6 to
at least 12 channels. Furthermore, in the future we will also consider processing other frequencies and
signals of other GNSS constellations to further improve the overall performance.
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