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Abstract

Longitudinal studies play a key role in various fields, including epidemiology, clinical research, 

and genomic analysis. Currently, the most popular methods in longitudinal data analysis are 

model-driven regression approaches, which impose strong prior assumptions and are unable to 

scale to large problems in the manner of machine learning algorithms. In this work, we propose a 

novel longitudinal support vector regression (LSVR) algorithm that not only takes the advantage 

of one of the most popular machine learning methods, but also is able to model the temporal 

nature of longitudinal data by taking into account observational dependence within subjects. We 

test LSVR on publicly available data from the DREAM-Phil Bowen ALS Prediction Prize4Life 
challenge. Results suggest that LSVR is at a minimum competitive with favored machine learning 

methods and is able to outperform those methods in predicting ALS score one month in advance.
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I. Introduction

Longitudinal analyses are common in clinical research, particularly in longitudinal studies. 

These analyses are typically conducted via model-driven regression approaches such as 

linear regression models, mixed-effects models, or the generalized estimating equations 

[1,2]. These approaches assume a specific form of model (e.g., linear) and therefore require 
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strong prior assumptions regarding the data. Furthermore, these methods require a primal-

space implementation and are therefore not scalable to high-dimensionality data due to high 

computational demands.

The potential for machine learning techniques to make a contribution to longitudinal clinical 

studies was recently highlighted in a crowdsourcing competition known as the DREAM-Phil 
Bowen ALS Prediction Prize4Life challenge [3]. The goal of this challenge was to develop 

algorithms that can improve the prediction of Amyotrophic lateral sclerosis (ALS) (also 

known as Lou Gehrig’s disease) progression as measured by the ALS Functional Rating 

Scale (ALSFRS). ALS is a fatal neurodegenerative disease with substantial heterogeneity in 

its clinical presentation. This makes diagnosis and effective treatment difficult. Surprisingly, 

none of the contestants explicitly modeled the temporal nature of the data in their training 

methods. Time-resolved features generally could not be incorporated into the machine-

learning algorithms employed. Rather, participants performed linear regression on the time-

varying features and represented those features by a slope and intercept [3]. (Other data 

reduction techniques were used as well, e.g., maximum/minimum representations.)

In another recent development, Chen and Bowman proposed a longitudinal support vector 

classifier (LSVC) as an approach that is scalable to classify high-dimensional longitudinal 

data such as neuroimaging data [4,5]. LSVC extends the well-known support vector machine 

(SVM) to longitudinal data by simultaneously estimating the traditional SVM separating 

hyperplane parameters with proposed temporal trend parameters. The authors provided only 

a limited test result on two time points of fMRI imaging data. To our knowledge, further 

extensive tests of LSVC have not been published.

We have hypothesized that Chen and Bowman’s longitudinal extensions to the SVM could 

be further generalized as a longitudinal support vector regression (LSVR) and that the LSVR 

method may be applicable to longitudinal studies such as the ALS challenge. In this work, 

we present an evaluation of the LSVR on anonymized public data provided by the organizers 

of the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. We did not seek to repeat 

the challenge itself. However, we did compare the performance of LSVR with an 

implementation of traditional linear support vector regression (SVR) [6] as well as a random 

forest approach, similar to the approach used by many of the challenge contestants. (e.g., 

[7]).

II. Methods

As LSVR is an extension of SVR, we first review the primal formulation of SVR and its 

dual form for quadratic programming (QP) optimization. Then we show how SVR is 

generalized to LSVR and describe the QP formulation of LSVR. Our derivation of LSVR 

closely follows Chen and Bowman’s derivation of LSVM [4,5], including use of similar 

notation. The reader should be cautioned that implementation of LSVR requires a QP solver 

such as found in Matlab (The Mathworks, Natick, MA) or an original implementation of a 

QP solver. Standard SVM libraries such as libSVM [8] cannot be used with LSVR.
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A. SVR and dual problem

Suppose we are given clinical training data xs ∈ ℛp corresponding to N subjects, i.e., s = 1,

…,N as well as N corresponding ALSFRS scores ys. In ε-SVR, the goal is to find a function 

f(x) that has at most ε deviation from the assessed scores y for all the training data, and at 

the same time is as flat as possible (equivalent to minimizing the gap in SVM) [9]. Then we 

have

We can write this problem as a convex optimization problem:

where Φ is a function mapping x to the feature space. Analogously to the soft margin loss 

function that was adapted to SVM by Cortes and Vapnik [10], one can introduce slack 

variables ξi,  to the optimization problem. Hence we arrive at the formulation:

The constant C > 0 determines the trade-off between the flatness of f (which corresponds to 

the magnitude of ‖w‖2) and the amount up to which deviations larger than ε are tolerated.

In most cases, it is computationally advantageous to solve the optimization problem in its 

dual formulation as described by:
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where G(xi, xj) =< Φ(xi), Φ(xj) > acts as inner product that represents an entry in kernel 

matrix G. Then the above dual problem can be rewritten as

where .

Once the separating hyperplane has been determined through QP optimization, the estimated 

regression value of a new observation xi can be obtained as

where α is calculated by γ* − γ and nonzero α are considered as support vectors.

B. Longitudinal SVR

Consider longitudinal data collected from N subjects at T measurement occasion or visits, 

with p features quantified during each visit. The expanded feature matrix is then TN by p. 

Let  represent the features collected for subject s at time t. Hence, our aim is to assign 

each individual, a T-by-p matrix , a T-by-1 vector 

. We predict linear trends of change

where unknown parameter vector β = [1, β1, β2, …, βT − 1]T is a T-by-1 vector. The trend 

information takes into account observational dependence within subjects. We intend to 

jointly estimate the parameter vector β and α in a LSVR model.

The Lagrangian function incorporating longitudinal parameter is as follows:
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(1)

Here ℒ is the Lagrangian and ηi, , γi,  are the Lagrange multipliers. It follows from the 

saddle point condition that the partial derivatives of ℒ with respect to the primal variables 

(w, b, ξi, ) have to vanish to optimize the Lagrangian function. Thus we are left with

(2)

(3)

(4)

(5)

Substituting equations (2) through (5) into (1) yields the dual-space quadratic programming 

problem:

Similarly, the above dual problem can be rewritten as
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where αm = [γ*T
 β1γ*T

 … βT − 1γ*T
 γT β1γT ⋯ βT − 1γT]T, ym = [εeT −y(1)T −y(2)T … −y(T)T 

εeT + y(1)T y(2)T ⋯ y(T)T]T and

subject to

and there is no constraint on β.

Parameters αm can be determined using QP and then β can be estimated from αm to obtain 

the relationship among responses of different time points.

III. Experimental Results

We investigated the performance of the proposed method by applying it to public ALS 

challenge data and comparing the results with that of two popular machine-learning 

methods, specifically LibLinear SVR [11] and the Random Forest (RF) implementation 

function TreeBagger in Matlab.

A. Data set

Experimental data were downloaded from The DREAM-Phil Bowen ALS Prediction 

Prize4Life challenge website. This large data set comprises 1824 anonymized patients from 

phase 2 and 3 clinical trials. Although the original challenge segmented the data into 

training, validation, and holdout sets, we rather followed a cross-validation protocol. Up to 

twelve months of longitudinal data as well as the corresponding ALSFRS are included in the 

feature space. There are about 44 time varying features, including protein biomarkers, urine 

pH, calcium, etc., as well as 34 constant features, including age, race, sex, etc. In our tests, 

instead of estimating the slope between months 3 and 12 (as was done in the original 

challenge), we predict the next month’s ALSFR based on the clinical data up to and 

including the current month.

B. Experimental design

Let  represents the ALSFRS of month t for subject s. When predicting , the training 

features include clinical data up to month t as well as . Then we predict 
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 by training obtained static features for another LibLinear and RF, renamed as 

LibLinear-M and RF-M. In this paper, we predict ALSFRS one, two, and three months 

ahead, e.g., , k = 1,2,3, using data up to month t. When k = 1, we investigate the 

prediction performance of using month 1 to t (t = 3,4, … 11), respectively. When k = 2 and k 
= 3, we evaluate the performance of up to month 10 and 9, respectively.

We perform the same experiments using LSVR, LibLinear SVR and RF. LibLinear SVR and 

RF were each implemented with two treatments of the data in the feature vectors. For those 

algorithms, in order to provide versions of the tests comparable with the ALS challenge 

addition, we convert each type of time-resolved features per patient into static features by 

calculating their mean across t months. These reduced-data implementations are referred to 

as LibLinear-M and RF-M in the results. We also implement LibLinear and RF feature 

vectors which were constructed by concatenating the features from each time point; these 

implementations are simply referred to as LibLinear and RF.

During the cross-validation, we randomly select training and testing subjects from the 

available data set, and calculate the root-mean square error (RMSE) for each algorithm. This 

procedure repeats 100 times, where each run is an independent trial, to obtain the average 

RMSE. The algorithm parameters used in LSVR and LibLinear are the same, namely linear 

kernel with box constrain as 10. RF is implemented as an ensemble of 50 trees.

C. Results

We vary the number of training data from 50 to 150 subjects, incrementing upward by 25 

subjects per test. The number of testing data is fixed at 50 subjects. In general, we find that 

both LSVR and RF respond to increased training data through better regression performance 

all the way up to 150 subjects and likely beyond. LibLinear SVM performance, however, 

improves little beyond 100 subjects in training.

Fig. 1 shows the prediction error of the various algorithms trained with 100 and 150 training 

subjects to predict ALSFRS for the next month. It indicates that LSVR yields the best 

performance of the various algorithms when predicting ALSFRS at 6 months and beyond. 

Using more time points to predict the next one leads to slightly better results for the three 

algorithms. The mean-feature implementations of LibLinear-M and RF-M are not 

competitive after month 5. The incorporation of additional data points seems to deteriorate 

the performance of LibLinear-M and RF-M. Like LSVR, the “stacked feature” 

implementations LibLinear and RF display a similar oscillatory pattern after month 5.

Results of predicting ALSFRS two and three months ahead are shown in Fig. 2. We can 

observe that the performance of all algorithms worsens as the prediction interval increases. 

RF appears to have gained the advantage predicting three months with LSVR remaining 

competitive. The trend of the curve suggests that LSVR’s performance in predicting beyond 

one month ahead improves with additional temporal data.
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IV. Discussion and Conculusions

In this paper, we propose a novel longitudinal machine learning algorithm that takes into 

account observation dependence within subjects through estimation of additional weighted 

parameters corresponding to the different time points. It allows simultaneous estimation of 

the SVR hyperplane parameters and the temporal trend parameters. Our derivation of LSVR 

was motivated by the apparent need for methods that fuse longitudinal modeling and 

machine learning paradigms. We drew heavily from the work of Chen and Bowman [4,5], 

extending their longitudinal SVM classifier to perform regression. While Chen and 

Bowman’s work was foundational and influential, their testing of their longitudinal classifier 

was rather restricted to two samples. In addition to extending the longitudinal support vector 

classifier to regression, we sought to gain a more thorough understanding of the performance 

of LSVR by testing it under various conditions and by training and testing it with different 

amounts of data.

The publicly available ALS challenge data on which we tested LSVR serve as a surrogate 

for a wide class of clinical longitudinal data in which both temporal data (including blood 

biomarkers) and constant data (e.g., demographic) data are available. Our results suggest 

that LSVR is indeed competitive with currently favored machine-learning methods. In 

testing LSVR against implementations of a random forest and a conventional SVR, LSVR 

seems to find its forte in predicting ALS score one time-point (one month) ahead. LSVR 

also appears to respond favorably to increased training data and, to a lesser extent, to 

multiple time points tested.

At this point, we are unable stipulate on the extent to which the comparative performance of 

LSVR with the other algorithms is a function of the nature of the ALS data, or whether we 

can expect to see similar trends in other data. Quite simply, more testing is required on 

additional data sets. However, the results do suggest that LSVR is worthy of such further 

tests. A common problem in longitudinal clinical data is missing data. Unfortunately, LSVR 

does not model missing data, although the effect of estimating missing data appears to be no 

more severe than in other algorithms. We postulate that LSVR may find its most suitable 

application in prediction of high-dimensional time-series genomic data, since LSVR is 

amenable to parallel implementation and the computational performance of LSVR is 

certainly scalable.
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Fig. 1. 
Performance comparison when predicting ALSFRS of the next month. The numbers of 

subjects in training are 100 and 150. The x-asis represents which month’s ALSFRS is 

predicted. The y-axis denotes the average RMSE. Smaller RMSE indicates better regression 

performance. LSVR yields the best performance amongst the algorithms when estimating 

ALSFRS after month 5th.
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Fig. 2. 
Performance comparison between LSVR and the other algorithms when prediction ALSFRS 

two and three months ahead. The horizontal axis indicates number of monthly clinical visit.

Du et al. Page 11

IEEE Int Conf Bioinform Biomed Workshops. Author manuscript; available in PMC 2016 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


