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Abstract

Long noncoding RNAs (lncRNAs) have emerged as critical regulators in various cellular 

processes. However, the potential involvement of lncRNAs in kinase signaling remains largely 

unknown. AMP-activated protein kinase (AMPK) acts as a critical sensor of cellular energy status. 

Here we show that lncRNA NBR2 (neighbor of BRCA1 gene 2) is induced by the LKB1-AMPK 

pathway under energy stress. Upon energy stress, NBR2 in turn interacts with AMPK and 

promotes AMPK kinase activity, thus forming a feed-forward loop to potentiate AMPK activation 

during energy stress. Depletion of NBR2 attenuates energy stress-induced AMPK activation, 

resulting in unchecked cell cycling, altered apoptosis/autophagy response, and increased tumor 
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development in vivo. NBR2 is down-regulated and its low expression correlates with poor clinical 

outcomes in some human cancers. Together, our study uncovers a mechanism coupling lncRNAs 

with metabolic stress response, and provides a broad framework to further understand the 

regulation of kinase signaling by lncRNAs.

Introduction

Mammalian genomes encode more than 10,000 long noncoding RNAs (lncRNAs), the RNA 

molecules which are longer than 200 nucleotides and do not appear to encode proteins
1, 2. 

Although lncRNAs were traditionally viewed as the products that are generated from the 

background noise of transcription and thus exert little fitness advantage to the cells, it has 

become increasingly clear that these lncRNAs play important biological functions, and their 

dysregulation has been connected to various human diseases, including cancer
3–6

.

Most current studies focus on lncRNA function in the nucleus, partly because most of the 

best-understood lncRNAs, such as XIST
7
, HOTAIR

8
, HOTTIP

9
, are all chromatin-

associated lncRNAs, which are mainly localized in the nucleus. These studies have 

illustrated a diverse range of functions of lncRNAs in the regulation of chromatin status, 

transcription, and RNA processing, among others
1, 10

. Many lncRNAs have also been 

identified in the cytosol
11

. In fact, it has been suggested that the majority of lncRNAs 

probably spend most of their life time in the cytoplasm
1
. However, the exact functions of 

cytoplasmic localized lncRNAs, particularly their potential functions in the regulation of 

kinase signaling in the cytoplasm, remain poorly understood. In addition, although lncRNAs 

have been shown to regulate diverse biological processes, the role of lncRNAs in mediating 

metabolic checkpoint remains largely unexplored.

The AMP-activated protein kinase (AMPK) serves as a critical sensor of cellular energy 

status and is activated under energy stress conditions with an increased cellular AMP/ATP 

ratio
12

. AMP binding to AMPK and subsequent AMPK phosphorylation at Thr172 by the 

upstream kinase LKB1 leads to AMPK activation
13–15

. Activated AMPK then 

phosphorylates a number of downstream targets to inactivate ATP-consuming anabolic 

processes and to activate ATP-generating catabolic processes
16

. Thus, AMPK mainly 

functions as a metabolic checkpoint to restore energy balance in response to energy stress. 

One major anabolic process inhibited by AMPK in response to energy stress is mammalian 

target of rapamycin complex 1 (mTORC1)-mediated protein synthesis and cell growth
17

. In 

response to energy stress, AMPK inactivates mTORC1 and represses protein synthesis via 

AMPK phosphorylation of Raptor, a component of mTORC1, and the TSC1-TSC2 complex, 

a negative regulator of mTORC1
18, 19

. AMPK also functions to promote autophagy and cell 

survival under energy stress via its phosphorylation of autophagy regulators, such as 

ULK1
20, 21

. As anabolic processes, such as protein and lipid synthesis, often exert pro-

growth effects in tumor development, it is well documented that AMPK activation serves to 

inhibit tumor development in many cancers
22

. Consistent with this, both the upstream kinase 

Lkb1 and downstream effectors of AMPK, such as TSC1 and TSC2, are bona fide tumor 

suppressors and are mutated in hamartoma tumor syndromes and various sporadic 

cancers
23–25

. Although the biological functions of AMPK and its downstream effectors 
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involved in cancer development have been extensively studied
22, 26

, the regulatory 

mechanisms of AMPK activation by energy stress remain incompletely understood. In 

particular, it remains completely unknown whether any lncRNA is involved in AMPK-

mediated metabolic checkpoint.

In this study, we identify neighbor of BRCA1 gene 2 (NBR2) as an energy stress-induced 

lncRNA and show that NBR2 interacts with AMPK and potentiates AMPK activation under 

energy stress. Consistent with the tumor suppression function of AMPK, NBR2 deficiency 

promotes unchecked cell cycling under energy stress and enhances tumor development in 
vivo, and NBR2 is down-regulated in human cancers. Our study thus reveals a previously 

unappreciated regulatory mechanism by lncRNAs to regulate kinase function and to mediate 

cellular energy responses.

Results

Energy stress induces NBR2 expression through the LKB1-AMPK pathway

To identify energy stress-induced lncRNAs, we conducted an RNA sequencing experiment 

in 786-O cells that had been cultured in glucose-containing or glucose-free medium. 

Subsequent computational analysis identified NBR2 as one of the long intergenic noncoding 

RNAs (lincRNAs) induced by glucose starvation. NBR2 gene encodes different splicing 

isoforms ranging from 1 to 2 kb (Supplemental Fig. 1). It has been shown that NBR2 is 

expressed in most of the tissues examined
27

. However, NBR2 gene does not appear to 

encode a protein, and its potential function remains unknown.

Real-time PCR revealed that glucose starvation induced NBR2 expression in different cancer 

cell lines, except Hela and A549 cells, which are Lkb1 deficient (Fig. 1a). Treatment with 

the glucose analog 2-deoxy-glucose (2DG), another energy stress inducer that inhibits 

hexokinase and blocks glycolysis, yielded similar results (Fig. 1b). Importantly, re-

expression of Lkb1 in these Lkb1-deficient cells restored energy stress-induced NBR2 
expression (Fig. 1c, d). In addition, treatment of A769662 (an AMPK activator) induced 

NBR2 expression (Fig. 1e), while AMPK inactivation by compound C (an AMPK inhibitor) 

treatment or siRNA-mediated AMPKα knockdown significantly attenuated glucose 

starvation-induced NBR2 expression (Fig. 1f, g, and Supplemental Fig. 2). Together, our 

results revealed that energy stress induces NBR2 expression at least partly through the 

LKB1-AMPK pathway.

NBR2 regulates AMPK-mTORC1 signaling under energy stress

To study the potential function of NBR2 in mediating energy stress response, we generated 

786-O cells (a kidney cancer cell line) and MDA-MB231 cells (a breast cancer cell line) 

with stable knockdown of NBR2 (Fig. 2a). We then analyzed whether knockdown of NBR2 
affected any biochemical signaling surrogate induced by energy stress, including AMPK 

activation. As shown in Fig. 2b, glucose starvation potently induced phosphorylation of 

AMPK, or AMPK substrates acetyl CoA carboxylase (ACC) and Raptor
18, 28

. Notably, 

NBR2 knockdown significantly attenuated glucose starvation-induced phosphorylation of 

AMPK, ACC and Raptor. Accordingly, S6 and S6K de-phosphorylation induced by glucose 
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deprivation was significantly compromised in NBR2 knockdown cells compared with 

control shRNA-infected cells (Fig. 2c). Finally, NBR2 knockdown also attenuated 2DG or 

A769662 treatment-induced AMPK activation and mTORC1 inactivation (Fig. 2d, e). Our 

results thus revealed that NBR2 depletion attenuates energy stress-induced AMPK activation 

and mTORC1 inactivation, and suggested a feed-forward mechanism on NBR2-AMPK 

regulation, in which AMPK initially promotes NBR2 expression in response to energy stress 

and NBR2 in turn regulates AMPK activation under energy stress (see Discussion).

NBR2 regulates cell proliferation, apoptosis, and autophagy in response to energy stress

AMPK functions as a critical metabolic checkpoint; defective AMPK signaling leads to 

increased cell proliferation yet decreased autophagy under conditions of energy stress, 

leading to apoptosis
12, 20

. The aforementioned data prompted us to examine the impact of 

NBR2 deficiency on cell proliferation, apoptosis, and autophagy in response to energy 

stress. Glucose starvation dramatically decreased S phase entry as measured by BrdU 

incorporation, and knockdown of NBR2 significantly attenuated the reduction of S phase 

entry upon glucose starvation (Fig. 3a–c). Thus, similar to cells with defective AMPK 

signaling
18

, NBR2 deficient cells continue cycling under energy stress.

Although NBR2 depletion did not affect apoptosis under normal culture condition, NBR2 
deficiency induced more apoptosis under glucose starvation, as evidenced by both Annexin 

V staining (Fig. 3d, e) and cleaved caspase-3 Western blotting (Fig 3f). In response to energy 

stress, AMPK activates autophagy, a cellular adaptive response to promote cell survival 

under stress conditions
20, 21

. Accordingly, glucose starvation-induced GFP-LC3 puncta 

formation, p62 degradation, and ULK1 phosphorylation were significantly compromised in 

NBR2 deficient cells (Fig. 3g, h, and Supplemental Fig. 3a, b), suggesting that energy stress-

induced autophagy was defective in NBR2 deficient cells. Despite enhanced apoptosis, the 

number in NBR2 deficient cells increased under glucose deprived conditions because of the 

increase in cycling in NBR2 deficient cells (Fig. 3i, j, and Supplemental Fig. 3c, d). 

Collectively, our results showed that NBR2 deficiency leads to enhanced cell cycling yet 

decreased autophagy and increased apoptosis under energy stress, which is in line with the 

phenotypes from cells with defective AMPK signaling, including AMPK, Lkb1, TSC1, 
TSC2 deficient cells or cells reconstituted with a Raptor mutant which is non-

phosphorylatable by AMPK
15, 18, 19, 29, 30

.

NBR2 inhibits tumor development and is down-regulated in human cancers

Given the important functions of AMPK in the regulation of human cancers
22

, we next 

examined the potential roles of NBR2 in tumor development. NBR2 deficiency led to 

increased anchorage-independent growth, one of the hallmarks of cell transformation, with a 

more prominent effect under glucose starvation conditions (Fig. 4a, b). In vivo experiments 

using the xenograft model showed that NBR2 deficiency increased tumor development (Fig. 

4c). Further analyses of the tumor samples by Western blotting confirmed down-regulation 

of AMPK and up-regulation of mTORC1 signaling in NBR2 deficient tumors (Fig. 4d).

Consistent with the experimental results from breast and renal cancer cell lines, a survey of 

the RNA-seq data across different cancer types from the TCGA (The Cancer Genome Atlas) 
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datasets revealed down-regulation of NBR2 expression in breast (BRCA) and renal (KIRC) 

cancer samples compared with paired normal tissue samples (Fig. 4e, f). Kaplan Meier 

analysis showed that breast cancer patients with NBR2-low tumors had significantly worse 

overall survival than those with NBR2-high tumors (Fig. 4g). Together, our data showed that 

NBR2 deficiency promotes tumor development, and NBR2 is down-regulated in human 

breast and renal cancers, suggesting that NBR2 may function as a tumor suppressor in these 

cancers.

Energy stress induces NBR2 interaction with AMPK

The aforementioned biological data prompted us to further study how NBR2 regulates 

AMPK function. Real-time PCR analyses of fractionated nuclear and cytoplasmic RNA 

revealed that NBR2 localized in both nucleus and cytoplasm (Fig. 5a). As expected, AMPK 

α showed predominant localization in the cytoplasm (Fig. 5b). AMPK exists as a 

heterotrimeric complex which consists of a catalytic α subunit and two regulatory β and γ 

subunits
31

. We thus examined whether NBR2 can interact with any of the subunits of AMPK 

by RNA-pulldown assay using in vitro-synthesized biotinylated NBR2. Such analysis 

revealed that NBR2 interacted with overexpressed AMPK α under glucose starvation 

condition, with minimal binding with overexpressed β or γ subunit (Fig. 5c). The RNA 

pulldown assay also revealed that glucose starvation significantly increased the interaction of 

NBR2 with endogenous AMPKα (Fig. 5d). Since AMPK α, β and γ subunits form a very 

stable complex at the endogenous level, we also observed a glucose starvation-induced 

binding between NBR2 and endogenous AMPK β and γ subunits (Fig. 5d), likely mediated 

by NBR2 interaction with endogenous AMPK α subunit. In vitro binding assay using 

purified AMPK α and in vitro-synthesized biotinylated NBR2 confirmed the direct binding 

between NBR2 and AMPK α (Fig. 5e). There exist at least three splicing isoforms of NBR2 
gene (named as NBR2 #1, #2 and #3, see Supplemental Fig. 1). In the RNA pulldown 

experiments described above, we utilized NBR2 #1 splicing isoform. The RNA pulldown 

experiments showed that NBR2 #2 and #3 splicing isoforms also interacted with AMPK α 

upon glucose starvation (Fig. 5f). Finally, RNA immunoprecipitation (RIP) assay (using the 

primers which can detect all three NBR2 splicing isoforms) revealed an enrichment of 

NBR2 in the precipitates of AMPK α compared with IgG control, and glucose starvation 

substantially increased the enrichment of NBR2 in AMPK α precipitates (Note that glucose 

starvation resulted in much more fold increase of NBR2 level in AMPK α precipitates than 

of NBR2 input level) (Fig. 5g).

In the experiment to map the region(s) of AMPK α which mediates AMPK interaction with 

NBR2, we showed that kinase domain-containing N terminal region, but not the C terminal 

region of AMPK α, interacted with NBR2 (Fig. 5h). Mutation of threonine 172 to alanine in 

AMPK α did not affect AMPK α interaction with NBR2 (Fig. 5h), indicating that AMPK 

phosphorylation at threonine 172 is not required for AMPK-NBR2 interaction. Together, our 

data revealed that glucose starvation not only induces NBR2 expression, but also enhances 

NBR2 interaction with AMPK, which is likely mediated by NBR2 interaction with the 

kinase domain of AMPK α.
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NBR2 promotes AMPK kinase activity

Next we studied the underlying mechanisms by which NBR2 regulates AMPK function. To 

this end, we first examined whether overexpression of NBR2 exerts any biological effect in 

cells. Our experiments revealed that overexpression of any of the three NBR2 splicing 

isoforms resulted in AMPK activation, mTORC1 inactivation (Fig. 6a, b), and decreased cell 

proliferation without affecting apoptosis under normal culture condition (Fig. 6c). All three 

splicing isoforms of NBR2 share the same first two exons located at the 5’ end of NBR2 
with distinctive exons located toward the 3’ end (Supplemental Fig. 1). Our data thus 

indicate that the common exons in all NBR2 splicing isoforms might be important in 

mediating NBR2 interaction with AMPK. Consistent with this, our binding mapping 

experiments revealed that the first exon shared by all three NBR2 splicing isoforms is both 

required and sufficient to mediate NBR2 interaction with AMPK α (Fig. 6d). Furthermore, 

overexpression of T1 fragment of NBR2 #1, which lacks the first exon (with 159 bp out of 

1045 bp full length NBR2 #1) and thus is incapable of interacting with AMPK, did not 

affect AMPK and mTORC1 activation status or cell proliferation, while in the parallel 

experiments, overexpression of full length (FL) NBR2 #1 exerted the expected effects on 

AMPK signaling (Fig. 6e, f). It seems that overexpression of the first exon alone (T4 

fragment of NBR2 #1) was not sufficient to activate AMPK (Supplemental Fig. 4a), 

suggesting that other regions in NBR2 may be also important for NBR2 function in the 

regulation of AMPK. Together, our results showed that deletion of the first exon of NBR2 
abolishes its interaction with AMPK and regulation of AMPK activation, suggesting that 

NBR2 regulation of AMPK activation and downstream cellular processes is likely mediated 

through NBR2 interaction with AMPK.

Since LKB1 functions as the major upstream kinase of AMPK in response to energy 

stress
13–15

, we examined whether NBR2 regulates LKB1 interaction with AMPK. Our 

results showed that NBR2 overexpression or knockdown did not affect AMPK-LKB1 

interaction under either basal or glucose starvation condition (Supplemental Fig. 4b, c). In 

addition, we found that overexpression of NBR2 in Lkb1-deficient Hela cells could still 

promote AMPK activation, and co-expression of NBR2 and LKB1 in Hela cells led to 

synergistic increase of AMPK activation (Supplemental Fig. 4d). Together, our data suggest 

that NBR2 does not regulate AMPK-LKB1 interaction and it is likely that NBR2 operates in 

parallel to LKB1 to regulate AMPK activation.

Our data that NBR2 interacts with the kinase domain of AMPKα (Fig. 5h) prompted the 

hypothesis that NBR2 may directly regulate the kinase activity of the AMPK complex. Our 

data showed that bacterial purified GST-ACC (aa 1–130) could be readily phosphorylated by 

the AMPK complex precipitated from cell lysates of HEK293T cells co-transfected with 

AMPKα/β/γ constructs (Fig. 6g). While in vitro synthesized NBR2 alone did not lead to 

ACC phosphorylation, the addition of NBR2 (but not the T1 fragment of NBR2, the AMPK 

non-binding mutant) to the AMPK complex significantly increased ACC phosphorylation by 

AMPK (Fig. 6g). The in vitro kinase assay using purified AMPKα/β/γ complex and SAMS 

peptide as the AMPK substrate further confirmed that NBR2 promoted AMPK in vitro 
kinase activity (Fig. 6h). Together, our data suggest that NBR2 functions to promote AMPK 

kinase activity likely through its interaction with AMPK kinase domain.
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The functional effects of NBR2 are partially mediated by AMPK

We next sought to determine the extent to which the functional effects of NBR2 are 

mediated by NBR2 regulation of AMPK activation. We first examined whether 

overexpression of NBR2 still exerted its functional effects in AMPKα knockdown cells. 

Such analyses revealed that, while overexpression of NBR2 increased ACC phosphorylation, 

decreased S6 phosphorylation, and suppressed cell proliferation in control siRNA (Ctrl si) 

transfected cells, such effects were attenuated in AMPKα knockdown (AMPK si) cells (Fig. 

7a, b). As a complementary approach, we also examined whether restoration of 

constitutively active (CA) AMPK (1–312 a.a. of AMPK α1) would rescue any of the defects 

observed in NBR2 deficient cells. Our data revealed that overexpression of AMPK CA in 

NBR2 knockdown cells restored ACC or S6 phosphorylation under glucose starvation 

condition as expected (Fig. 7c), and correspondingly, significantly rescued cell proliferation, 

apoptosis, and anchorage independence growth under glucose starvation conditions in NBR2 
deficient cells (Fig. 7d–g). Importantly, restoration of AMPK CA in NBR2 deficient 

background significantly attenuated the enhanced xenograft tumor development caused by 

NBR2 deficiency (Fig. 7h). Taken together, our data strongly suggested that the functional 

effects of NBR2 are at least partially dependent on AMPK.

Discussion

AMPK exists as a heterotrimeric complex comprising of a catalytic α subunit and two 

regulatory β and γ subunits, in which γ subunit directly binds to AMP in response to energy 

stress
31

. It has been proposed that AMP activates AMPK via at least three mechanisms: (i) 

AMP binding to AMPK causes allosteric activation of AMPK; AMP binding leads to 

conformational change of AMPK complex which (ii) promotes Thr172 phosphorylation in 

AMPK α subunit by LKB1 and (iii) inhibits Thr172 de-phosphorylation by protein 

phosphatases
31

. Our study reveals that lincRNA NBR2 regulation of AMPK represents 

another important regulatory mechanism to control AMPK activation in response to energy 

stress. Here we propose a feed-forward model on NBR2-AMPK regulation. Specifically, 

energy stress-induced initial AMPK activation does not require NBR2. Activated AMPK 

then up-regulates NBR2 expression in response to energy stress. NBR2 in turn interacts with 

AMPK and promotes AMPK kinase activity under energy stress, forming a feed-forward 

loop to potentiate AMPK activation during chronic energy stress conditions (Supplemental 

Fig. 5a). NBR2 deficiency leads to AMPK inactivation during long periods of energy stress, 

which promotes mTORC1 activation, cell proliferation and tumor development 

(Supplemental Fig. 5b). Since transcription regulation in general takes longer time than 

allosteric regulation and phosphorylation events, we reason that cells may have evolved this 

lincRNA-involved regulatory mechanism to maintain AMPK activation during long periods 

of energy stress and to help cells adapt better to chronic stress conditions. In support of this 

model, our time course experiments revealed that NBR2 deficiency compromised AMPK 

activation at later, but not earlier, time points upon glucose starvation (Supplemental Fig. 6a) 

(Note that all the energy stress experiments shown in our studies used 12 hour or longer 

treatment time points). This mirrors well with the kinetics of NBR2 expression induction 

upon glucose starvation (Supplemental Fig. 6b). Since glucose starvation also significantly 
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promotes NBR2 binding to AMPK (Fig. 5), this presumably further amplifies the effect of 

NBR2 to promote AMPK activation.

NBR2 gene was originally identified as a gene which is located near to the breast cancer 

associated gene BRCA1. Both genes lie head to head with each other on human 

chromosome 17, and the physical distance between the transcription start sites of the two 

genes is only 218 bp (Supplemental Fig. 1)
27

. Given the frequent mutation/deletion rates of 

BRCA1 in human breast and ovarian cancers and the close proximity of NBR2 gene to 

BRCA1 gene, it was initially postulated that NBR2 should be co-deleted/mutated with 

BRCA1 in certain cancers (for example, see
32

), and NBR2 may also play a role in tumor 

suppression. However, later it became clear that NBR2 does not appear to encode a protein, 

and it was proposed that NBR2 simply is a “junk gene”
33

. Since then, its potential function 

in tumor biology has remained unknown. In this study, we identified NBR2 as a lincRNA 

induced by energy stress, and showed that NBR2 indeed functions to inhibit tumor 

development, at least in part through its regulation of AMPK activation. It is of note that 

NBR2 overexpression in AMPK deficient cells can still exert moderate cell proliferation 

suppressive effect (Fig. 7b), suggesting that NBR2 may have other AMPK-independent 

function(s) to regulate cell proliferation. Identification and characterization of other NBR2 
binding proteins or RNAs will further clarify its function.

The most popular model proposed for lncRNA function probably is the one that lncRNAs 

regulate gene expression, either in cis or in trans, via recruiting other chromatin-

modification complexes or transcription factors to specific loci
34, 35

. This raises the 

possibility that NBR2 may regulate the transcription of BRCA1 gene, which resides right 

next to NBR2 gene. However, our data showed that BRCA1 expression was not affected by 

either glucose starvation or NBR2 knockdown (Supplemental Fig. 7). We should mention 

that, although initially it was proposed that lincRNAs mainly function to regulate 

neighboring gene transcription, other studies have shown that many lincRNAs do not exert 

such function
1
. Whether NBR2 regulates any other gene transcription awaits further 

investigation.

Methods

Cell culture studies

Human kidney cancer cell lines, human breast cancer cell lines, human prostate cancer cell 

lines, human embryonic Kidney 293 cells used in this study were mostly obtained from 

American Type Culture Collection (ATCC). All of the cell lines were free of mycoplasma 

contamination (tested by the vendors using the MycoAlert kit from Lonza). No cell lines 

used in this study are found in the database of commonly misidentified cell lines (ICLAC 

and NCBI Biosample) based on short tandem repeats (STR) profiling performed by vendors. 

Hela or A549 cells with expression of empty vector or Lkb1 expression vectors were 

described in
36

. siRNA and plasmid transfections were performed using Lipofectamine 3000 

(Life Technologies). Lentiviruses or retroviruses were produced in HEK293T cells with 

packing mix (ViraPower Lentiviral Expression System, Invitrogen) and used to infect target 

cells as per manufacturer's instruction. For glucose starvation experiments, cells were 

cultured in DMEM with different concentrations of glucose (0, 1, or 25 mM) + 10% 
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dialyzed FBS. To measure apoptosis, the cells were stained by Annexin V kit per 

manufacturer instruction (BD Bioscience)
37

. Briefly, treated cells were washed with PBS 

twice and then 1×106 cells were resuspended in 100µL of 1× binding buffer. FITC-labeled 

Annexin V and propidium iodide were added to samples and incubated in dark for 15 

minutes at room temperature. Subsequently cells were subjected to FACS analysis. Cell 

cycle analysis was carried out as previously reported using FITC BRDU Flow Kit (BD 

Bioscience)
38,39

. Cell growth and soft agar assays were conducted as described in our 

previous publications
40,41

. Briefly, for cell growth assay, cells were plated in 24 well plates 

and were determined by crystal violet staining. Cells were stained with 0.1% crystal violet 

(Sigma) solution for 15 min at room temperature. Stained crystal violet was then extracted 

with 10% acetic acid and the intensity of color was measured by photospectormetry at 

OD595. To assess anchorage-independent growth, 10,000 cells per well in 0.4% agarose on 

top of a bottom layer of 0.7% agarose were seed triplicate wells of 6-well plates. Upon the 

formation of colonies, soft agar plates were stained with iodonitrotetrazolium chloride 

(Sigma) and the colonies were counted manually.

Constructs and reagents

shRNAs targeting human NBR2 (NM_005821.2-615s1c1, NM_005821.2-514s1c1) were 

purchased from Sigma (Note that these two shRNAs target splicing isoforms #1 and #3 of 

NBR2, while can still achieve good knockdown efficiency when measured by real time PCR 

primer set designed to detect all three splicing isoforms of NBR2). siRNA targeting AMPKα 

were purchased from Origene (SR303721, SR303722). All three splicing isoforms of NBR2 
were obtained from Thermo Fisher Scientific (MGC human NBR2 sequence-verified 

cDNAs, clone ID: 6452095, 4339497, 4826858) and then were subcloned into Lentiviral 

vector pLVX (Clontech). AMPK α, AMPK β and AMPK γ entry plasmids were obtained 

from Human ORFeome V5.1 library. The entry clones were subsequently recombined into 

gateway-compatible destination expression vectors with Flag tag through LR Gateway 

Technology (Invitrogen). cDNA corresponding to 1–312 a.a. of AMPK α1 was cloned into 

entry vector, and was subsequently recombined into gateway-compatible destination 

expression vectors with V5 tag through LR Gateway Technology (Invitrogen). Active human 

AMPK α2 protein and active human AMPK α1+AMPK β1+AMPK γ1 protein were 

purchase form Abcam (ab79803, ab126916). 2-Deoxy-D-glucose and compound C were 

purchased from Sigma (D6134, P5499). A-769662 was purchased from LC laboratories 

(A-1803).

Quantitative real-time PCR and RIP assay

Total RNA was extracted from cells using RNeasy (Qiagen) and 1st strand cDNA was 

prepared with High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, ABI). 

Real-time PCR was performed using QuantiTect SYBR Green PCR kit (Qiagen) or TaqMan 

Universal PCR Master Mix (ABI), and was run on Stratagene MX3000P. For quantification 

of gene expression, the 2−ΔΔCt method was used. GAPDH expression was used for 

normalization. RIP assay was performed with Magna RIP RNA-Binding Protein Immuno-

precipitation Kit (Millipore). Briefly, cells were lysed in RIP lysis buffer. Then the lysates 

were immuno-precipitated with antibody or IgG along with protein magnetic beads. After 

proteinase K digestion, the RNAs pulled down with proteins were purified by phenol 
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chloroform extraction and precipitated in ethanol. The RNAs were then re-suspended in 

RNAse-free water and cDNA was synthesized and subjected to real-time-PCR to detect 

NBR2 or GAPDH (internal control) transcripts. The RNA level was normalized with input 

(10%).

RNA pull-down assays

Biotin labeled RNAs were synthesized by Scientific TranscriptAid T7 High Yield 

Transcription Kit (Thermo). PCR primers with T7 promoters were used to amplify DNA 

templates for RNA synthesis, RNA transcribed in vitro with biotin RNA labelling mix and 

T7 RNA polymerase, treated with RNase-free DNase I (Roche), and purified with the 

RNeasy Mini Kit (Qiagen). Cells lysates or purified proteins were incubated with biotin-

labeled RNAs overnight. The proteins associated with biotin-labeled RNAs were then pulled 

down with Streptavidin Magnetic Beads (Thermo) after 1-hour incubation. The proteins was 

then washed and used for Western blot analysis.

Western blot analysis

Tissues were lysed with RIPA buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 

0.5% Sodium Deoxycholate, 1 mM EDTA, 0.1% SDS) containing complete mini protease 

inhibitors (Roche) and phosphatase inhibitor cocktail (Calbiochem). Cultured cells were 

lysed with NP40 buffer (150 mM sodium chloride, 1.0% NP-40, 50 mM Tris, pH 8.0) 

containing complete mini protease inhibitors (Roche) and phosphatase inhibitor cocktail 

(Calbiochem). Western blots were obtained utilizing 20 to 40 µg of lysate protein. The 

following antibodies were used in this study: anti-FLAG tag (M2) mouse monoclonal 

antibody (Sigma-Aldrich, F3165, 1:5000 dilution), Monoclonal Anti-Vinculin antibody 

(Sigma-Aldrich, V4505, 1:5000 dilution), Phospho-Acetyl-CoA Carboxylase (Ser79) 

Antibody (Cell Signaling Technology, 3661S, 1:1,000 dilution), Acetyl-CoA Carboxylase 

Antibody (Cell Signaling Technology, 3662S, 1:1,000 dilution), Phospho-p70 S6 Kinase 

(Thr389) Antibody (Cell Signaling Technology, 9205S, 1:1,000 dilution), Phospho-AMPKα 

(Thr172) (40H9) Rabbit mAb (Cell Signaling Technology, 2535S, 1:1,000 dilution), 

AMPKα (D63G4) Rabbit mAb (Cell Signaling Technology, 5832S, 1:1,000 dilution), 

AMPKα (F6) Mouse mAb (Cell Signaling Technology, 2793S, 1:1,000 dilution), 

AMPKβ1/2 (57C12) Rabbit mAb (Cell Signaling Technology, 4150S, 1:1,000 dilution) 

AMPKγ1 Antibody (Cell Signaling Technology, 4187S, 1:1,000 dilution), Phospho-Raptor 

(Ser792) Antibody (Cell Signaling Technology, 2083S, 1:1,000 dilution), Raptor (24C12) 

Rabbit mAb (Cell Signaling Technology, 2280S, 1:1,000 dilution), Phospho-S6 Ribosomal 

Protein (Ser240/244) (D68F8) XP® Rabbit mAb (Cell Signaling Technology, 5364S, 

1:5,000 dilution), S6 Ribosomal Protein (5G10) Rabbit mAb (Cell Signaling Technology, 

2217S, 1:5,000 dilution), ULK1 (D8H5) Rabbit mAb (Cell Signaling Technology, 8054 S, 

1:1,000 dilution), Phospho-ULK1 (Ser555) (D1H4) Rabbit mAb (Cell Signaling 

Technology, 5869S, 1:1,000 dilution), Phospho-ULK1 (Ser757) Antibody (Cell Signaling 

Technology, 6888S, 1:1,000 dilution), Cleaved PARP (Asp214) Antibody (Human Specific) 

(Cell Signaling Technology, 9541S, 1:2,000 dilution), PARP Antibody (Cell Signaling 

Technology, 9542S, 1:2,000 dilution), Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb 

(Cell Signaling Technology, 9664S, 1:500 dilution), FLCN (D14G9) Rabbit mAb (Cell 

Signaling Technology, 3697S, 1: 2,000 dilution), HSP90 (C45G5) Rabbit mAb #4877 (Cell 
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Signaling Technology, 4877S, 1: 1,000 dilution), GAPDH (D16H11) XP® Rabbit mAb 

(Cell Signaling Technology, 5174S, 1: 5,000 dilution), p70 S6 kinase α Antibody (C-18) 

(Santa Cruz Biotechnology, sc-230, 1:1,000 dilution), SQSTM1 Antibody (H-290) (Santa 

Cruz Biotechnology, sc-52275, 1:2,000 dilution), LKB1 Antibody (E-9) (Santa Cruz 

Biotechnology, sc-374334, 1:2,000 dilution).

Subcellular fractionation

Cells were harvested by trypsin and washed twice with PBS. Cell pellets were lysed in 

buffer I containing 20 mM HEPES, 10 mM KCL, 2 mM MgCl2 and 0.5% NP40. After 

centrifugation, supernatants were collected as cytoplasmic lysis. Pellets were further lysed in 

buffer II containing 0.5 M NaCl, 20 mM HEPES, 10 mM KCL, 2 mM MgCl2 and 0.5% 

NP40. Supernatants were collected as nuclear lysis by centrifugation. Cytoplasmic and 

nuclear fractions were split for RNA extraction and real-time PCR or protein extraction and 

Western blotting. HSP90 and PARP were used as markers of cytoplasm and nucleus in 

Western blotting. GAPDH and U1 were used as markers of cytoplasm and nucleus in real-

time PCR.

Immunofluorescence

Cells were cultured on glass coverslips in six-well plates, washed once with PBS, and fixed 

in 4% paraformaldehyde for 30 min. Coverslips were mounted using Immu-mount (Thermo 

Shandon) and images were captured using Olympus confocal microscope. For quantification 

of autophagic cells, cells with > 10 GFP-LC3 punctuate dots were considered positive. 

Positive cells was counted and expressed as a percentage of total autophagic cells.

AMPK kinase assay

in vitro AMPK kinase activity was assessed using Promega AMPK (A1/B1/G1) Kinase 

Enzyme System (V1921) according to the manufacturer’s instructions. In the kinase assay 

using ACC fragment, bacterial purified GST- ACC 1–130 aa protein was dialyzed against 20 

mM Tris-HCl, pH8.0 and 10% glycerol at 4°C overnight. For AMPK kinase assay, SFB-

AMPKα1, Flag-AMPKβ2 and Flag-AMPKγ1 plasmids were co-transfected into HEK293T 

cells. Cells were lysed 48 hours after transfection. AMPK complex was pulled down by S 

protein beads and subjected to the kinase assay in the presence of 500 µM cold ATP, 10µg in 
vitro synthesized RNAs and 1 µg GST fusion proteins mentioned above. The reaction 

mixture was incubated at 30°C for 30 min, terminated with SDS-loading buffer and 

subjected to SDS-PAGE for Western blot analysis. Phosphorylation of ACC at S79 site was 

determined by ACC S79 phospho-specific antibody.

Xenograft model

All Female athymic Nude-Foxn1nu mice animal (6-week-old) experiments were performed 

in accordance with a protocol approved by the Institutional Animal Care and Use Committee 

of MD Anderson Cancer Center which is in full compliance with policies of the Institutional 

Animal Core and Use Committee (IACUC). Animals arriving in our facility were randomly 

put into cages with five mice each. They were implanted with respective tumor cells in the 

unit of cages, which were randomly selected. MDA-MB-231 cells were counted and 
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suspended at 1.0×107/ml in PBS, approximately one million cells were injected 

subcutaneously into the flank of each mouse with different genotypes, 5 mice per group. 

Tumor volume measurement was initiated at two weeks after injection (defined as starting 

time point: week 0). Tumor progression was then monitored by bi-dimensional tumor 

measurements every five days using a caliper until the endpoint. Mice were sacrificed at the 

endpoint and the tumors were excised for further experiments. The tumor volume was 

calculated according to the equation v = length*width2*1/2. The tumor volume at week n is 

expressed as Relative Tumor Volume (RTV) and calculated according to the following 

formula: RTV = TVn/TV0, where TVn is the tumor volume at week n and TV0 is the tumor 

volume at week 0. The investigators were not blinded to allocation during experiments and 

outcome assessment.

RNA-seq and computational analysis

RNA-seq was performed at Sequencing and Non-Coding RNA Program at the MD 

Anderson Cancer Center using Applied Biosystems SOLiD™ Next Generation Sequencing 

platform. The LifeScope v2.5.1 was used to align the reads to the genome, generate raw 

counts corresponding to each known gene (total 23080 genes, including 4325 non-coding 

genes), and calculate the RPKM (reads per kilobase per million) values. We considered only 

non-coding genes that expressed at relative high levels (RPKM > 2) and showed >2 or < 0.5 

fold changes between control and treatment cells. This identified a list of 17 up-regulated 

and 39 down-regulated non-coding RNAs.

Kaplan Meier survival analysis of cancer patients

We utilized datasets of 4,142 breast tumors which had previously been profiled by 

Affymetrix microarray analysis (www.kmplot.com)
42

. NBR2 expression (probe set ID: 

207631_at) was divided by the median into high vs. low expression. Survival analysis by 

Kaplan-Meier and Cox Proportional Hazard analysis were performed.

TCGA data analysis

We downloaded the level-3 gene expression data for NBR2 from TCGA pan-cancer project 

Synapse (Synapse ID: syn300013) for breast (BRCA) and kidney cancer (KIRC). We used 

paired student t-test to detect the statistical difference between matched tumor and normal 

samples. We used long-rank tests to detect the overall survival difference between patient 

groups.

Accession numbers

RNA seq datasets (786O cells with or without glucose treatment) have been deposited in the 

Gene Expression Omnibus website with accession code GSE77415. The datasets used in 

Figure.4g were generated from ref.
43

Oligonucleotide sequences, probes and primers (forward and reverse)

qPCR primers for gene expression and RIP:

NBR2-Forward: 5’-GGAGGTCTCCAGTTTCGGTA-3’
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NBR2-Reverse: 5’-TTGATGTGTGCTTCCTGGG-3’

(Note that this real time PCR primer set for NBR2 is designed to detect all three 

splicing isoforms of NBR2)

GAPDH-Forward: 5’- CCATGGGGAAGGTGAAGGTC-3’

GAPDH -Reverse: 5’-GAAGGGGTCATTGATGGCAAC-3’

U1-Forward: 5’-TCCCAGGGCGAGGCTTATCCATT-3’

U1-Reverse: 5’-GAACGCAGTCCCCCACTACCACAAAT-3’

BRCA1-Forward: 5’-TGTGCTTTTCAGCTTGACACAGG-3’

BRCA1-Reverse: 5’-CGTCTTTTGAGGTTGTATCCGCTG-3’

Primers for RNA pull down assay:

NBR2#1-Forward: 5’-TAATACGACTCACTATAGGG 

AGGGGTCCAGTTGCGGCTTAT -3’

NBR2#1-Reverse: 5’-AGTTT ACTTA CTATT GCTGA -3’

NBR2#1Anti-sence-Forward: 5’- TAATACGACTCACTATAGGG 

AGTTTACTTACTATT GCTGA -3’

NBR2#1Anti-sence -Reverse: 5’- GGGTCCAGTTGCGGCTTAT -3’

NBR2#2-Forward: 5’- TAATACGACTCACTATAGGG 

GTTGCGGCTTATTGCATCACA-3’

NBR2#2-Reverse: 5’- ACTATTGCTGATTTATTACAAAGGA -3’

NBR2#2Anti-sence-Forward: 5’-TAATACGACTCACTATAGGG 

ACTATTGCTGATTTA TTACAAAGGA -3’

NBR2#2Anti-sence -Reverse: 5’- GTTGCGGCTTATTGCATCACA-3’

NBR2#3-Forward: 5’- TAATACGACTCACTATAGGG 

AGCGGGGTTGCGGCTTATT-3’

NBR2#3-Reverse: 5’- TGGGATTGAGGAGGATCTTT -3’

NBR2#3Anti-sence-Forward: 5’- TAATACGACTCACTATAGGG 

TGGGATTGAGGAGGA TCTTT -3’

NBR2#3Anti-sence -Reverse: 5’- GGGTTGCGGCTTATTGCATC-3’

NBR2#T1-Forward: 5’- TAATACGACTCACTATAGGG 

GTAAAAGTTTTCATTTGATCTG AA-3’

NBR2#T1-Reverse: 5’- AGTTT ACTTA CTATT GCTGA-3’

NBR2#T3-Forward: 5’- TAATACGACTCACTATAGGG 

TTTGCTGAGGATAATGGCCT -3’

NBR2#T3-Reverse: 5’- AGTTT ACTTA CTATT GCTGA-3’
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NBR2#T4-Forward: 5’- TAATACGACTCACTATAGGG 

AGGGGTCCAGTTGCGGCTTAT -3’

NBR2#T4-Reverse: 5’- TTCAGATCAAATGAAAACTTTTAC -3’

NBR2#T5-Forward: 5’- TAATACGACTCACTATAGGG 

AGGGGTCCAGTTGCGGCTTAT -3’

NBR2#T5-Reverse: 5’- CTTCCTGGGCTTCCAGCAC -3’

NBR2#T6-Forward: 5’- TAATACGACTCACTATAGGG 

AGGGGTCCAGTTGCGGCTTAT -3’

NBR2#T6-Reverse: 5’- AGGCCATTATCCTCAGCAAA -3’

Statistics and reproducibility

Most experiments were repeated 3–5 times to be eligible for the indicated statistical 

analyses, and the data exhibited normal distribution. There was no estimation of group 

variation before experiments. For gene expression and RIP assays, relative quantities of gene 

expression level were normalized. The relative quantities of RIP samples were normalized 

by individual inputs, respectively. All results are presented as mean ± the standard deviation 

(SD) of at least three independent experiments, unless otherwise noted. Each exact n values 

are indicated in the corresponding figure legend. Comparisons were performed using two-

tailed paired Student's t-test (*P <0.05, **P <0.01, and ***P <0.001), as indicated in the 

individual figures. For animal studies, five mice per group is the standard sample size for 

tumor xenograft experiments, and no statistical method was used to predetermine sample 

size. None of the samples/animals was excluded from the experiment, and the animals were 

not randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment. For western blotting, representative images are shown. Each of these 

experiments was independently repeated 3–5 times. For survival analysis, the expression of 

NBR2 was treated as a binary variant and divided into `high' and `low' level. Kaplan-Meier 

survival curves were compared using the Gehan-Breslow test with GraphPad Prism 

(GraphPad Software). The experiments were not randomized. The investigators were not 

blinded to allocation during experiments and outcome assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank all members of the Gan laboratory for their advice and technical assistance. This research has been 
supported by grants from MD Anderson Cancer Center, US Department of Defense (TS093049), Cancer Prevention 
& Research Institute of Texas (RP130020), National Institutes of Health (CA181196 and CA190370), Ellison 
Medical Foundation (AG-NS-0973-13), and Gabrielle’s Angel Foundation for Cancer Research (to B. G.). B. G. is 
a Kimmel Scholar and an Ellison Medical Foundation New Scholar. H. L. is supported by the National Institutes of 
Health (CA143883, CA175486); the R. Lee Clark Fellow Award from The Jeanne F. Shelby Scholarship Fund; a 
grant from the Cancer Prevention and Research Institute of Texas (RP140462); and the Mary K. Chapman 
Foundation and the Lorraine Dell Program in Bioinformatics for Personalization of Cancer Medicine. L. H. is 
supported by Cancer Prevention & Research Institute of Texas (RR150085). H. L. is supported by the National 
Institutes of Health (CA182424 and CA193813). B. G., J. C., J. W. and H. L. are members of the M.D. Anderson 
Cancer Center, and are supported by the National Institutes of Health Core Grant CA016672.

Liu et al. Page 14

Nat Cell Biol. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013; 154:26–46. 
[PubMed: 23827673] 

2. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 
489:57–74. [PubMed: 22955616] 

3. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. 
Cell. 2013; 152:1298–1307. [PubMed: 23498938] 

4. Gupta RA, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer 
metastasis. Nature. 2010; 464:1071–1076. [PubMed: 20393566] 

5. Huarte M, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression 
in the p53 response. Cell. 2010; 142:409–419. [PubMed: 20673990] 

6. Prensner JR, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an 
unannotated lincRNA implicated in disease progression. Nature biotechnology. 2011; 29:742–749.

7. Engreitz JM, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread 
across the X chromosome. Science. 2013; 341:1237973. [PubMed: 23828888] 

8. Rinn JL, et al. Functional demarcation of active and silent chromatin domains in human HOX loci 
by noncoding RNAs. Cell. 2007; 129:1311–1323. [PubMed: 17604720] 

9. Wang KC, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene 
expression. Nature. 2011; 472:120–124. [PubMed: 21423168] 

10. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012; 
482:339–346. [PubMed: 22337053] 

11. van Heesch S, et al. Extensive localization of long noncoding RNAs to the cytosol and mono- and 
polyribosomal complexes. Genome biology. 2014; 15:R6. [PubMed: 24393600] 

12. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy 
homeostasis. Nat Rev Mol Cell Biol. 2012; 13:251–262. [PubMed: 22436748] 

13. Hawley SA, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 
alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of biology. 
2003; 2:28. [PubMed: 14511394] 

14. Woods A, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr 
Biol. 2003; 13:2004–2008. [PubMed: 14614828] 

15. Shaw RJ, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and 
regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004; 101:3329–3335. 
[PubMed: 14985505] 

16. Hardie DG, Schaffer BE, Brunet A. AMPK: An Energy-Sensing Pathway with Multiple Inputs and 
Outputs. Trends in cell biology. 2015

17. Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell. 2012; 149:274–
293. [PubMed: 22500797] 

18. Gwinn DM, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 
2008; 30:214–226. [PubMed: 18439900] 

19. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and 
survival. Cell. 2003; 115:577–590. [PubMed: 14651849] 

20. Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects 
energy sensing to mitophagy. Science. 2011; 331:456–461. [PubMed: 21205641] 

21. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct 
phosphorylation of Ulk1. Nat Cell Biol. 2011; 13:132–141. [PubMed: 21258367] 

22. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour 
suppression. Nat Rev Cancer. 2009; 9:563–575. [PubMed: 19629071] 

23. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell 
growth. Biochem J. 2008; 412:179–190. [PubMed: 18466115] 

24. Hezel AF, Bardeesy N. LKB1; linking cell structure and tumor suppression. Oncogene. 2008; 
27:6908–6919. [PubMed: 19029933] 

Liu et al. Page 15

Nat Cell Biol. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annual review of 
biochemistry. 2006; 75:137–163.

26. Faubert B, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth 
in vivo. Cell Metab. 2013; 17:113–124. [PubMed: 23274086] 

27. Xu CF, et al. Isolation and characterisation of the NBR2 gene which lies head to head with the 
human BRCA1 gene. Hum Mol Genet. 1997; 6:1057–1062. [PubMed: 9215675] 

28. Sim AT, Hardie DG. The low activity of acetyl-CoA carboxylase in basal and glucagon-stimulated 
hepatocytes is due to phosphorylation by the AMP-activated protein kinase and not cyclic AMP-
dependent protein kinase. FEBS letters. 1988; 233:294–298. [PubMed: 2898386] 

29. Bungard D, et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B 
phosphorylation. Science. 2010; 329:1201–1205. [PubMed: 20647423] 

30. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of the TSC pathway by 
LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers 
syndrome. Genes Dev. 2004; 18:1533–1538. [PubMed: 15231735] 

31. Hardie DG. AMPK-Sensing Energy while Talking to Other Signaling Pathways. Cell Metab. 2014; 
20:939–952. [PubMed: 25448702] 

32. Gad S, et al. Characterisation of a 161 kb deletion extending from the NBR1 to the BRCA1 genes 
in a French breast-ovarian cancer family. Human mutation. 2003; 21:654. [PubMed: 14961556] 

33. Jin H, et al. Structural evolution of the BRCA1 genomic region in primates. Genomics. 2004; 
84:1071–1082. [PubMed: 15533724] 

34. Pandey RR, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional 
silencing through chromatin-level regulation. Mol Cell. 2008; 32:232–246. [PubMed: 18951091] 

35. Feng J, et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and 
functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006; 20:1470–1484. [PubMed: 
16705037] 

36. Lee SW, et al. Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell 
survival under energy stress. Mol Cell. 2015; 57:1022–1033. [PubMed: 25728766] 

37. Lin A, et al. The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under 
energy stress. Oncogene. 2014; 33:3183–3194. [PubMed: 23851496] 

38. Gan B, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. 
Nature. 2010; 468:701–704. [PubMed: 21124456] 

39. Gan B, et al. mTORC1-dependent and -independent regulation of stem cell renewal, 
differentiation, and mobilization. Proc Natl Acad Sci U S A. 2008; 105:19384–19389. [PubMed: 
19052232] 

40. Gan B, et al. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal 
tumorigenesis. Cancer Cell. 2010; 18:472–484. [PubMed: 21075312] 

41. Lin A, et al. FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor 
growth in response to pharmacological inhibition of the PI3K-AKT pathway. Cancer Res. 2014

42. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the 
prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PloS one. 
2013; 8:e82241. [PubMed: 24367507] 

43. Gyorffy B, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on 
breast cancer prognosis using microarray data of 1,809 patients. Breast cancer research and 
treatment. 2010; 123:725–731. [PubMed: 20020197] 

Liu et al. Page 16

Nat Cell Biol. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Energy stress induces NBR2 expression through the LKB1-AMPK pathway
(a, b) Various cell lines were cultured in 0 or 25 mM glucose-containing medium (a), or 0 or 

5 mM 2DG-containing medium (b) for 12–24 hours, and then subjected to real-time PCR 

analysis to measure NBR2 expression (Mean ± s.d., n=3 biologically independent extracts, 

two-tailed paired Student’s t-test). (c, d) Hela or A549 cells stably expressing EV (empty 

vector) or Lkb1 expression vectors were cultured in 25 or 0 mM glucose-containing 

medium, and then subjected to real-time PCR (c) (Mean ± s.d., n=3 biologically independent 

extracts, two-tailed paired Student’s t-test) and Western blotting analyses (d). (e) MDA-
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MB-231 cells treated with 100 µM A769662 were subjected to real-time PCR analysis to 

measure NBR2 (Mean ± s.d., n=3 biologically independent extracts, two-tailed paired 

Student’s t-test). (f) MDA-MB-231 cells were treated with 20 µM Compound C in 25 or 0 

mM glucose-containing medium for 24 hours, and then subjected to real-time PCR analysis 

to measure NBR2 expression (Mean ± s.d., n=3 biologically independent extracts, two-tailed 

paired Student’s t-test). (g) MDA-MB-231 cells transfected with AMPKα or control (Ctrl) 

siRNA were cultured in 25 or 0 mM glucose-containing medium for 24 hours, and then 

subjected to real-time PCR analysis to measure NBR2 (Mean ± s.d., n=3 biologically 

independent extracts, two-tailed paired Student’s t-test). Source data for a, b, c, e, f, g can be 

found in Supplementary Table 1. Unprocessed original scans of blots are shown in 

Supplemental Fig. 8.
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Figure 2. NBR2 regulates AMPK-mTORC1 signaling under energy stress
(a) Bar graph showing NBR2 shRNA-mediated knockdown efficiency by real-time PCR 

analysis in 786-O and MDA-MB-231 cells (Mean ± s.d., n=3 biologically independent 

extracts, two-tailed paired Student’s t-test). (b, c) 786-O or MDA-MB-231 cells infected 

with either control shRNA or NBR2 shRNA were cultured in medium with different 

concentrations of glucose for 24 hours. Cell lysates were then analyzed by Western blotting. 

(d) 786-O or MDA-MB-231 cells infected with either control shRNA or NBR2 shRNA were 

cultured in 0 or 5 mM 2DG-containing medium for 12 (for MDA-MB-231 cells) or 16 (for 
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786-O cells) hours. Cell lysates were then analyzed by Western blotting. (e) MDA-MB-231 

cells infected with either control shRNA or NBR2 shRNA were cultured in 0 or 100 µM 

A769662-containing medium for 12 hours. Cell lysates were then analyzed by Western 

blotting. Source data for a can be found in Supplementary Table 1. Unprocessed original 

scans of blots are shown in Supplemental Fig. 8.

Liu et al. Page 20

Nat Cell Biol. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. NBR2 regulates cell proliferation, apoptosis, and autophagy in response to energy 
stress
(a) Bar graph showing the percentages of S phase (Brdu positive) cells in control shRNA or 

NBR2 shRNA-infected MDA-MB-231 cells which were cultured in 25 or 0 mM glucose-

containing medium for 24 hours (Mean ± s.d., n=3 biologically independent extracts, two-

tailed paired Student’s t-test). (b, c) Bar graph showing the –Glucose/+Glucose ratio of S 

phase percentages in control shRNA or NBR2 shRNA-infected 786-O cells (b) or MDA-

MB-231 cells (c) (Mean ± s.d., n=3 biologically independent extracts, two-tailed paired 
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Student’s t-test). (d–f) Control shRNA or NBR2 shRNA-infected 786O cells or MDA-

MB-231 cells were cultured in medium with different concentrations of glucose for 24 

hours, then subjected to Annexin V/PI staining followed by FACS analysis to measure the 

percentages of Annexin V positive/PI negative cells (d for 786O cells, e for MDA-MB-231 

cells, Mean ± s.d., n=3 biologically independent extracts, two-tailed paired Student’s t-test), 

or to Western blotting analysis to measure Caspase-3 cleavage (f). (g–h) Bar graph showing 

the percentages of cells with LC3-GFP punctate localization in control shRNA or NBR2 
shRNA-infected 786-O cells (g) or MDA-MB-231 cells (h), which were transfected with 

GFP-LC3 and then cultured in 25 or 0 mM glucose-containing medium for 12 (for MDA-

MB-231 cells) or 18 (for 786-O cells) hours (Mean ± s.d., n=5 fields per group, each field 

was assessed from an independent experiment, two-tailed paired Student’s t-test). (i, j) 786-

O (i) or MDA-MB-231 (j) cells infected with either control shRNA or NBR2 shRNA were 

cultured in glucose free medium for different days as indicated, and then subjected to cell 

proliferation analysis (Mean ± s.d., n=3 biologically independent extracts, two-tailed paired 

Student’s t-test). Source data for a, b, c, d, e, i, j can be found in Supplementary Table 1. 

Unprocessed original scans of blots are shown in Supplemental Fig. 8.
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Figure 4. NBR2 inhibits tumor development
(a, b) 786-O (a) or MDA-MB-231 cells (b) infected with either control shRNA or NBR2 
shRNA were seeded in soft agar containing high or low concentrations of glucose as 

indicated. Bar graph showing the mean colony numbers from the soft agar assay (Mean ± 

s.d., n=5 fields per group, each field was assessed from an independent experiment, two-

tailed paired Student’s t-test). (c) Relative tumor volumes of MDA-MB-231 xenograft 

tumors infected with either control shRNA or NBR2 shRNA at different weeks (Mean ± 

s.e.m., n = 5 xenograft tumors, *: P < 0.05; **: P < 0.01 two-tailed paired Student’s t-test). 
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(d) Protein lysates obtained from xenograft tumors infected with either control shRNA or 

NBR2 shRNA at the end point were subjected to Western blotting analysis as indicated. (e, 
f) The box plot showing the expression pattern of NBR2 for each pair of tumor and normal 

samples in BRCA (e, n=104 matched pairs, Sutdent's t-test and Wilcoxon test) and KIRC (f, 
n=65 matched pairs, Sutdent's t-test and Wilcoxon test). The boxes show the median ±1 

quartile, with whiskers extending to the most extreme data point within 1.5 interquartile 

range from the box boundaries. (g) Kaplan Meier plots of breast cancer patients stratified by 

the expression levels of NBR2 (nhigh = 1767, nlow = 1787, Log-Rank Test). Unprocessed 

original scans of blots are shown in Supplemental Fig. 8.
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Figure 5. Energy stress induces NBR2 interaction with AMPK
(a, b) Nuclear and cytoplasmic fractions of 786O cells were subjected to either real-time 

PCR (a, Mean ± s.d., n=3 biologically independent extracts, two-tailed paired Student’s t-

test) or Western blotting analysis (b). (c) In vitro-synthesized biotinylated sense (S) or 

antisense (AS) NBR2 #1 were incubated with protein lysates from HEK293T cells 

transfected with various vectors as indicated. Precipitation reactions were conducted using 

streptavidin beads and then subjected to Western blotting. (d, f) In vitro-synthesized 

biotinylated sense (S) NBR2 or antisense (AS) NBR2 with different splicing isoforms were 
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incubated with protein lysates from 786-O cells which had been cultured in 25 or 0 mM 

glucose-containing medium for 24 hours. Precipitation reactions were conducted using 

streptavidin beads and then subjected to Western blotting. (e) In vitro-synthesized 

biotinylated sense (S) or antisense (AS) NBR2 #1 were incubated with purified human 

AMPK α protein. Precipitation reactions were conducted using streptavidin beads and then 

subjected to Western blotting. (g) 786-O cells were cultured in 0 or 25 mM glucose-

containing medium for 24 hours. Protein lysates were prepared and immunoprecipitated 

with AMPK α antibody or IgG. The RNA levels of NBR2 in immunoprecipitates or cell 

lysates (input) were measured by real-time PCR (Mean ± s.d., n=3 biologically independent 

extracts, two-tailed paired Student’s t-test). (h) In vitro-synthesized biotinylated NBR2 #1 

were incubated with protein lysates from HEK293T cells transfected with various vectors 

and subjected to glucose starvation. Precipitation reactions were conducted using 

streptavidin beads and then subjected to Western blotting. Source data for a, g can be found 

in Supplementary Table 1. Unprocessed original scans of blots are shown in Supplemental 

Fig. 8.
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Figure 6. NBR2 promotes AMPK kinase activity
(a, b) Protein lysates were prepared from HEK293T (a) or UMRC2 cells (b) with 

overexpression of EV or NBR2 expression vectors, and analyzed by Western blotting. (c) 
UMRC2 cells stably expressing EV or NBR2 expression vectors were cultured in 25 mM 

glucose-containing medium for different days as indicated, and then subjected to cell 

proliferation analysis (Mean ± s.d., n=3 biologically independent extracts, two-tailed paired 

Student’s t-test). (d) Left panel: Schematic diagram showing different truncation mutants of 

NBR2 #1 and the summary of their binding capabilities to AMPK α. Right panel: In vitro-
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synthesized biotinylated sense (S), antisense (AS), or different truncation (T) mutants of 

NBR2 #1 were incubated with protein lysates from 786-O cells which had been cultured in 

glucose free medium for 24 hours. Precipitation reactions were conducted using streptavidin 

beads and then subjected to Western blotting. (e) Protein lysates were prepared from 

HEK293T or UMRC2 cells with overexpression of EV, NBR2 #1 full length (FL), or T1 

mutant expression vectors, and analyzed by Western blotting. (f) UMRC2 cells stably 

expressing EV, NBR2 #1 FL, or T1 mutant expression vectors were cultured in 25 mM 

glucose-containing medium for different days as indicated, and then subjected to cell 

proliferation analysis (Mean ± s.d., n=3 biologically independent extracts, two-tailed paired 

Student’s t-test). (g) AMPK complex precipitated from HEK293T cells was subjected to the 

kinase assay in the presence of ATP, in vitro synthesized RNAs and GST-ACC 1–130 aa 

fusion proteins as indicated. The kinase activity of AMPK was measured by phosphorylation 

of ACC at S79 site. (h) In vitro purified active human AMPK complex was subjected to in 
vitro kinase assays in the presence of ATP, SAMS peptide and in vitro synthesized 

biotinylated sense (S)/antisense (AS)/T1 mutant (T1) NBR2 #1 or several chemical 

compounds (Compound C, A769662, AMP) as indicated (see Materials & Methods for 

details). The Kinase activity was measured by the luminescence with a plate-reading 

illuminometer (Mean ± s.d., n=3 biologically independent extracts, two-tailed paired 

Student’s t-test). Source data for c, f, h can be found in Supplementary Table 1. Unprocessed 

original scans of blots are shown in Supplemental Fig. 8.
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Figure 7. The functional effects of NBR2 are partially mediated by AMPK
(A and B) UMRC2 cells stably expressing EV or NBR2 expression vectors were transfected 

with AMPK siRNA (AMPK si1 or si2) or control siRNA (Ctrl si). Protein lysates were 

prepared and analyzed by Western blotting (a), or cells were cultured in 25 mM glucose-

containing medium for different days as indicated, and then subjected to cell proliferation 

analysis (b) (Mean ± s.d., n=3 biologically independent extracts, two-tailed paired Student’s 

t-test). (c–g) MDA-MB-231 cells with stable expression of control shRNA (Ctrl sh) or 

NBR2 shRNA (NBR2 sh) were infected with empty vector (EV) or constitutively active 
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AMPK (AMPK CA). These cells were cultured in 25 or 0 mM glucose-containing medium 

for 24 hours, and protein lysates were prepared and analyzed by Western blotting (c); The 

cells were cultured in 0 mM glucose-containing medium for different days as indicated, and 

then subjected to crystal violet staining to measure cell number (d) (Mean ± s.d., n=3 

biologically independent extracts, two-tailed paired Student’s t-test); The cells were cultured 

in 25 or 0 mM glucose-containing medium for 24 hours, then subjected to Annexin V/PI 

staining followed by FACS analysis to measure the percentages of Annexin V positive/PI 

negative cells cells (e) (Mean ± s.d., n=5 fields per group, each field was assessed from an 

independent experiment, two-tailed paired Student’s t-test), or to Western blotting analysis 

to measure PARP cleavage (f); The cells were seeded in soft agar containing high or low 

concentrations of glucose as indicated. Bar graph showing the mean colony numbers from 

the soft agar assay (g) (Mean ± s.d., n=5 fields per group, each field was assessed from an 

independent experiment, two-tailed paired Student’s t-test). (h) Relative tumor volumes of 

MDA-MB-231 xenograft tumors of different genotypes at different weeks (Mean ± s.d., n = 

5 xenograft tumors, *: P < 0.05, **: P < 0.01, two-tailed paired Student’s t-test). Source data 

for b, d, e can be found in Supplementary Table 1. Unprocessed original scans of blots are 

shown in Supplemental Fig. 8.
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