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Abstract

Objectives—To explore neural connectivity changes associated with repetitive transcranial 

magnetic stimulation (rTMS) to the temporoparietal junction for patients with bothersome tinnitus.

Study Design—Randomized, double-blind, controlled clinical trial

Methods—30 patients with subjective, nonpulsatile tinnitus for 6 months duration or longer and 

a score of 36 or greater on the Tinnitus Handicap Inventory (THI) completed the study. 

Participants were randomized to receive either sham or active treatment with rTMS to the 

temporoparietal junction for either 2 or 4 weeks of therapy. Participants underwent resting state 

functional connectivity MRI (rs-fcMRI) before therapy and immediately following treatment. 

Functional connectivity changes between active and sham treatment groups were compared using 

regions of interest in auditory, default mode, ventral attention, and executive attention networks.

Results—Sixteen patients received active rTMS treatment; 14 patients received sham treatment. 

There were no differences between the active and sham groups in baseline functional connectivity. 

Neither treatment with rTMS nor sham therapy resulted in statistically significant functional 

connectivity changes in the examined brain networks.

Conclusions—The analysis did not identify any changes in neural connectivity following 

treatment in patients with bothersome tinnitus. These results are consistent with our findings of 

lack of symptom changes previously reported in the same group of patients. Measures of neural 

connectivity may inform future work using rTMS to better understand the possible benefits of 

neural stimulation for tinnitus.
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Introduction

Tinnitus is the perception of sound without an acoustic stimulus. Tinnitus patients often 

suffer from depression, insomnia, and anxiety, and have difficulty with attention and 

concentration,1 leading to disability. Unfortunately, the pathophysiology of tinnitus is not 

fully understood and there is no cure or effective treatment for those who suffer from the 

disease.

While most early research in tinnitus focused on the role of peripheral dysfunction in the 

tinnitus percept, recently focus has shifted to the idea that differential neural connectivity 

may also explain the amount of bother experienced by tinnitus patients.2 In this context, it 

has been suggested that tinnitus is caused by excessive spontaneous activity in auditory 

cortex3 and that chronic tinnitus may be similar to neuropsychiatric syndromes related to 

plastic alterations of the brain.4 Auditory hyperactivity might be evident not only in focal 

changes in neural activation, but in functional connectivity across brain networks.5 If 

dysfunctional neural connectivity in auditory processing networks is a source of tinnitus 

distress, altering this activity may be an effective treatment.

Repetitive transcranial magnetic stimulation (rTMS) is an intervention that might be used to 

correct dysfunctional cortical networks. rTMS uses a magnetic field to create an electric 

current within the brain which depolarizes axons and activates neural networks;6 the 

repeated application of these pulses has the potential to induce changes in neural 

connectivity. Outside of tinnitus, functional MRI (fMRI) has identified changes in neural 

activity following rTMS therapy7,8 and rTMS is effective in treating medication resistant 

depression.9

Despite its promise, the results of studies examining the efficacy of rTMS in tinnitus are 

mixed.6 A critical decision rests on the site of rTMS stimulation (that is, which brain 

network to stimulate). Common targets are auditory cortical regions including left 

temporoparietal junction (TPJ) and auditory cortex in an effort to inhibit auditory 

hyperactivity. While some studies suggest symptom improvement following repeated 

sessions of rTMS to the auditory cortex or TPJ,10–18 a lack of improvement has been 

observed in several randomized controlled trials,19,20 including our own previously 

published randomized, controlled, cross-over trials.21,22

Our two previously published studies report symptom outcomes following either active or 

sham treatment with rTMS to the TPJ. Resting state functional connectivity MRI was 

obtained before and after treatment. Tinnitus patients show differences in functional 

connectivity as compared to healthy controls,2 and we hypothesize that neural connectivity 

changes following rTMS will correlate to symptom improvement. The proposed mechanism 

for intervention is that rTMS results in altered patterns of neural activity in cortical 

networks, and this altered network activity causes a reduction in symptoms. Under this view, 
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there are at least two explanations for why rTMS to TPJ did not result in symptom 

improvement. The first is that rTMS did not result in changes to neural connectivity. If 

symptom improvement indeed follows from changes in brain connectivity, a lack of changes 

in neural activity would be consistent with a lack of improvement. A second explanation is 

that rTMS to TPJ effectively alters neural connectivity, but not in a network that is 

contributing to tinnitus bother. Critically, functional neuroimaging can distinguish between 

these two possibilities. A mechanistic understanding of the effects of rTMS on the TPJ will 

help explain the variability of prior results and help guide effective treatments.

The objective of the current study was to systematically evaluate neural network changes in 

patients with bothersome chronic tinnitus who underwent rTMS treatment targeting the left 

TPJ, as compared to those who received sham therapy. We targeted the TPJ because it is 

thought to contribute to secondary and integrative auditory processes. This is the first study 

to evaluate functional connectivity before and after treatment in a randomized controlled 

trial of temporoparietal rTMS in tinnitus patients.

Materials and Methods

Design

This study was a double-blinded, randomized controlled trial. Participants were considered 

eligible for this study if they were between 18 and 60 years of age with subjective, 

nonpulsatile tinnitus for 6 months or longer. All participants were required to score at least a 

30 on the Tinnitus Handicap Inventory (THI) assessment23 and a score of less than 14 on the 

Beck Depression Inventory.24 All participants gave informed consent to participate in the 

study under a protocol approved by the Washington University in Saint Louis Institutional 

Review Board.

Details of the methods of the study have been previously published.21,22 Using a block 

randomization code generated by a statistician, all patients who remained eligible for the 

study were assigned to receive either sham or active treatment, with both participants and 

physicians blinded to treatment group. The initial protocol for this study was approved for 2 

consecutive weeks of treatment. Midway through the trial, the protocol was revised to allow 

for 4 consecutive weeks of treatment in order to evaluate increased length of treatment time. 

Here we collapse these two groups into a single analysis. Prior to initial treatment and 

immediately following completion of either 2 or 4 weeks of treatment, participants 

underwent a resting-state functional connectivity MRI.

This study used a cross-over design with a wash-out period between treatments (sham and 

active therapy). Following the first arm of treatment, participants underwent a wash-out 

period, followed by the second treatment. The focus of this manuscript is the evaluation and 

comparison of neuroimaging before and after the first arm of treatment.

Measurements

Participants completed multiple assessments including past medical and health information, 

tinnitus description, hearing history and exposures, audiometric exam, and neurocognitive 
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assessments. Additionally, participants underwent resting-state functional connectivity MRI 

prior to, and immediately after completion of treatment.

rTMS procedure

Participants received 5 treatment sessions per week for 2 or 4 consecutive weeks. The coil 

was placed over the left TPJ for all subjects. The sham coil was identical in appearance and 

sound to the active treatment coil. The delivery stimulus was calculated by placing the coil 

over the motor cortex and calculating the threshold at which the thumb abductor was 

stimulated to contract. This was considered the motor threshold. Active treatment was 

delivered at 1 Hz at 110% of motor threshold. The coil was placed over the TPJ region and 

not the motor cortex for treatment, therefore a muscle response was not elicited during 

treatment and patients would not have been able to differentiate between active and sham 

treatment. Sessions were conducted with interval stimulation for a total of 42.5 minutes.

Neuroimaging

Resting –state functional connectivity MRI was collected prior and immediately after 

completion of either active or sham treatment on a Siemens 3T Trio scanner. Participants 

wore headphones to reduce background noise and remained awake, with their eyes closed, in 

the scanner. Images were collected using an echo-planar sequence (EPI) (Repetition time 

[TR] = 2200 ms, echo time [TE] = 27 ms, flip angle = 90°, 4 mm isotropic voxels). Each 

participant completed three runs of 164 volumes. T1-weighted structural images were also 

acquired using a MPRAGE sequence (TR = 2100 ms, TE = 3.93ms, flip angle = 7°, 1 × 1 × 

1.25 mm voxels).

Analysis

Analysis of behavioral data has been previously described for the 2-week treatment group21 

and the 4-week treatment group;22 here we report combined statistics for completeness. 

Pairs of pre- and post- treatment intervention MRI scans were available and usable for 30 

subjects; participants who did not complete a post intervention scan were not included in any 

analysis. MRI data was processed using SPM8 (Wellcome Trust Centre for Neuroimaging, 

London, UK) and the Automatic Analysis processing environment (version 4.1; http://

www.automaticanalysis.org).25 The analysis was completed in an identical fashion to our 

prior study.26 The variance between successive EPI volumes was computed, and scans were 

aligned using rigid body transformations. Variance and motion parameters were used to 

identify scans exceeding any of the following: 0.5mm translation, 0.3° rotation, or a variance 

of 5 standard deviations from the mean scaled variance. These scans were later modeled out 

to limit the impact of participant motion. EPI images for each participant were coregistered 

to that participant’s structural image, spatially normalized to Montreal Neurological Institute 

(MNI) space,27 and smoothed with a 9 mm full-width half maximum isotropic Gaussian 

kernel. The statistical model included discrete cosine basis functions to bandpass filter the 

data from 0.01–0.1 Hz, the 6 movement parameters obtained from realignment, and their 

squares and volterra expansions. Using a singular value decomposition, the number of 

confounds was decreased to regressors that explained at least 99% of the variance. Estimates 

for the time-series of interest were calculated from the residuals from the model.
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For our primary analyses, we chose canonical regions of interest (ROIs)28 including: 

primary auditory cortex (left: [−38 −33 17], right: [58 −16 7]), secondary auditory (left TPJ: 

[−55 −40 14], right TPJ: [52 −33 8]), frontoparietal (left inferior frontal gyrus: [−42 38 21], 

right inferior frontal gyrus: [48 25 27]), cingulo-opercular (left anterior frontal operculum: 

[−51 8 −2], right anterior frontal operculum: [36 10 1]), and default (posterior cingulate: [8 

−48 31], anterior cingulate: [12 36 20]) networks. The mean timeseries data was extracted 

from a 5mm radius sphere around each coordinate. These data were then entered in a 

timeseries model as above to identify regions of the brain in which activity was correlated to 

that of the seed region. Using a two sample t-test, the resulting parameter estimate maps for 

all participants were then entered into second-level group analyses to look at the activity for 

the active and sham treatment groups. Additionally, using paired samples t-tests, we 

analyzed the pre-treatment scans, post-treatment scans, and their comparison. A cluster-

forming voxelwise threshold of p < 0.001, corrected for whole-brain significance at the 

cluster level (p < 0.05) using random field theory was utilized.29 Using Connectome 

Workbench, the results were displayed on an inflated cortical surface (v0.85; http://

www.humanconnectome.org/software/connectome-workbench.html).

Additional exploratory analyses were conducted on a full set of 264 ROIs covering all 

regions of the brain.28 These analyses were Bonferroni corrected for multiple comparisons 

to account for the number of tests conducted.

Results

Patient Characteristics

The flow diagram for patients we recruited is shown in Figure 1. In addition to participants 

reported in our previous publications,21,22 two additional patients randomized to receive 4 

weeks of sham intervention are included in the current analysis. These patients did not 

complete the second arm of the study and were not included in previous analyses.

Patient characteristics are shown in Table 1. There were no differences in baseline age or 

hearing between the active and sham groups, as measured by student’s t-test. Hearing was 

measured by grading audiogram results based on a 6 level scale: 1) Normal, 2) Slight, 3) 

Mild, 4) Moderate, 5) Moderate/Severe or 6) Severe hearing loss. Neither active treatment 

for 2 or 4 weeks was found to be more effective than sham treatment for reduction of 

symptoms of chronic bothersome tinnitus according to THI assessments.21,22 After 

including the 2 additional patients, Mann-Whitney U tests revealed no significant differences 

between baseline, post-intervention or post-intervention - baseline THI measurements 

between the sham and active rTMS groups. There were no serious adverse events 

reported.21,22 We do not believe that patients were aware of their randomization assignment 

because patients’ guesses as to which treatment they received were not better than chance.22

Neuroimaging results

Two-sample t-tests were used to compare baseline functional connectivity of the active and 

sham groups, including a covariate to control for 2 or 4 week treatment. Even though the 

connectivity with each seed region identified an appropriate resting state network, there were 
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no differences in connectivity between the active and sham groups using any of the seed 

regions shown in Figure 2. Additionally, analyses were done to compare post-treatment 

connectivity between the treatment and sham group. As an example, the results for the left 

auditory ROI are shown in Figure 3. There were no significant differences between active 

and sham, or pre- and post-, using any of these seed regions.

Finally, we conducted exploratory analyses on pairwise connectivity between seed regions 

covering the whole brain. We first performed paired samples t-tests comparing pre- and post- 

treatment for treatment and sham groups to look for connectivity changes following 

intervention in regions outside the attention networks that were the focus of our hypothesis-

driven seed-based analysis above. No significant differences were found. In addition, 

regardless of group membership, we correlated pairwise functional neural connectivity with 

baseline THI, change in THI, baseline depression, and change in depression. Again, none of 

these correlations were statistically significant.

Discussion

Here we report the first study to examine changes in neural connectivity following either 

active rTMS directed towards the TPJ or sham treatment in a group of patients with 

bothersome tinnitus. Our previous reports suggest lack of symptom improvement following 

rTMS therapy to this region21,22 and our neuroimaging findings are consistent with these 

results. Using a seed-based analysis with identified brain regions thought to be affected in 

tinnitus patients, we did not identify any functional connectivity changes after treatment.

The efficacy of rTMS as an intervention depends on how well it modulates the targeted brain 

areas, and the degree to which the targeted regions are responsible for symptoms. The use of 

fcMRI is critical to determine the degree to which neural activity has indeed been 

modulated. One pilot study used functional connectivity before and after rTMS therapy to 

the auditory cortex in tinnitus patients to evaluate neural changes; however, the results varied 

among the small number of tinnitus patients included in the study and are difficult to 

interpret.30 There have been mixed results regarding stimulation of the TPJ: Some studies 

support improvement of tinnitus symptoms,10,11,21 although multiple randomized controlled 

trials have not verified this finding.18–20,31

We propose that the lack of symptom improvement in the current study is due to lack of 

neural connectivity changes. The target of rTMS in the current study is the TPJ, which 

supports secondary and integrative auditory processing. The TPJ is also characterized as part 

of the ventral attention network, or bottom-up reorienting system. The ventral attention 

network is likely involved in prioritizing sensory input,32 which may be important for 

tinnitus patients who have difficulty ignoring their auditory percept. As compared to healthy 

controls, patients with bothersome tinnitus have been previously found to have altered 

activity in attention networks.3 There are multiple potential explanations for the lack of 

neural connectivity changes following rTMS in this study. One possibility is that rTMS 

therapy, while potentially therapeutic for some illnesses, may not modulate neural 

connectivity to a degree that can be captured using fcMRI. The literature regarding the 

investigation of imaging in patients with depression receiving rTMS is sparse and immediate 
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post-treatment effects on fcMRI have not been verified. A second possible explanation is 

that the specific rTMS protocol used was not sufficient for modulation of the TPJ and 

associated networks. Finally, there are many areas of the brain that contribute to attentional 

processing which may serve as potential targets for rTMS therapy. The TPJ alone may not 

be the ideal target for rTMS therapy in tinnitus patients. It is possible that there are 

widespread cortical changes in tinnitus patients, which cannot be treated by a single 

localized therapy, or that an alternate attention network would serve as a more appropriate 

target.

Recent work has pointed to the dorsolateral prefrontal cortex (DLPFC), part of the executive 

attention system, as a potential target for tinnitus therapy. Randomized controlled trials 

comparing temporal cortex rTMS to combination therapy with temporal and prefrontal 

rTMS failed to identify statistically significant treatment effects immediately after 

treatment20,33 or at 3 month follow up.33 However, long-term follow-up of a few pilot 

studies has suggested that multi-site stimulation of the DLPFC, in addition to the temporal 

region or TPJ, results in improvement of tinnitus symptoms as compared to single-site 

stimulation of the temporal cortex.34,35 The use of rTMS for chronic tinnitus continues to be 

an area of active research as long-term neuroplastic changes and stable symptom 

improvements are of interest in this patient population.

Limitations of our study include generalizability, as our patient population was screened to 

exclude patients with active depression. Therefore, our participants may not be truly 

representative of the tinnitus population. Additionally, we chose to exclude tinnitus patients 

who are not bothered by their tinnitus, as we believe that the bothered tinnitus sub-group is 

most in need of active research. Again, patient selection may limit generalizability. Finally, 

although we did not see any significant changes using any of the seed regions included, it is 

possible that other differences in functional connectivity may exist between patient groups.

In the future, it would be informative to conduct a similar study using a randomized 

controlled design to evaluate functional connectivity at baseline and following rTMS therapy 

directed towards multiple attention networks, such as the dorsolateral prefrontal cortex and 

the TPJ. Effective rTMS therapy may require a multi-target approach in order to target the 

multiple dysfunctional networks likely responsible for tinnitus. We believe long-term 

symptom improvement is a result of changes in one or more neural networks and that 

neuroimaging can serve as a biomarker for these changes.

Conclusion

Consistent with a lack of symptom improvement following rTMS directed to the left TPJ, 

we did not find changes in neural connectivity following rTMS therapy. Rather than suggest 

that rTMS is ineffective for chronic bothersome tinnitus, our results suggest instead that the 

TPJ alone may not be an ideal target for tinnitus treatment. Further research is necessary to 

identify better targets for rTMS treatment in patients with bothersome tinnitus in order to 

create changes to cortical networks associated with symptom improvement.
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Figure 1. 
Flow diagram of participation
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Figure 2. 
Regions of Interest (ROIs) used for functional connectivity analysis. TPJ = temporoparietal 

junction, IFG = inferior frontal gyrus, AUD = auditory cortex, ACC = anterior cingulate 

cortex, PCC = posterior cingulate cortex, aO = anterior operculum.
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Figure 3. 
Left auditory ROI: pre-treatment, post-treatment and difference between pre and post 

treatment resting state functional connectivity for active and sham therapy groups.
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Table 1

Demographics

Sham Active

Age (median) 53 50

Gender (% male) 71% 75%

Baseline THI (median) 52 51

Post-treatment THI (median) 43 42

Hearing ranking* (mean) 2.85 2.50

*
Hearing was graded as 1) Normal, 2) Slight hearing loss, 3) Mild hearing loss, 4) Moderate hearing loss, 5) Moderate/Severe hearing loss or 6) 

Severe hearing loss based on patients’ audiogram.
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