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Abstract
Molecular advances support the existence of an alter-
native pathway of colorectal carcinogenesis that is 

based on the hypermethylation of specific DNA regions 
that silences tumor suppressor genes. This alternative 
pathway has been called the serrated pathway due 
to the serrated appearance of tumors in histological 
analysis. New classifications for colorectal cancer (CRC) 
were proposed recently based on genetic profiles 
that show four types of molecular alterations: BRAF 
gene mutations, KRAS  gene mutations, microsatellite 
instability, and hypermethylation of CpG islands. This 
review summarizes what is known about the serrated 
pathway of CRC, including CRC molecular and clinical 
features, prognosis, and response to chemotherapy.

Key words: Colorectal cancer; Methylator phenotype; 
Serrated pathway; Chemotherapy; CIMP

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Recently, the implication among colorectal 
cancers with methylator phenotype has burst into 
the gastroenterology literature. In this review, we 
analyze the correlation between serrated cancers, 
the methylator phenotype and other genetic features 
in order to assess their prognosis and response to 
adjuvant chemotherapy.
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INTRODUCTION
Colorectal cancer (CRC) is considered a major health 
issue: it is the most prevalent cancer and the second 
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largest cause of cancer death in Western countries[1]. 
Traditionally, colorectal carcinogenesis research 
has focused on the chromosomal instability (CIN) 
pathway, in which the APC gene mutation is the first 
pathogenic event that leads to allelic losses and to 
somatic gene amplification and translocation. This 
classical carcinogenetic model is responsible for about 
70%-80% of all CRC cases[2-5]. A second carcinogenic 
pathway was described in the last decades of the 
20th century. This pathway is related to inactivation 
of the mismatch repair (MMR) gene system, which 
in turn leads to inactivation of mutated tumor 
suppressor genes, and is called MMR or MSI pathway. 
Lynch syndrome is the paradigm of this alternative 
carcinogenetic model; this syndrome leads to diploid 
tumors that have a microsatellite instability (MSI) 
phenotype[6]. 

Lastly, molecular advances have identified a third 
pathway of colorectal carcinogenesis. This pathway 
does not cause changes at the chromosomal level or in 
the MMR system; rather, it involves hypermethylation 
of specific DNA regions near the promoter genes: the 
CpG islands. This alternative pathway is called the 
serrated pathway due to the serrated appearance of 
tumors in histological analysis. The main molecular 
feature of these tumors is the variable degree of 
methylation in promoter gene regions[7]. Like MSI 
tumors, serrated cancers are diploid tumors, and 
some genetic variability has been described for tumors 
caused by the serrated pathway. New classifications 
were proposed recently for CRC based on genetic 
profiles that show four types of molecular alterations: 
BRAF gene mutations, KRAS gene mutations, MSI, and 

hypermethylation of CpG islands[8,9]. 
The aim of this review is to summarize what is 

known about the serrated pathway and CRC, including 
CRC molecular and clinical features, prognosis, and 
response to chemotherapy (CT). 

SERRATED LESIONS
Serrated polyps constitute a heterogeneous group of 
lesions that include four types of polyps: sessile serrated 
adenomas (SSAs), traditional serrated adenomas 
(TSAs), mixed polyps (MPs), and hyperplastic polyps 
(HPs)[10]. HPs are the most prevalent serrated lesion 
type, accounting for around 80%-90% of serrated 
polyps. HPs are subdivided into three subtypes: 
microvesicular HPs (MVHPs), goblet cell HPs (GCHPs), 
and mucin-poor HPs (MPHPs)[11]. Although only a 
minority of HPs will progress to CRC, mainly when 
they are right-sided, there can be progression to other 
serrated lesions that can evolve into CRC[11]. MVHPs 
are more likely to localize to the right colon and may 
progress more frequently to SSA. Conversely, when 
GCHPs evolve into other lesions, they are more likely to 
be left-sided TSAs (Figure 1)[12]. 

SSAs are less common than HPs, accounting for 
about 10%-25% of serrated polyps. Located mainly 
in the right colon, they can be original tumors or can 
evolve from HPs[13]. TSAs account for about 1%-2% 
of serrated polyps and are more frequent on the left 
colon[13]. Finally, MPs constitute around 1%-4% of 
serrated polyps[14]. Mixed tumors usually comprise a 
dysplastic lesion (TSA or conventional adenoma) plus 
a non-dysplastic one, usually an HP or SSA[15].
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Figure 1  Types of serrated polyps. Serrated polyps can be divided into four types: hyperplastic polyps (HPs), sessile serrated adenomas (SSAs), traditional serrated 
adenomas, and mixed polyps (MPs). The polyps can also be genetically characterized according to their CIMP, BRAF, KRAS, and MSI status, and certain patterns are 
found frequently for each category of polyp. Both microvesicular hyperplastic polyps (MVHPs), which are an HP subset, and SSAs have BRAF mutations more often 
than KRAS mutations. Conversely, goblet cell hyperplastic polyps (GCHPs), another HP subset, more frequently show KRAS mutations. BRAF mutations often correlate 
with high-grade CIMP CRC, whereas KRAS-mutated serrated polyps are more commonly found in low-grade CIMP. MPHP: Mucin-poor hyperplastic polyp.



GENETIC AND MOLECULAR FEATURES
The serrated pathway is complex and is currently poorly 
understood. This pathway has two key characteristics, 
namely aberrant hypermethylation of certain promoter 
regions in the genome and alterations in MAP kinase 
signaling pathway genes.

Aberrant hypermethylation
Functions related to the human genome are tightly 
regulated, and enzymatic systems control processes 
such as DNA mismatch repair, DNA transcription 
and replication. DNA transcription is the result of the 
regulation of genomic expression. Specifically, the 
transcription machinery interacts with the start codon 
ATG via DNA methyltransferases and forms methyl 
cytosine[16]. In humans and other mammals, only 
cytosine residues that precede a guanosine in the DNA 
sequence are modified to form CpG dinucleotides. 
These can change the three-dimensional configuration 
of the DNA and consequently affect its interaction 
with transcription factors. Methylation of these CpG 
dinucleotides usually leads to genetic silencing. 
CpG dinucleotides are located throughout the DNA 
sequence, and approximately half of all human gene 
promoter sequences are embedded in these CpG 
clusters, which are termed CpG islands[17]. The CpG 
island sequence is at least 200 bases long and is 
usually > 500 bases; the CG content is > 50%, and 
the ratio of observed-to-expected CpGs is > 60%[18,19]. 
In the genomes of cells in healthy tissue, the CpG 
islands are usually unmethylated, especially those 
associated with gene promoters. Conversely, about 
80% of the CpG dinucleotides that are not part of CpG 
islands (i.e., that are in DNA non-coding regions) are 
heavily methylated to prevent the expression of viral 
sequences that are integrated into the genome as well 
as the expression of many other DNA elements[20]. 
On the one hand, hypomethylation of these CpG 
dinucleotides could result in harmful gene expression; 
on the other hand, methylation of the promoter 
regions could have undesirable adverse effects.

Notably, some methylated promoters do not play 
any role in tumor development-these genes with 
methylated promoters are called “methylated in 
tumor” or MINT genes[16]. However, other methylated 
CpG islands in promoter regions silence the expression 
of known tumor suppressor genes by interrupting 
the interactions between transcription factors and 
the start codon. When this happens, it is considered 
a new phenotype of CRC that is caused mainly by 
epigenetic alterations rather than by DNA mutations 
and is called the CpG island methylator phenotype 
or CIMP. This term was introduced in 1999 when it 
was first suggested that CRC could be initiated by 
genetic silencing in the absence of DNA sequence 
modifications[21]. There are two types of CIMPs that 
are closely related and that are sometimes difficult 
to distinguish. Whereas CIMP-A is more related to 

aging, CIMP-C is more related to cancer[22,23]. In 
addition, some authors have suggested different ways 
to categorize CIMPs[24]. Shen et al[25] defined three 
subgroups of CIMP CRCs: CIMP1, CIMP2, and CIMP-
negative. KRAS mutations are reported to be the 
strongest predictor for CIMP2 (92%). Later, Ogino et 
al[26]. Proposed the use of 8 markers rather than 5 to 
classify methylation. They defined CRCs as CIMP-0 
when none of the markers were methylated; as CIMP-
low (CIMP-L) when 1 to 5 markers were methylated; 
and as CIMP high (CIMP-H) when 6-8 markers were 
methylated. The new cluster of methylated markers 
proposed by Weisenberger suggests that CIMP-L 
tumors might have high levels of methylation at other 
unknown loci rather than at a just a few loci. In fact, 
more CIMP CRCs were identified when the test panel 
of methylated markers was expanded[7]. Although the 
Weisenberg panel of loci is currently used more often 
than other panels, it is not yet clear which markers are 
the most appropriate for establishing the CIMP status 
of tumors.

The prevalence of CIMP tumors varies in different 
types of serrated lesions. CIMP-H is present in around 
41%-73.3% of MVHPs but only in about 8%-18.2% 
of GCHPs[27]. The proportion of CIMP-H in evolved 
serrated lesions is similar: the proportion is about 
44%-76.8% in TSAs and about 80% in SSAs[28]. 
Nonetheless, low grade CIMP is more often associated 
with TSAs than with SSAs (Figures 2 and 3)[13,27-32].

The MAPK pathway
When the serrated pathway was first described, 
investigators considered it a unique and linear 
carcinogenesis pathway. However, the current view is 
that the early events in this pathway include both an 
alteration of the MAPK pathway plus concomitant DNA 
epigenetic alterations[4]. The MAP kinase pathway is a 
via of intercellular signaling transmission. Mutations 
in their constituent proteins mainly involve the Raf 
and RAS families (Figure 4). There are 3 types of Raf 
kinases, termed types A, B, and C. B-Raf (or BRAF) 
is located on 7p34, is involved in serrated CRC, and 
is mutated in approximately 10% of CRC cases[33]. 

A BRAF mutation is rare in CIN tumors, and its pre-
sence almost completely excludes a Lynch syndrome 
diagnosis[34,35]. Therefore BRAF can be considered 
to be specific to CRCs arising via the serrated 
pathway[7,33,35]. The BRAF V600E mutation, in which 
valine is substituted for glutamate at codon 600 on 
chromosome 7[36], is the most common and the best 
characterized mutation. V600E leads to constitutive 
gene activation, thereby inducing cell proliferation and 
inhibiting apoptosis.

RAS mutations can also lead to dysfunctional MAPK 
pathway signaling. There are at least three RAS genes, 
namely H-RAS, N-RAS, and K-RAS or KRAS[37]. The 
consequences of KRAS gene mutations are similar to 
those of BRAF mutations in that the mutations can 
induce proliferation and inhibit apoptosis. Classically, 
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an increase in MGMT methylation rather than MLH1 
methylation is associated with CIMP-L and KRAS 
mutations[41,42]. 

Serrated pathway
In the serrated pathway, BRAF or KRAS mutation 
initially induces a burst of cellular proliferation in the 
normal colorectal epithelium, and serrated aberrant 
hyperplastic crypt foci seem to be the earliest 
histological lesions[43]. Mutations in both genes, 

RAS mutation has been linked to the CIN pathway, 
but RAS is also impaired in some serrated cancers. 
KRAS mutations are found in 30%-40% of CRCs[38,39]. 
Activating KRAS mutations are most common (up 
to 80%) in codon 12 but are also found in codon 
13; these include the G12D, G12V, and G13D KRAS 
point mutations[40]. Notably, the combination of KRAS 
mutation plus low grade CIMP in many serrated 
lesions constitutes an alternative subset of CRC that 
is established via the serrated pathway. For example, 

Figure 2  Features of microvesicular hyperplastic polyps and goblet cell hyperplastic polyps. Microvesicular hyperplastic polyps (MVHPs) and goblet cell 
hyperplastic polyps (GCHPs) are premalignant lesions that differ mainly in their location and morphology. MVHPs are more likely to occur as a few large polyps in 
the ascendant colon, and GCHPs are more likely to occur as multiple small polyps in the left colon. Each can become senescent or evolve into another type of polyp. 
Although they can transform into other adenomas, MVHPs more often evolve into sessile serrated adenomas (SSAs), and GCHPs more often evolve into traditional 
serrated adenomas (TSAs). The prevalence of KRAS mutations is higher in TSAs, while BRAF mutations are more prevalent in SSAs. 
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8
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Figure 3  Features of sessile serrated adenoma and traditional serrated adenomas. Pathological analysis shows that sessile serrated adenoma (SSAs) are 
more common than traditional serrated adenomas (TSAs). While TSA is preferentially located on the left colon, SSA is preferentially located on the right side. In 
addition, both SSAs and TSAs are found in high-grade CIMP tumors, although several studies show a relationship between low-grade CIMP tumors and TSAs. BRAF 
mutations are often observed in SSA, whereas KRAS mutations are often observed in TSAs. Contrary to what is found in serrated adenocarcinomas, MSI is almost 
never present in serrated polyps.
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although more frequently mutations in BRAF, can lead 
to upregulation of p16INK4a and to an increase in 
insulin-like growth factor binding protein 7 (IGFBP7) 
secretion at aberrant crypt foci[44]. p16INK4a and 
IGFBP7 are tumor suppressor proteins that prevent 
polyp growth and that drive these proliferative cells to 
form small senescent lesions. The silencing of these 
genes, for example by methylation, allows the cells 
to escape from cellular senescence and permits the 
progression to MVHPs or GCHPs and then to serrated 
polyps[37]. Some mRNAs have also been linked to 
serrated carcinogenesis. One example is microRNA-31, 
located at 9p21.3, which seems to correlate with 
mutated BRAF tumors. MicroRNA-31 may be involved 
in the progression from HPs to SSAs, since it has been 
detected in a high proportion of these lesions as well 
as in the CRCs that evolved from them[45,46]. 

Some genes are inhibited in the pathway to 
malignancy in CRC. Among them, the methylguanine 
methyltransferase gene, MGMT, and the MLH1 gene 
are the best characterized. MGMT is frequently 
involved in the progression of TSA[42]. While MLH1 
silencing is linked to SSA evolution. MLH1 is one of the 
main genes in the MMR system, and its inactivation 
leads to an accumulation of mutations in microsatellite 
sequences. This results in an MSI phenotype in these 
tumors, which is a hallmark of CRC in Lynch syndrome. 
However, only 3% of all CRCs and 20% of MSI CRCs 
are due to Lynch syndrome[18]. The remaining 80% 
of MSI CRCs are considered sporadic CRCs that are 
caused by the epigenetic inactivation of MLH1, which 
is present in approximately 15% of all CRCs[47]. These 

tumors follow the serrated pathway of carcinogenesis, 
especially when CIMP is present[24,48]. In fact, most of 
the sporadic MSI CRCs are CIMP tumors, although only 
half of CIMP CRCs show methylation of the MMR genes 
(Figure 5)[49,50]. “the natural course from serrated 
polyps to advanced cancers can be followed in this 
figure”.

CLINICAL FEATURES
The serrated pathway leads to a broad spectrum of 
CRCs. It is important to view each CRC as the result of 
both genetic and epigenetic alterations. In a review of 
the literature, serrated adenocarcinoma was frequently 
located on the cecum (52% of the time) and constituted 
around of 16% of all proximal CRCs[51-53]. Serrated 
adenocarcinoma is more common in Caucasians than in 
Hispanics or African Americans[54]. Some studies have 
suggested that there is an association between specific 
genetic profiles and certain clinical characteristics. Based 
on this premise, several studies have reported the 
clinical profiles of serrated adenocarcinoma cases[8,9].

Some studies distinguish between serrated adeno-
carcinoma with vs without mutant BRAF. Serrated 
adenocarcinoma with mutant BRAF seems to be more 
frequent in older patients who are heavy smokers and 
in female patients[55]. It is more prevalent on the right 
colon in larger tumors that are usually diagnosed at 
an advanced stage (either pT4 or N2)[56,57]. In fact, in 
the right colon, there seems to be a close relationship 
between these features and the loss of expression 
of the CDX2 gene and increased levels of annexin 

Figure 4  MAPK pathway. This simplified diagram of the MAPK pathway shows the RAS/Raf-1/MEK/ERK pathway. RAS mutations are found in 36% of serrated 
polyps, and Raf-1 mutations are found in 9%-11%. These mutations promote gene transcription and cellular growth that results in cellular adhesion, invasion, 
metastasis, and angiogenesis.
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A10[58,59]. In addition, serrated adenocarcinoma cases 
show a low frequency of liver and lung involvement 
at the metastatic stage, but there is a higher pre-
valence of peritoneal involvement at the onset of 
metastasis[55,60]. From a pathological viewpoint, 
BRAF-mutated serrated adenocarcinomas are more 
frequently high grade tumors than other serrated 
adenocarcinomas[61].

Mutated KRAS tumors, represent a subset of 
CRCs that arise via the serrated pathway. Clinically, 
these tumors are more variable than tumors with 
mutated BRAF, probably due to the difficulties of 
differentiating mutated KRAS tumors that arise via 
the serrated pathway from those that arise via the 
CIN pathway. KRAS mutated serrated tumors are not 
linked with proximal location, and they are associated 
with higher body weight, higher body fat percentage, 

and with female sex[62]. Although one study found a 
higher prevalence in men[63]. KRAS-mutated serrated 
adenocarcinomas frequently show both low grade 
tumor differentiation and low grade CIMP. 

The clinical features of CIMP and MSI tumors 
frequently overlap. CIMP tumors with MSS have 
not been described in great detail, but one study 
showed that they are associated with proximal CRC 
location, female sex, and the presence of lymph node 
metastasis and that they tend to present with liver 
metastasis (Figure 6)[64].

PROGNOSIS
Until now, the prognosis and management of CRCs 
has been based on the TNM staging system. However, 
the genetic and molecular profiles of the different CRC 
types should be used to improve the classification 
and management of these tumors. Few studies 

have addressed the question of the prognoses of the 
different CRC subtypes. 

The BRAF mutation was the first biomarker to be 
investigated. It has been described as a marker of 
poor survival, due to its association with remodeling 
of the extracellular matrix, a process that is important 
for tumoral invasion and metastasis. Notably, its 
prognostic role was investigated in a meta-analysis of 
26 CRC studies[65]. In general, the presence of BRAF 
mutation is an independent marker of a poor prognosis 
and is related to a decrease in 5-year disease-free 
survival (DFS)[66]. Its predictive value remains after 
stratification by age, disease stage, and degree of 
differentiation. However, other studies found that 
mutant BRAF does not affect the intrinsically good 
prognosis of MSI CRC. For example, Popovici et al[67] 
found BRAF to be a marker of poor prognosis only in 
subpopulations with microsatellite-stable left-sided 
tumors. Similarly, others report worse prognosis in MSS 
cancers in men but not in women[68]. As noted above, 
there seems to be a strong relationship between the 
CIMP status and BRAF mutations, with the prognostic 
value of CIMP status being related to the presence of 
BRAF mutations and, less frequently, to the presence 
of KRAS mutations[69]. Finally, regulation of SOX2 gene 
expression and its role as a biomarker of poor survival 
has been linked to tumors with BRAF mutations. This 
may be related to cellular migration and invasion, since 
an increase in SOX2 expression also correlates with 
CRC liver metastasis[70].

In contrast to BRAF, the MSI status is closely 
related to good prognosis in CRC, including in serrated 
tumors. The predictive power of MSI is independent 
of CIMP, BRAF, and KRAS status. However, it is clear 
that MSS tumors are associated with better DFS at 
any stage when no CIMP, KRAS, or BRAF mutations 

Figure 5  Serrated pathway. This diagram shows the chronological changes that occur during the development of neoplasia. MAPK mutations do not affect just 
one gene; rather, they affect some genes more than others. Gene methylation is successive rather than simultaneous and contributes to the progression of the 
serrated lesion. Depending on which genes are most affected, serrated cancers can be classified into three subtypes. GCHP: Goblet-cell hyperplastic polyp; MVHP: 
Microvesicular hyperplastic polyp; SSA: Sessile serrated adenoma; TSA: Traditional serrated adenoma.
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are found; in such cases, DFS is similar to that in 
familial or sporadic MSI-CRC[9] Some clinical trials have 
reported poor outcomes in patients with CIMP-H MSS 
CRC. Comparing the two MMR states, stage Ⅱ and 
Ⅲ CRC with MSI has a better prognosis than MSS 
CRC[47]. Moreover, combined MSS and CIMP CRC with 
mutant BRAF or KRAS frequently correlates with liver 
metastasis at diagnosis and has the worst prognosis 
of all CRCs[8,9,64]. The exactly role of CIMP status in 
metastatic stage has not been elucidated. It’s possible 
that the worst prognosis of those tumors could be due 
to the presence of BRAS mutations as well. 

The prognostic value of KRAS mutations has also 
been investigated. KRAS mutation is proposed to be 
a predictor of lower 5-year DFS in almost all studies, 
without any prognostic differences between right- and 
left-sided CRCs. However, some point mutations have 
been described that impact prognosis. For example, 
a KRAS codon 13 mutant is associated with more 
aggressive CRC[68].

The prognostic value of CIMP status remains 
controversial. There are few doubts about the rela-
tively good prognosis of sporadic CIMP-H MSI CRC. 
But for sporadic MSS CRC, some studies show no 
effect of CIMP-H on survival prediction, while others 
show either a negative or a positive impact[70]. Ogino 
et al[71] described CIMP-H as a specific marker of low 
CRC mortality, and it appeared to counter the adverse 
prognostic effect of BRAF mutation in serrated cancers. 
Perhaps, the hypermethylation of certain genes 
avoided the proliferative effect of BRAF mutations. 
One clinical trial found it to be an independent pre-
dictor of cancer survival[72]. Despite this finding, 
many researchers consider CIMP a predictor of short 
survival, especially in proximal stage Ⅲ CRCs[69,73]. 
These authors discussed some possible reasons for 

these controversial findings, namely differences in 
cohorts, the use of different panels of methylated 
markers, the use of different criteria to define CIMP, 
and confounding factors such as BRAF mutation[71]. In 
a recent meta-analysis of CIMP prognostic value, both 
DFS and overall survival (OS) were shorter in patients 
with CIMP CRC after adjusting for age, sex, disease 
stage, and treatment; it was not possible to adjust for 
BRAF or KRAS mutation or MMR status since not all 
the studies assessed these possible confounders)[70]. It 
seems likely that when a CIMP serrated tumor shows 
MSI, the MSI acts to confer a good prognosis[71].

Recent studies have revealed a link between 
some methylated genes and patient prognosis. MLH1 
and MGMT methylation have been suggested to be 
predictors of good prognosis, in part due to the frequent 
absence of BRAF mutations in these subgroups of 
tumors. In contrast, hypermethylation of the p14 
(CDKN2AINK4a), RASSF1A, and p16 (CDKN2AARF) genes 
have been suggested to predict poorer prognosis 
independent of both stage and histological differentiation 
grade[74-76]. Aberrant methylation of genes encoding 
proteins involved in extracellular matrix remodeling also 
confers a worse prognosis, as does hypomethylation 
of LINE-1 in sporadic MSI CRC[77]. Hypomethylation 
of the IGF-2 gene and RAC1b overexpression are 
proposed markers of poor prognosis in KRAS/BRAF 
wild-type metastatic CRCs treated with FOLFOX as 
first-line therapy[78]. Finally, a mutated P1K3CA gene is 
associated with a worse survival rate in CRC with wild-
type BRAF. Alteration of P1K3CA is found in 10%-20% 
of cases with CIMP-H. It is currently unknown whether 
P1K3CA mutation defines a new subset of CRC[79]. 

Genetic variability can strongly influence patient 
outcome, highlighting the need for a new or more 
fine-tuned CRC classification system. Recently, two 

Figure 6  Polyp features according to location. Half of serrated adenocarcinomas (SACs) are located on the right colon. KRAS-mutated polyps are preferentially 
left-sided. However, polyps with BRAF mutations dominate those found on the right side of the colon. TSA: Traditional serrated adenoma; SSA: Sessile serrated 
adenoma.
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publications established 5 subtypes of CRC and 
described differences in survival according to the 
subtypes’ phenotypic characteristics. First, based 
on the classification system of Jass[80], Phipps et 
al[8] divided CRCs into MSI-H and MSS/MSI-L CRC. 
Later, this group further divided cases according to 
CIMP status and then by BRAF and KRAS mutation 
status. The final system describes 5 well-defined 
CRC subtypes (Table 1). Among the subtypes, the 
highest survival was found for subtype 5, which 
is characterized by non-CIMP MSI CRC with wild-
type BRAF and KRAS; this is also known as familial 
MSI CRC or Lynch syndrome. Conversely, the worst 
prognosis was found for subtype 2, which is CIMP-
positive MSS/MSI-L CRC with BRAF mutations and 
wild-type KRAS. Subtype 2 has the lowest probability 
of being diagnosed as stage Ⅰ disease and shows the 
worst 5-year DFS. Interestingly, subtypes 1 and 2 are 
very similar, with the MSI status of subtype 1 being 
the only difference between them.

Sinicrope et al[9] proposed a similar classification 
system based on patients with stage Ⅲ CRC. This 
group also divided CRC into 5 subgroups, each of 
which was compared to subtype 4 (MSS CRC with 
wild-type BRAF and KRAS, representing the classic 
CIN pathway). The subtypes with MSI have the best 
prognosis, followed by subtype 5 (which is identical 
to the Phipps subtype 5) and subtype 1. Regardless 
of BRAF mutation status, MSI confers relatively 
good DFS in subtype 1 CRC. In contrast, subtypes 2 
and 3 do not differ in terms of prognosis, but their 
prognosis differs from that of subtype 4. As in Phipps’ 
classification, subtype 2 (CIMP-H MSS CRC with wild-
type KRAS and mutant BRAF) shows the worst survival 
rate. KRAS mutation alone, with no other apparent 
genetic alterations, is the major alteration in subtype 3, 
representing an alternative subset of CRC that arises 
via the serrated pathway. Its prognosis is 1.5-times 
worse than that of subtype 4 (Table 1). 

These findings illustrate the importance of classi-
fication based on genetic profiling and could improve 

our understanding of patient prognosis and disease 
management.

RESPONSE TO CHEMOTHERAPY
The current trend is towards offering treatment 
that is individualized according to CRC subtype. The 
most recent advances in CRC are leading to novel 
approaches and classification schemes, and it is 
attractive to think that a particular therapy can be used 
to target a particular type of CRC, including serrated 
tumors. Unfortunately, CT is not yet fully guided by 
the combination of genetic alterations in a CRC, and 
even the most recent studies have not assessed 
specific therapeutic management strategies for each 
subtype. Additional clinical trials are needed to address 
this. As of now, decisions must be based on studies 
that evaluated the responses according to individual 
markers (Table 2). 

KRAS mutations have mainly been studied in 

Table 1  Proposed[80] colorectal cancer classification

MMR CIMP BRAF KRAS

Phipps
   Subtype 1 MSI-H + + -
   Subtype 2 MSS or MSI-L + + -
   Subtype 3 MSS or MSI-L - - +
   Subtype 4 MSS or MSI-L - - -
   Subtype 5 MSI-H - - -
Sinicrope
   Subtype 1 MSI + + +/-
   Subtype 2 MSS +/- + -
   Subtype 3 MSS +/- - +
   Subtype 4 MSS +/- - -
   Subtype 5 MSI - - +/-

Based on the classification system proposed by Jass[80], Phipps et al[8] and 
Sinicrope et al[9] proposed new colorectal cancer (CRC) divisions to better 
stratify disease based on prognosis. (+): Mutated; (-): Wild-type.

Table 2  Summary of the treatment implications of genetic 
alterations in colorectal cancer 

Molecular 
marker

Implications for CRC treatment

KRAS 
mutation

Broadly studied in metastatic CRC
The most predictive biomarker for no response to anti-
EGFR, either alone or with CT
Worse OS when oxaliplatin is the first-line treatment
Irinotecan efficacy is controversial; it may have better 
effects in stage Ⅱ and Ⅲ CRC

BRAF 
mutation

Overall, no predictive power for CT response
No predictive power for response to 5-FU plus irinotecan/
oxaliplatin or to 5-FU alone in stage Ⅱ disease
A trend toward better survival with 5-FU plus irinotecan in 
stage Ⅲ disease
Effects of anti-EGFR therapy are controversial, although 
most studies show a poor response
Some studies show no differences in OS/DFS with FOLFOX-
panitumumab or with FOLFIRI-cetuximab treatment
Resistance to BRAF inhibitors

CIMP CT results are controversial
5-FU improves DFS and OS in some studies; in others, 
survival is reduced
One study shows the benefits of 5-FU plus irinotecan in 
CIMP tumors after stratification by MMR status. CIMP was 
more strongly associated than MMR status with a better 
response to irinotecan
The use of 5-FU in CIMP tumors is not currently 
recommended
To date, no clinical trials have evaluated the response of 
CIMP tumors to anti-EGFR therapy

MMR Prognosis is intrinsically better for MSI CRC, but MSS 
tumors show a better response to CT
5-FU improves both DFS and OS in stage Ⅱ and Ⅲ MSS 
CRC but not in MSI CRC
CT should only be given for stage Ⅱ MMS tumors if a high 
risk factor such as T4 local extension is present
MSI CRC shows a good response to irinotecan if BAX 
expression has been lost

CT: Chemotherapy; DFS: Disease-free survival; anti-EGFR: Epidermal 
growth factor receptor antibodies; OS: Overall survival; CRC: Colorectal 
cancer; MMR: Mismatch repair.
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metastatic CRCs. In the QUASAR study, KRAS was 
not a negative predictive factor for the response to 
standard CT based on 5-Fluoruracil (5-FU) and folinic-
acid[81]. However, the major characteristic of mutant 
KRAS remains its resistance to anti-EGFR monoclonal 
antibodies: it is the most important predictive marker 
in terms of the response to panitumumab and cetu-
ximab, either alone or in combination with CT. This 
finding, which was confirmed in a meta-analysis[82], is 
valid for CRC with any inactivating KRAS mutation. It 
is also possible that the presence of KRAS mutations 
plus other alterations in NRAS, exons 3 and 4, PIK3CA, 
PTEN, and BRAF may influence CT resistance. In fact, 
Tian et al[83] found that a significant response to anti-
EGFR was possible when KRAS, BRAF, and PIK3CA 
were all wild-type, but not when any one of them was 
mutated. It is currently standard practice to investigate 
KRAS status in order to predict the response to anti-
EGFR in metastatic CRC.

BRAF mutation has also been widely studied, but 
its role as a predictive marker remains unclear. BRAF 
has repeatedly been described as a non-predictive 
biomarker in CRC treated using standard CT. When 
CRCs with V600EBRAF were treated with 5-FU plus 
irinotecan or oxaliplatin, BRAF did not correlate with 
either a positive or negative response[84]. Nonetheless, 
there was a slightly non-significant trend toward better 
survival in stage Ⅲ CRC when irinotecan was added 
to a 5-FU/leucovorin regimen[85]. Notably, regarding 
the response to other drugs, both a null predictive 
value and a poor response to anti-EGFR have been 
reported for CRC with mutant BRAF[65]. BRAF did not 
show predictive power in the OPUS or CRYSTAL trials, 
which used FOLFIRI ± cetuximab[86,87]. The PRIME study 
reported similar results with FOLFOX4 ± panitumumab 
treatment[88]. Regarding the poor response, Di 
Nicolantonio et al[89] found that KRAS-/BRAF+ CRC 
showed a 0% response rate to anti-EGFR in second or 
subsequent lines of treatment; in contrast, the response 
rate was 32% in KRAS-/BRAF- CRC. Loupakis et al[90] 
reported a similar response rate with irinotecan plus 
cetuximab. A meta-analysis that included these last two 
studies as well as other studies comparing metastatic 
CRC with mutated vs wild-type BRAF concluded 
that the response to anti-EGFR could be considered 
poor in tumors with mutant BRAF[91]. However, other 
studies did not find differences in the responses of 
CRCs with BRAF mutation vs wild-type BRAF after 
treatment with cetuximab, capecitabine, oxaliplatin, and 
bevacizumab[92,93]. Thus, to summarize, the use of BRAF 
mutation status as a predictive marker of the response 
to EGFR-targeted treatment remains controversial. 

BRAF inhibitors such as vemurafenib and dabra-
fenib show good efficacy in melanoma. Silencing 
of V600EBRAF correlates with an increase in epithelial 
differentiation, in CDX-2 and claudin-1 expression[94,95], 
and in cellular adhesion. However, experiments in cell 
lines demonstrate that CRCs are intrinsically resistant 

to BRAF inhibition. This resistance may be dependent 
or independent of the ERK MAPK signaling pathway. 
Activating PIK3CA and AKT1 mutations and the loss 
of PTEN function have been proposed as possible 
mechanisms that underlie this resistance[82,96,97]. 
CRAF may also be involved. Recently, better growth 
inhibition was observed when BRAF inhibitors were 
used in combination with anti-EGFR monoclonal 
antibodies. Treatment with an anti-EGFR agent (like 
cetuximab) or a tyrosine-kinase inhibitor (such as 
erlotinib or gefitinib) plus a BRAF inhibitor results in 
sustained MAPK pathway suppression[98,99]. Different 
combinations of vemurafenib, erlotinib, capecitabine 
and/or bevacizumab, and cetuximab and/or irinotecan 
have shown better responses than vemurafenib 
alone[100]. Moreover, using vemurafenib plus anti-
EGFR could improve clinical efficacy[101]. In fact, a pilot 
trial with 15 patients is ongoing, and the results look 
promising[102]. Simultaneous inhibition of the BRAF 
and PIK3 cascades shows a trend towards tumor 
regression in both mouse and human cell cultures. 
Ongoing studies are assessing triple combination 
therapy (i.e., inhibition of BRAF, EGFR, and PIK3CA).

A different question regarding serrated CRCs 
concerns the response of CIMP tumors to the different 
CT options. To date, several studies have reported 
conflicting results. The hypothesis that CIMP cancers 
inhibit gamma-glutamyl hydrolase, thus enhancing 
intracellular folate levels and modulating a better 
response to 5-FU, suggested that these CRCs would 
benefit from adjuvant CT regimens[103-107]. Juo et 
al[70] published the first meta-analysis to address this 
matter. The meta-analysis identified 7 studies that 
evaluated the response of serrated CRC to CT as 
adjuvant therapy after surgical resection. Some of the 
studies described the benefits of 5-FU in both stage Ⅱ 
and Ⅲ CRC. Van Rijnsoever et al[108] found higher DFS 
in patients treated with 5-FU compared with patients 
that received surgical resection alone, as did Donada 
et al[109] who looked at stage Ⅱ CRC. However, Jover 
et al[110] described a significant response to 5-FU in 
terms of DFS in stage Ⅱ and Ⅲ non-CIMP CRCs 
but not in CIMP CRCs. Two studies found that CIMP 
status had non-significant predictive value in terms 
of 5-FU treatment. Kim et al[111] compared a FOLFIRI 
regimen in non-CIMP vs CIMP metastatic CRC, while 
Han et al[112] investigated patients with stage Ⅱ and 
Ⅲ disease treated with a FOLFOX combination. A total 
of 4 studies reported that CT was beneficial in these 
patients, whereas 2 found non-significant results and 1 
concluded the opposite. In a study that was not part of 
the meta-analysis, Wang et al[113] also found worse DFS 
rates when 5-FU was given to CIMP-positive tumors, 
in agreement with the findings of Jover’s study. 
Shiovitz et al[114] also analyzed OS with irinotecan 
therapy. They compared 5-FU plus leucovorin with 
and without irinotecan in stage Ⅲ CRCs and found a 
non-significant trend towards better survival with the 
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triple combination. In addition, patients with CIMP 
tumors seemed to benefit more after the tumors were 
stratified according to MSI status. It could be due to 
the better prognosis associated to unstable tumors, 
but further explanations regarding this are needed. 
Moreover, in this study, CIMP status was more strongly 
associated with the response to irinotecan than was 
MMR status. 

These conflicting results may be due in part to 
differences in definitions, gene panels, CIMP marker 
thresholds, and laboratory techniques used to assess 
CIMP status. Currently, the National Comprehensive 
Cancer Network (NCCN) treatment guidelines for colon 
cancer (version 3) do not recommend the use of CT for 
stage Ⅱ (T2N0M0) CIMP cancers[115]. Because of these 
controversial results, the predictive value of CIMP 
status regarding treatment with 5-FU remains unclear, 
and more randomized clinical trials are needed. 

Finally, the role of MMR status in predicting the 
response to CT has been studied extensively[116,117]. 
Several studies have established that MSI tumors have 
an intrinsically better prognosis than MSS tumors. 
Jover et al[118] analyzed OS and DFS in a cohort of 505 
patients with stage Ⅱ or Ⅲ CRC according to their 
MMR status after receiving 5-FU. MSS CRCs showed 
improved DFS and OS, but no improvement was seen 
in MSI CRCs[102,119]. These differences remained after 
multivariate analysis controlled for the TNM stage, 
age, and sex. A prospective study by Sargent et al[119] 
had similar findings and suggested that cancers with 
MSI do not benefit from 5-FU adjuvant CT. However, 
the decision to treat stage Ⅱ MSS or MSI-L cancers 
should be based on high risk factors such as T4 tumor 
status, perforation, and obstruction, among others. 
The response to irinotecan was also assessed in MSI 
CRC. There was a better response when the tumor had 
lost BAX expression, and the author proposed that this 
was by far the best criterion for predicting efficacy[120]. 
Current management may include the addition of 
irinotecan or oxaliplatin, but more studies are needed 
to evaluate different combinations of CT for MSI CRC. 

FUTURE DIRECTIONS
This review enhances the current change of mind 
about CRC. The concept of a unique model of car-
cinogenesis is obsolete and the consideration of 
pathogenesis of CRC as only three possible pathways 
is changing. In the recent years, a lot of publications 
about several aspects, from molecular and genetic 
discoveries to pathologic classifications, have seen the 
light. Current trends seem to guide to new approaches 
of CRC in many aspects. Great disparity in clinical 
trials in prognosis and response to treatment has 
taken place among last years. In fact, it seems to have 
more than twenty-five genetic alterations to date, 
and increasingly. Some authors have understood the 
problem and are making new classifications basing 
on prognostic implications. Even, it’s possible that 

CRCs following the serrated pathway are divided into 
more genotypes in the near future. The complete 
understanding of molecular pathways is the first 
necessary step. 

Many efforts are necessary to get many consen-
suses, like about the definition and method of 
assessing CIMP phenotype and the possibility of 
treating CRCs with mutant BRAF when no lymph 
nodes are found. Randomized clinical trials evaluating 
response to different CTs, drugs as EGFR-ab and 
other biologic treatments should take place to clarify 
their paper on serrated cancers. After that, assessing 
response to each subtype, it shall be possible to 
establish a more individualized prognosis and therapy 
to each patient.
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