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Abstract

Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of
neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15
years old, we tested the possibility that there exists parallel variations in the structural and functional development of neu-
ral systems supporting face processing. By combining measures of task-related functional connectivity and brain morph-
ology, we reveal that both the structural covariance and functional connectivity among ‘distal’ nodes of the face-processing
network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing
functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance.
This demonstrates a tight coupling between functional and structural maturation within the face-processing network.
Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-
processing performance, particularly in females. We suggest that our findings reflect greater integration among distal
elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced
extraction of social information from faces during a time when greater importance is placed on social interactions.
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Introduction

Face processing plays a fundamental role in social behaviour.
Faces inform us about others’ identity, sex, and age (Todorov
et al., 2008), and facial expressions provide insights into the
mental and emotional states of persons present in our social
space. This allows us to moderate our own behaviour

accordingly. Face processing continues to develop between
childhood and adulthood (Germine et al., 2011; Johnston et al.,
2011; Tottenham et al., 2011), a protracted developmental tra-
jectory that parallels brain maturation at this time (Giedd and
Rapoport, 2010; Lebel and Beaulieu, 2011). Investigating such a
developmental brain–behaviour relationship in the context of
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face processing may help us understand the maturation of
other socio-cognitive neural systems (Cohen Kadosh, 2011;
Scherf et al., 2012).

Human faces present to others a vast array of social cues, and
require various processing skills that emerge along different de-
velopmental trajectories. Face recognition reveals both qualitative
and quantitative maturity during early development; even at 4
years of age, face individuation involves the same underlying
mechanisms (e.g. holistic processing) and reaches levels of effi-
ciency comparable to those observed in adults (for a comprehen-
sive review, see McKone et al., 2012). In contrast, although
children exhibit qualitative similarities to adults when identifying
emotional facial expressions (e.g. confusion between fear and sur-
prise; Gagnon et al., 2009), performance improves dramatically be-
tween childhood and adolescence (e.g. Johnston et al., 2011;
Tottenham et al., 2011). Interestingly, sex differences in face pro-
cessing also emerge during childhood; females are not only
quicker and more accurate than males in face detection—the ini-
tial stage of face processing (McBain et al., 2009), they also show an
advantage when discriminating among facial emotional expres-
sions (for reviews, see Herba and Philips, 2004; McClure, 2000). The
task now is to understand the neural mechanisms giving rise to
these developmental events.

Face processing engages a widely distributed set of neural
systems (Haxby et al., 2000). Using functional magnetic reson-
ance imaging (fMRI), we have measured brain responses to dy-
namic facial expressions in 1,110 typically developing
adolescents (13.5–15.5 years old) and created probabilistic maps
of the network engaged by these stimuli (Tahmasebi et al.,
2012). This revealed a diffuse collection of regions in the adoles-
cent brain that express a high probability of fMRI response to
ambiguous expressions, including extra-striate and prefrontal
cortical structures. On the basis of inter-individual variations in
the functional-connectivity profiles of these regions, we have
termed these the ‘obligatory’ and ‘optional’ nodes of the adoles-
cent face-processing network (Dickie et al., 2014), respectively.
This delineation converges closely with what has become
known as the ‘core’ and ‘extended’ systems of the adult face-
processing network (Haxby and Gobbini, 2010), the integration
of which is suggested to be necessary for facial expression per-
ception (see Said et al., 2011).

Developmental neuroimaging studies have focused typically
on the maturation of individual nodes of the adolescent face-pro-
cessing network (e.g. Golarai et al., 2007; Scherf et al., 2007;
Cantlon et al., 2011). A shift of focus can be observed in recent
studies, however, which investigate the development of their
functional connectivity (Cohen Kadosh et al., 2011; Pfeifer et al.,
2011; Joseph et al., 2012; Gee et al., 2013). These studies have
shown that although the various neural systems that mediate
face processing come ‘online’ in the early stages of childhood (e.g.
Cantlon et al., 2011), their integration into a mature functional net-
work occurs gradually throughout adolescence (Johnson et al.,
2009; Cohen Kadosh, 2011). Such gradual tuning of the functional
organization within the face-processing network during adoles-
cence parallels the protracted structural development of its con-
stituent brain systems during this time (Giedd and Rapoport,
2010). This supports the notion of interplay between structural
and functional brain development; although brain morphology
will constrain the initial spatial and temporal dynamics of brain
function, neural activity has the potential to exert co-ordinated in-
fluences on the structural properties of two distant yet function-
ally connected brain regions (Honey et al., 2010; Power et al., 2010).
Such a developmental relationship between brain structure and
function would explain the spatial overlap between networks of

functional connectivity and patterns of age-related changes in
grey-matter (GM) covariance observed between childhood and
adolescence (Zielinski et al., 2010; Raznahan et al., 2011).

In this light, the protracted development of face-processing
ability likely reflects interplay between functional and structural
maturational events that, together, shape an integrated face-pro-
cessing network. Consistent with this view, recent studies report
that age-related improvements in face-processing performance
during childhood and adolescence are associated with develop-
ments in brain function and structure (Cohen Kadosh et al., 2013;
Scherf et al., 2014). Further, given the known sex differences in fa-
cial expression recognition (e.g. Collignon et al., 2010; Tottenham
et al., 2011; see also Scherf et al., 2012), such structure–function
relationships may unfold differently in girls and boys. To our
knowledge, however, no study has examined simultaneously the
functional and structural ‘integration’ of the face-processing net-
work during this age range, and its relationship with the matur-
ation of relevant behaviours.

Combining behavioural measures with structural and
functional MRI data, the present study set out to investigate the
relationship between developments in face-processing per-
formance and developmental changes in GM covariance and
functional connectivity throughout the adolescent face-pro-
cessing network. To measure developmental brain–behaviour
relationships, we collected these data longitudinally from ado-
lescents aged 10, 11.5, 13 and 15 years old. fMRI data were
acquired as they observed passively videoclips of dynamic facial
expressions (Grosbras and Paus, 2006). We have shown this
paradigm to be highly effective in eliciting strong and reliable
brain responses throughout a network implicated in face-pro-
cessing (Grosbras and Paus, 2006; Tahmasebi et al., 2011).
Furthermore, by using this task we have identified various fac-
tors that influence the brain response to faces; this includes
genetic variations (Dickie et al., 2014), hormonal influences
(Mareckov�a et al., 2014), sex differences (Schneider et al., 2011;
Tahmasebi et al., 2011), and developmental events in both
localized (Shaw et al., 2012) and distributed brain systems
(Shaw et al., 2011). By combining multivariate network meas-
ures of brain structure and function with behavioural assess-
ments, we were able to investigate the relationship between
neurodevelopmental trajectories and the ability to extract infor-
mation from faces.

Methods
Adolescents

As part of a longitudinal study, 65 adolescents (33 males) were
assessed at four time points. Despite excluding children with
braces when recruiting the original sample at Visit 1, it was un-
avoidable that many wore braces during at least one of the three
subsequent time points. As the multivariate analyses we
applied to the neuroimaging data demand balanced numbers,
from this original sample we excluded 7 adolescents (4 males)
due to attrition and a further 20 (8 males) due to imaging-related
factors caused by braces at one or more follow-up visits. As
such, all the analyses described below were applied to data
from 38 adolescents (21 males; 19 right-handers), each scanned
at all four visits. The average age was 10 years (119 months;
s.d.¼ 4.9 months; range¼ 113–129 months) at Visit 1; 11.5 years
[138 months; s.d.¼ 5.2; range¼ 132–148; mean time inter-
val¼ 18.5 (s.d.¼ 1.9) months] at Visit 2; 13.1 years [157 months;
s.d.¼ 5.7 months; age range¼ 146–168 months; time inter-
val¼ 18.9 (s.d.¼ 2.5) months] at Visit 3; and 15 years [180
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months; s.d.¼ 7.5; range¼ 167–199; mean time interval¼ 23
(s.d.¼ 5.6) months] at Visit 4.

All participants were confirmed to be healthy, typically de-
veloping children presenting no symptoms of psychiatric, de-
velopmental, or medical disorders. There was no evidence of
neurological disorder, as assessed by the Quick Neurological
Screening Test (Mutti et al., 1978), nor any signs of behavioural
problems, measured with the Child Behaviour Checklist
(Achenbach and Ruffle, 2000); all adolescents demonstrated typ-
ical physical development, as determined by the Pubertal
Development Scale (Peterson et al., 1988) completed upon each
visit; and the sample exhibited typical scores of full-scale IQ, as-
sessed with the Wechsler Intelligence Scale for Children (WISC-
III and WISC-IV, alternated between visits; Wechsler, 1949), and
a reading ability no more than 2 years below the grade-

appropriate level (Woodcock et al., 2001). Each participant re-
ported English as their dominant language, and all had normal
or corrected-to-normal vision. Demographic data for the final
sample are presented in Table 1. Informed consent was ob-
tained from the parents, together with assent from the adoles-
cents themselves. The study was approved by the Research
Ethics Board of the Montreal Neurological Institute (MNI).

Stimuli

The analyses of functional connectivity presented below were
applied to a section of fMRI data acquired as participants
observed passively silent grey-scale video clips depicting angry
or ambiguous (e.g. nose twitching) facial expressions. We
referred originally to the latter stimuli as ‘neutral’ faces
(Grosbras and Paus, 2006), but for consistency we use the same
‘ambiguous’ term here as that employed by Tahmasebi et al.
(2012) who used the same stimuli. Each type of facial expression
was presented separately in 18 s blocks (seven or eight videos
per block) for a total of five blocks in a single scanning session.
Our group has shown the effectiveness of these stimuli pre-
sented in this sequence to engage strongly many neural sys-
tems involved in face processing (e.g. Shaw et al., 2012; Dickie
et al., 2014). The 5 blocks of angry and ambiguous face stimuli
were presented pseudo-randomly amongst 10 control blocks of
non-biological motion, consisting of concentric circles that ex-
panded and contracted at varying speeds and contrasts.
Example snapshots are presented in Figure 1. Adolescents were
instructed to attend closely to the video clips so that they could
answer questions about the stimuli after the scan. An informal
post-scanning recognition test confirmed that all individuals
could recognize a subset of 10 experimental facial expressions
from a set of 14 clips (four oddballs).

Imaging protocol

Scanning was performed on a 1.5T Siemens (Erlanger, Germany)
Sonata scanner. A high-resolution T1-weighted structural
image (matrix 256� 256� 160; 1 mm3 voxels) was first acquired
for anatomical localization and co-registration with the func-
tional times-series. The time-series consisted of 180 T2*-
weighted, gradient-echo, echo-planar BOLD images (matrix
64� 64� 32; 4 mm3 voxels; TR¼ 3 s; TE¼ 50 ms) collected after

Table 1. Demographic data for adolescents included within the final sample of 38

Visit Age Pubertal stage WISC W-J III CAT

3Facesinv Affectinv Identityinv

Males
1 120.0 (61.0) 1.6 (60.2)21 113.1 (62.4) 130.3 (68.8) 5738.82 (6261.52) 3937.66 (6213.10) 5141.75 (6370.19)
2 138.1 (61.1) 2.0 (60.2)21 111.1 (61.4) 164.6 (610.0) 5660.41 (6288.33) 3695.21 (6187.07) 4098.00 (6304.74)
3 157.8 (61.2) 2.8 (60.2)19 116.7 (62.1) 190.3 (611.4) 5064.88 (6228.61) 2878.37 (6114.00) 3213.56 (6172.03)
4 179.7 (61.4) 3.6 (60.1)18 113.9 (62.5) 212.6 (69.8) 4931.18 (6227.27) 2860.21 (6102.34) 3173.12 (6165.78)

Females
1 119.0 (61.3) 2.4 (60.2)16 115.8 (62.4) 158.1 (65.7) 6344.41 (6399.34) 4417.18 (6307.67) 4899.10 (6324.52)
2 137.9 (61.4) 2.9 (60.2)15 112.4 (62.3) 181.4 (68.6) 5652.92 (6250.04) 3663.36 (6240.34) 3725.46 (6253.90)
3 155.9 (61.5) 3.9 (60.1)14 119.2 (63.2) 216.7 (68.8) 4840.72 (6240.10) 2847.21 (6133.01) 3125.36 (6216.14)
4 180.4 (62.2) 4.1 (60.1)10 117.2 (62.3) 244.2 (67.1) 5135.29 (6293.00) 2634.57 (6145.93) 2794.90 (6184.66)

Notes: Values present means (6standard error). Puberty, Tanner stage (Marshall and Tanner, 1969), as assessed by the Puberty Development Scale (Peterson et al., 1988;

1 ¼ pre-pubertal, 2 ¼ beginning puberty, 3 ¼mid-puberty, 4 ¼ advanced puberty, 5 ¼ post-pubertal); WISC, Wechsler Intelligence Scale for Children (versions III and IV

were alternated between visits; values present full-scale IQ); W-J III, Woodcock-Johnson (values present age equivalency for spelling comprehension); 3Facesinv,

Affectinv and Identityinv, inverted efficiency scores for the Three Faces Test, Affect and Identity Discrimination, respectively. Tanner stages were not collected from all

adolescents, so subscripts indicate the number of subjects contributing to the mean value.

Fig. 1. Snapshots of dynamic Ambiguous and Angry facial expression stimuli.

Adapted with permission from Grosbras and Paus (2006).
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the gradient had reached steady-state. Each slice was oriented
parallel to a line connecting the base of the cerebellum to the
base of orbitofrontal cortex, covering the whole brain.

Regions of interest

We applied our multivariate analyses to structural and fMRI
data extracted from 25 regions of interest (ROIs). Twenty-one of
these interrogated ROIs correspond to the brain regions demon-
strating a high probability (>50%) of fMRI response to the am-
biguous facial expressions, as defined in the probabilistic map
computed by Tahmasebi et al. (2012) using the exact same stim-
uli in a sample of 1100 adolescents. For completeness, in the
present analyses we included four (low probability) contra-
lateral homologues of (high probability) unilateral ROIs featur-
ing in this probability map; hence a total of 25 ROIs. Table 2 lists
all ROIs involved in the current analyses.

Pre-processing

The neuroimaging data were pre-processed with tools packaged
within FMRIB’s software library (FSL; Jenkinson et al., 2012).

Structural data

As we were interested in both cortical and sub-cortical struc-
tures, we chose regional GM volumes, rather than cortical
thickness, as our metrics (see Winkler et al., 2010). To measure
GM volume, individual T1-weighted anatomical MR images

were pre-processed using a selection of utilities comprising
FSL’s optimized voxel-based morphometry pipeline (see Good
et al., 2001). This involves firstly the removal of non-brain tis-
sue (Smith, 2002), automated tissue segmentation (Zhang
et al., 2001), and non-linear registration to the MNI-152 tem-
plate (Anderson, 2010). The resulting GM images are then aver-
aged and flipped along the x-axis to create a left-right
symmetric, study-specific template. Second, all native GM
images were non-linearly registered to this study-specific tem-
plate and ‘modulated’ to correct for local expansion (or con-
traction) due to the non-linear component of the spatial
transformation. Finally, the modulated GM partial-volume
maps (GM-PVMs) were smoothed by a Gaussian kernel [full-
width half-maximum (FWHM)¼ 8 mm]. This FSL pipeline has
been shown to produce results that converge closely with
those of an SPM voxel-based morphometry analysis, and com-
plement those from tract-based spatial statistics (Douaud
et al., 2007).

The resulting GM-PVMs at each time-point were registered
to standardized space in a process we describe in Sutherland
et al. (2012)—a registration procedure that leaves regional
(non-linear) variations in GM intact. Finally, the registered GM-
PVMs were smoothed by a Gaussian kernel (FWHM ¼ 8 mm).
For every adolescent and at each visit, we then extracted from
these pre-processed GM-PVMs the mean GM partial volume
across all voxels comprising each of our 25 ROIs. It is these re-
gional GM values that were entered into the covariance ana-
lyses (see below).

Table 2. Co-ordinates of voxels with peak probability of fMRI response to the ambiguous facial expressions used as stimuli, as derived in an in-
dependent cross-sectional sample of 1,110 adolescents (Tahmasebi et al., 2012)

No. Label Hemisphere Lobe MNI coordinate Prob. value (%) Extent (mm3)

x y z

1 MVL-FC Left Frontal �42 27 �3 64 12,150
2 MVL-FC Right Frontal 53 27 �3 100 10,989
3 MDL-FC Left Frontal �45 15 22 100 19,251
4 MDL-FC Right Frontal 46 20 20 100 25,110
5 PMC Left Frontal �48 0 51 45 4401
6 PMC Right Frontal 51 5 46 100 14,715
7 Pre-SMA Frontal 6 12 63 96 12,312
8 Rhinal Sulcus Left Temporal �39 �6 �42 46 3752
9 Rhinal Sulcus Right Temporal 42 �6 �42 64 7101
10 Anterior STS Left Temporal �54 3 �18 54 11,799
11 Anterior STS Right Temporal 55 9 �24 100 13,743
12 Post. STS Left Temporal �54 �51 9 100 27,135
13 Post. STS Right Temporal 56 �42 7 100 44,307
14 FFA Left Occipital �40 �49 �22 100 10,368
15 FFA Right Occipital 42 �49 �23 100 11,313
16 LOC Left Occipital �45 �84 �12 86 9585
17 LOC Right Occipital 47 �78 �8 100 9801
18 V2–V3 Left Occipital �24 �99 0 78 8154
19 V2–V3 Right Occipital 24 �99 0 78 7803
20 Cerebellum Left �18 �78 �36 100 20,520
21 Cerebellum Right 18 �78 �39 57 7182
22 Putamen Left �21 3 6 31 1377
23 Putamen Right 21 6 6 57 2268
24 Amygdala Left �18 �9 �15 96 11,799
25 Amygdala Right 22 �8 �14 100 11,745

Notes: The far right-hand column shows the real-world size of each ROI, from which we calculated the mean functional and GM values used in the present analyses.

Grey rows correspond to (low-probability) ROIs interrogated in the present analysis but not included in the original maps of Tahmasebi et al. (2012). MVL-FC, mid-

ventrolateral frontal cortex; MDL-FC, mid-dorsolateral frontal cortex. Adapted with permission from Tahmasebi et al. (2012).
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Functional data

The fMRI data collected at each visit from all 38 adolescents
comprising the final sample were motion corrected using
MCFLIRT (Jenkinson et al., 2002). Given the detrimental effect of
residual motion artefacts on measures of functional connectiv-
ity (Van Dijk et al., 2011; Power et al., 2015), and the confounding
influence this can have when measuring age-related changes in
functional connectivity (Satterthwaite et al., 2012), we also
minimized any motion-related signal remaining after motion
correction. Using MELODIC (Beckmann and Smith, 2004;
Beckmann, 2012) we applied a probabilistic independent com-
ponent analysis (ICA) to decompose the time-series into 50 in-
dependent spatial and temporal components. Artefactual
components (e.g. residual motion-related signal, physiological
noise) were identified automatically with the Spatially
Organized Component Klassifikator (Bhaganagarapu et al.,
2013). Signal relating to these nuisance covariates was then re-
gressed out of the time-series using another FSL utility—fsl_reg-
filt. Estimates of framewise displacement before and after ICA
are presented in Supplementary Table S1.

Using FEAT v5.92, functional images were high-pass filtered
across time (Gaussian-weighted least-squares straight line fit-
ting; sigma¼ 50.0 s), and spatially smoothed using an 8.0 mm
FWHM Gaussian kernel. Time-series were intensity normalized
using grand-mean scaling of the entire 4D dataset by a single
multiplicative factor to minimize unspecific time effects. With
FLIRT, all individual time-series were registered to their corres-
ponding brain-extracted high-resolution anatomical image
using a rigid-body affine transformation; anatomical images
were registered to the MNI-152 standard space template; and
the pre-processed functional time-series were registered to
standardized stereotaxic space by combining both transform-
ation matrices. Finally, using masks derived from thresholded
(90%) standardized probabilistic maps of white-matter and cere-
brospinal fluid (http://www.loni.ucla.edu/ICBM/), any signal
related to these nuisance covariates was regressed from these
functional time-series.

For every adolescent and at each visit, we concatenated sep-
arately the mean-centred BOLD signal from all volumes
acquired during the five blocks of each facial expression. We
then extracted the mean concatenated time-series across all
voxels comprising each of our 25 ROIs. Correlating these time-
series among all pairs of ROIs produced two 25� 25 auto-
correlation matrices for each subject at every visit—one for the
Ambiguous- and one for the Angry-face blocks.

Statistical analyses: Partial Least-Squares of GM and
BOLD signal

As only one (mean) value of GM is extracted from each ROI for a
given adolescent at each visit, we calculated eight visit-specific
GM correlation matrices for all pairs of ROIs; specifically, four
matrices (Visits 1–4) each for males and females. We then pro-
duced the same eight mean functional correlation matrices for
each facial expression (Ambiguous and Angry). Subsequently,
these two sets of structural and functional correlation matrices
were subjected separately to Partial Least-Squares (PLS) analysis
(McIntosh et al., 1996; McIntosh and Lobaugh, 2004; Krishnan
et al., 2011)—a multivariate technique capable of extracting pat-
terns of structural or functional covariance among all 25 ROIs
and across all four visits for the two sexes. This allowed us to
explore the emergence of patterns of structural and functional
covariance across visits for the 38 adolescents, and if the same

or different developmental trajectories are expressed by males
and females.

In its current application, PLS computed a new cross-
correlation (cross-block) matrix, M, that defined the covariance
among the set of structural or functional matrices. Through
singular value decomposition of M emerged a set of latent vari-
ables (LVs), each of which identified a particular pattern of co-
variance among the input matrices (Krishnan et al., 2011). One
element of each LV contains numerical weights (silences) for
each visit, creating a ‘visit profile’ that represents the trajectory
of a given covariance pattern over time. The other element of
the LV—the ‘singular image’—identifies the cells of M (i.e. pair-
wise ROI correlations) that together covary according to the visit
profile. In other words, each LV identifies a pattern of covari-
ance among the pairwise correlations between ROIs that change
in a co-ordinated fashion across visits. In a variation of this un-
constrained, data-driven approach (herein referred to as ‘Mean-
centred PLS’), covariance among the input matrices is defined a
priori and tested against their measured covariance. Such a
‘Non-rotated PLS’ permits the testing of whether or not a
hypothesized pattern of covariance over time accounts suffi-
ciently for the observed covariance structure.

We performed PLS analyses within Matlab (Mathworks Inc.,
USA), incorporating 1000 permutations and 1000 bootstraps to
assess the significance of LVs (McIntosh et al., 2004).
Importantly, by treating Visits as multiple conditions among
which the ordering of participants was kept consistent, the
resampling procedure preserved the repeated-measures struc-
ture of the data.

Comprehensive Affect Test

To investigate developments in face-processing performance,
we examined scores on the Comprehensive Affect Test (CAT;
Froming et al., 2006) at each of the four visits. The CAT com-
prises 13 subtests, of which we selected those that involve face
processing: ‘Identity Discrimination’, requiring participants to
decide whether two portraits are of the same (or different) per-
son; ‘Affect Discrimination’, where the participant must decide
whether two portraits depict the same (or different) emotion;
and the ‘Three Faces Test’, whereby the participant identifies
which two of three portraits express the same emotion. All
three produce measures of both accuracy and response time
(RT), so for each we computed the inverse efficiency score to ac-
count for any speed-accuracy trade-off—RT divided by the pro-
portion of correct responses (Townsend and Ashby, 1983).

Results

Given the high number of adolescents excluded (due to braces
and attrition), we checked that we had not introduced a sam-
pling bias. Bonferroni-corrected non-parametric analyses con-
firmed equivalency between the 38 included and 27 excluded
adolescents: although we observed a nominally significant dif-
ference at Visit 4 for reading ability (Woodcock-Johnson III),
with adolescents included in the final sample scoring higher on
age-equivalency than those excluded [mean (6s.d.)¼ 222.58
(644.13) vs 220.50 (628.69) months, respectively; Z¼�2.92,
Pcorr¼ 0.04], there were no differences between any visit in
terms of IQ (Wechsler Intelligence Scale for Children; Z< 1.1,
Pcorr> 0.05) or any measure of CAT performance (Z< 1.6,
Pcorr> 0.05).
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Structural covariance

To identify time-varying patterns of structural covariance
across the sample of 38 adolescents, we applied a mean-
centred PLS analysis to the eight structural correlation matri-
ces (four visits per sex). We refer to this analysis as PLSstruct.
This revealed only two significant LVs. The first (P< 0.001)
identified a widely distributed pattern of inter-regional correl-
ations that distinguished between males and females across
all visits. This initial LV accounted for 35.34% of the cross-
block variance. As we were interested primarily in develop-
mental trajectories, we focused our attention on the second
significant LV (P¼ 0.044), which accounted for 24.05% of the
cross-block variance. Figure 2A presents the eight input matri-
ces on which PLSstruct was performed, and the visit profile and
bootstrapped singular image corresponding to this second LV.
The visit profile illustrates that this LV identified a marked
change in GM co-variance from Visit 1 to 4, and delineated be-
tween a linear and step-like trajectory for males and females,
respectively. The bootstrapped singular image identifies two
sets of cells that vary according to these sex-specific trajecto-
ries in an orthogonal fashion: positive saliences identify pair-
wise correlations that vary across visits in a fashion correlated
positively with the visit profile {e.g. ‘increasing’ GM covariance
between extra-striate [lateral occipital cortex (LOC), fusiform
face area (FFA)] and frontal cortices [pre-supplementary motor
area (pre-SMA), premotor cortex (PMC)]}; negative saliences
represent pairs of ROIs between which GM covariance follows
a trajectory across visits that is correlated negatively with this
visit profile (e.g. ‘decreasing’ covariance between extra-striate
and cerebellar cortices).

Functional connectivity

To detect developmental changes in functional connectivity,
we applied the same mean-centred PLS analysis to each set of
eight functional-connectivity matrices generated by concate-
nating the blocks of each facial expression. Applying this ana-
lysis to the Ambiguous functional-connectivity matrices,
referred to herein as PLSfunc, revealed a single significant LV
(P¼ 0.039) accounting for 34.34% of cross-block variance. As
presented in Figure 2B, the visit profile for this LV revealed a
large change from Visit 1 to 4, but this time following linear
and cubic-like visit-related trajectories for males and females,
respectively. The corresponding bootstrapped singular image
identifies pairwise correlations that covary according to these
sex-specific trajectories. Interestingly, a number of ROIs
among which pairwise correlations expressed this develop-
mental change in covariance across the 38 adolescents over-
lapped with those expressing the analogous trajectory for
structural covariance (compare Figure 2B with 2A); we
observed this pattern of increasing functional connectivity be-
tween ROIs within the extra-striate [LOC, FFA and posterior su-
perior temporal cortex (STS)] and frontal (pre-SMA, PMC and
mid-ventro-lateral PFC) cortices, respectively. As these long-
range connections emerging from both PLSstruc and PLSfunc in-
tegrate ‘obligatory’ and ‘optional’ nodes, we refer to them as
the ‘obligatory-optional sub-network’ herein. Importantly,
applying the same PLS analysis to the eight Angry-face func-
tional-connectivity matrices revealed no significant LVs; as
shown in Supplementary Figure S1, no reliable visit- or sex-
related pattern of covariance between ROIs was identified in
response to these stimuli.

Structure–function integration

To assess formally the inter-dependence between the
development of structural and functional covariance within the
face-processing network, we investigated whether the develop-
mental trajectory of each property was related to that of the
other. To do so we performed separate non-rotated PLS ana-
lyses on the sets of structural and functional correlation matri-
ces, testing whether the saliences of the visit profiles emerging
from the previous PLS analysis of one could be used to repro-
duce the covariance structure of the other. First we applied the
saliences of the visit profile emerging from the second LV of
PLSstruc (Figure 2A) in a non-rotated PLS analysis of the eight
functional correlation matrices obtained by concatenating the
Ambiguous-face blocks—referred to herein as PLSstruc–func. This
allowed us to examine whether or not the developmental tra-
jectory shown by structural covariance accounted for the co-
variance among the functional connectivity matrices across
visits. This produced one significant LV (P¼ 0.048), which identi-
fied a pattern of functional covariance in response to the
Ambiguous-face stimuli that followed the exact same trajectory
across visits as structural covariance (see Figure 2C). This pat-
tern emerged among many of the ROIs comprising the ‘obliga-
tory-optional sub-network’; namely, sex-specific visit-related
increases occurred in pairwise correlations between extrastriate
(V2/V3, LOC, FFA, posterior STS) and frontal (mid-dorso- and
mid-ventrolateral, and PMC) cortices. Note that the reverse ana-
lysis was not true: applying the visit saliences emerging from
the PLSfunc analysis of the functional connectivity matrices
from the Ambiguous-face blocks in a non-rotated PLS analysis
applied to the structural correlation matrices yielded no signifi-
cant LV. Furthermore, no such structure–function relationship
was observed for functional connectivity measured during the
concatenation of Angry-face blocks (P¼ 0.134; see
Supplementary Figure S1).

CAT performance

Having identified parallel increases in structural and functional
covariance among an obligatory-optional sub-network of nodes
within the face-processing network, we set out to examine
whether the degree of their structural and/or functional integra-
tion is associated with face-processing performance. To do so
we employed two approaches: First we used linear mixed-
model regression to assess the longitudinal relationship be-
tween each behavioural measure and (i) functional connectivity
and (ii) structure–function integration among the pairwise cor-
relations defined by PLSfunc and PLSstruc–func, respectively.
Secondly, we examined differences in GM covariance among
the subset of ROIs identified by PLSstruc at each visit between
adolescents performing above or below the median in face-
processing performance.

For each behavioural measure, values greater or lesser than
3 s.d. from the mean were removed. For each adolescent, func-
tional connectivity at each visit was expressed as the mean
inter-regional correlation coefficient among all the ROIs com-
prising the ‘obligatory-optional’ sub-networks identified by
PLSfunc or PLSstruc–func. These two separate measures of func-
tional connectivity—‘Connectivityfunc’ and ‘Connectivitystruc–

func’—were entered independently into three mixed models,
one for each behavioural measure. The best-fitting model for
each measure was identified in a step-up manner (West et al.,
2007), whereby fixed and random effects were added sequen-
tially to a base model. A given effect was included in the final
model if it resulted in a significant decrease of the log-likelihood
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value, as determined by Chi-square comparisons at each step.
On this basis, all models included a random intercept and some
a random ‘Connectivity’ effect. Importantly, to assess whether
the measure of Connectivity was related to each behavioural
measure independently of the linear improvement with age,
Age was added as a fixed effect in all models. The contribution
of Sex or the Sex-by-Connectivity interaction was considered
only when the addition of these fixed effects improved model
fit. Finally, all models used an autoregressive covariance struc-
ture. All modelling was performed in SPSS v22.

CAT and functional connectivity.

Connectivityfunc was related to inverse-efficiency scores of
Identity Discrimination (Identityinv) independently of Age
[F(1,160.44)¼ 4.856, P¼ 0.029], but not with Affect [Affectinv;
F(1,97.55)¼ 2.990, P¼ 0.087] or the 3-Faces Test [3Facesinv;
F(1,197.55)¼ 0.061, P¼ 0.805]. There was no improvement in fit for
any of the models applied to Connectivityfunc when adding the

main effects of Sex or the Sex*Connectivityfunc interaction.
Connectivitystruc–func was not associated with Identityinv

[F(1,146)¼ 2.857, P¼ 0.093] or Affectinv [F(1,143)¼ 1.977, P¼ 0.162] in-
dependently of Age, and there was no increase in the fit of these
with the addition of fixed Sex or Sex*Connectivitystruc–func inter-
action effects. This latter measure of connectivity was related to
3Facesinv [F(1,144)¼ 4.226, P¼ 0.046], however. Moreover, the add-
ition of fixed Sex and Sex-by-Connectivitystruc–func interaction
effects improved the fit this model, with both fixed effects ac-
counting for a significant amount of variance [Sex:
F(1,144)¼ 4.885, P¼ 0.029; Sex*Connectivitystruc–func: F(1,144)¼ 4.499,
P¼ 0.036]. The regression coefficients corresponding to all sig-
nificant effects presented above are given in Table 3, and the
sex-specific association between Connectivitystruc–func and
3Facesinv is illustrated in Figure 3. It is important to note that
these relationships between Connectivity and behavioural per-
formance are not strong enough to survive a correction for mul-
tiple (six) comparisons. As such, these results must be
interpreted with caution (Figure 4).

Fig. 2. The process behind and results emerging from the PLS analyses. (A) The eight structural correlation matrices (top) were entered into a mean-centred PLS ana-

lysis (PLSstruc). This produced two LVs, the second of which comprised a ‘visit profile’ (middle) that revealed a large change in structural covariance between Visits 1

and 4 (V1–V4) and sex-specific trajectories. The singular image of this second LV (bottom) highlights the pairwise correlations expressing this trajectory—warm

cells are correlated positively and cold cells negatively with the visit profile. Note: The image presents the elements of the LV after statistical analysis (see text), and

so the singular image presents bootstrapped ratio values. (B) The eight functional correlation matrices generated by concatenating the Ambiguous-face blocks (top)

were entered into a mean-centred PLS (PLSfunc), producing a visit profile (middle) that identified increased functional connectivity between Visits 1 and 4 similar to

PLSstruc. The corresponding bootstrapped singular image (bottom) also included some of the same pairwise correlations. (C) The eight functional correlation matri-

ces from the Ambiguous-face blocks (top) were entered into a non-rotated PLS analysis (PLSstruc–func), in which the saliences of the visit profile from PLSstruc were

used as contrasts. This allowed us to investigate the degree of association between the developmental trajectories of structural and functional covariance. The

bootstrapped singular image (bottom) illustrates the subset of ROIs among which this was true. Note: The cells encompassed by dashed lines within each singular

image represent pairwise correlations between distal ‘obligatory’ and ‘optional’ ROIs (see text). This collection of ROI pairs is referred to as the ‘optional-obligatory

sub-network’ in the text.
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CAT and structural covariance. To compare GM covariance be-
tween groups of adolescents defined according to behavioural
performance, for each measure of face processing we identified
those males and females with inverted-efficiency scores below

the median on at least three of the four visits. As the same indi-
viduals scored consistently below the median on all three meas-
ures, we defined two groups of individuals with ‘High’ or ‘Low’
general face-processing ability. For each group, we then calcu-
lated at each visit the mean correlation coefficient for each of the
10 ROI pairs comprising the ‘obligatory-optional’ sub-network
identified by the positive bootstrap values emerging from PLSstruc

(see Figure 2A). After performing a Fisher r-to-z transformation
on these pairwise correlations, they were entered into a re-
peated-measures ANOVA with the between-subject factors Sex
(Male or Female) and Performance (High or Low), and within-sub-
ject factor Visit (1–4). As the pattern of negative bootstrap values
emerging from PLSstruc comprised only three ROI pairs, we did
not perform the same analysis on these pairwise correlations.
Comparisons of GM covariance between ‘High’ and ‘Low’ adoles-
cents revealed different visit-related patterns for each group; the
main effects of Visit [F(3,114)¼ 20.127, P< 0.001; ˛2¼ 0.346] inter-
acted strongly with Performance [F(3,114)¼ 18.191, P< 0.001;
˛2¼ 0.241], revealing a linear increase over visits for the Low
group [F(1,19)¼ 7.493, P¼ 0.013; ˛2¼ 0.283] and a cubic Visit effect
for the High group [F(1,19)¼ 43.568, P< 0.001; ˛2¼ 0.696].
Interestingly, this relationship appeared to differ between males
and females; although non-significant, there was a strong trend
towards a Visit*Sex [F(3,108)¼ 2.589, P< 0.057] and
Visit*Sex*Performance interaction [F(3,108)¼ 2.568, P< 0.058].
These results are illustrated in Figure 5.

Discussion

In the present study, we explored developmental trajectories in
brain–behaviour relationships in the context of face processing.
To this end we combined longitudinal measures of face-
processing performance with measures of both brain structure
and function in a set of regions engaged reliably by face process-
ing during adolescence, collected from a sample of young ado-
lescents assessed four times between 10 and 15 years of age. To
investigate developments in the integration of these neural

Fig. 3. Results of mixed-model regression analyses applied to the inverted-effi-

ciency scores on the ‘Three Faces Test’ at all four visits. The trendline represents

the significant effect of ‘Connectivitystruc–func’ separately for males and females

(dashed and solid line, respectively); that is, the mean inter-regional correlation

coefficient among all ROIs comprising the ‘obligatory-optional’ sub-network

identified by PLSstruc–func (see text and Figure 2C). Table 3 presents the corres-

ponding coefficients.

Fig. 4. Developmental increases in functional connectivity between Visits 1 and 4.

The image illustrates the percentage of adolescents at Visits 1 (top) and 4 (bottom)

showing a pairwise correlation greater than r¼0.3 between pairs of distal ROIs that

integrate the ‘obligatory’ (yellow) and ‘optional’ (green) nodes, as identified by

PLSstruc–func. This demonstrates increases from Visit 1 to 4 in long-range functional

connectivity between pairs of brain regions that express parallel developmental

trajectories in structural and functional covariance: 1¼Left V2/V3; 2¼ right V2/V3;

3¼ left FFA; 4¼ right FFA; 5¼ right LOC; 6¼ left pSTS; 7¼ right pSTS; 8¼ right aSTS;

9¼ left MDL-PFC; 10¼ left PMC; 11¼ left MVL-PFC; 12¼ right MVL-PFC.

Table 3. Regression coefficients from linear mixed models

Behavioural measure Intercept bConnectivity

Connectivityfunc

Identityinv
a 5319.06 (6254.10)** �1556.87 (6706.49)*

Affectinv
a 4397.54 (6179.92)** �795.15 (6459.85)

3Facesinv
a 6055.73 (6236.78)** �162.41 (6655.95)

Connectivitystruc–func

Identityinv 5287.58 (6307.83)** �1093.79 (6777.91)
Affectinv 4514.71 (6215.40)** �908.91 (6537.74)
3Facesinv 5403.58 (6417.53)** �84.77 (6931.25)

Males
Females 6705.77 (6622.66)* �2787.03 (61374.25) *

Notes: Values give the estimates of inverted efficiency (expressed in millisec-

onds) emerging from the models used to investigate the relationship between

functional connectivity and face-processing performance. Each measure of face

processing performance was regressed with age and mean functional connect-

ivity, the latter measured as the mean correlation among ROIs comprising the

‘obligatory-optional sub-network’ identified by either PLSfunc or PLSstruc–func

(‘Connectivityfunc’ or ‘Connectivitystruc–func’, respectively; see text). Where a sig-

nificant Sex*Connectivity effect emerged, the table gives the coefficients for

males (n¼21) and females (n¼ 17) separately. Intercepts give values of the be-

havioural measure corresponding to the minimum value of functional connect-

ivity (r¼�0.13 and �0.22, respectively; see text). *P<0.05; **P<0.001.
aThe corresponding measure of functional connectivity was entered as both a

fixed and random effect.
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systems, we examined developmental trajectories of structural
covariance and functional connectivity across this sample.
Applying a multivariate technique capable of capturing the co-
variance between all ROIs and across all visits simultaneously,
we revealed three important findings: firstly, we observed sex-
specific developmental increases in structural covariance
among extra-striate and frontal cortices; GM partial-volumes
decline in an increasingly co-ordinated fashion between these
distal pairs of nodes. Second, we observed an increase over time
in functional connectivity among an overlapping set of extra-
striate and frontal cortices during passive observation of

ambiguous facial expressions. Moreover, we demonstrate that
the sex-specific trajectories of structural covariance parallel the
developmental increases in functional covariance among a sub-
set of these extrastriate (V2/V3, LOC, FFA and posterior STS) and
frontal cortical regions (mid-dorsolateral frontal cortex and
mid-ventrolateral frontal cortex, and PMC). Finally, our data
point to relationships between the degree of structural covari-
ance among these latter nodes, their functional connectivity
during the processing of ambiguous facial expressions, and cer-
tain aspects of face-processing performance: greater functional
and structural integration of extra-striate and frontal cortices
over time appears related to improved discrimination between
emotional facial expressions.

The sex-specific trajectories of structural and functional co-
variance we have observed within the adolescence face-
processing network may reflect sexual dimorphisms in the
structural and functional organization of the brain during this
developmental period. As we were able to acquire only incom-
plete self-reported puberty data, we decided not to perform any
formal assessments of the association between puberty and
functional or structural covariance. Recent studies reveal that
important associations may well exist, however, and may ac-
count for the pattern of results we have observed.
Neuroimaging studies by Forbes et al. (2011) and Moore et al.
(2012; see also Goddings et al., 2012) demonstrate changes in the
brain response during emotional facial-expression processing
between individuals in early and late pubertal stages. This is
believed to reflect the influence of sex hormones on the brain
during puberty, with gonadal steroid hormones exerting both
organizational and activational influences on the structure and
function of face-responsive brain systems (Scherf et al., 2012).
Indeed, using the exact same dynamic face stimuli employed in
the present study, Mareckov�a et al. (2014) report that neural re-
sponses during face processing are modified by exogenous sex
hormones. Such an association between puberty and structure–
function integration should be the focus of future studies into
face processing, and other aspects of socio-cognitive
development.

Developmental increases in functional connectivity between
the FFA and PMC during the observation of ambiguous facial
expressions are particularly interesting in the context of brain-
based models of face processing. Given the extent of their
functional connectivity profiles, we have labelled these two
structures as ‘obligatory’ and ‘optional’ nodes of the adolescent
face-processing network, respectively. Similarly, these two
structures belong, respectively, to the ‘core’ and ‘extended’ sys-
tems of the adult face-processing network (Haxby et al., 2000;
Haxby and Gobbini, 2010). Although they are likely to play roles
in many other cognitive processes, brain regions comprising the
extended system are proposed to extract socially relevant infor-
mation from dynamic facial expressions (Haxby and Gobbini,
2011) and the long-range integration of core and extended sys-
tems is considered necessary for facial-expression processing
(Said et al., 2011). In this light, we consider their increased inte-
gration in response to ambiguous expressions during adoles-
cence to index an important event behind the development of
face processing (Fair et al., 2007; 2009).

The PMC has been studied extensively in action-observation
research, revealing that this cortical region exhibits motor ‘res-
onance’ during the passive observation of actions performed by
others (see Rizzolatti and Craighero, 2004). It is suggested that
such resonance reflects an action observation–execution
matching mechanism fundamental to a range of socio-cognitive
capacities, from imitation to intention understanding (e.g.

Fig. 5. The relationship between structural covariance and face-processing per-

formance. Bars present the mean (6SE) correlation coefficient for GM volume

among all pairs of ROIs comprising the ‘obligatory-option’ network identified by

PLSstruc. Mean coefficients are given separately for individuals scoring above or

below the median on the majority of face-processing measures (see text).

Although not significant, there were strong trends towards sex-related inter-

active effects. This figure illustrates a pattern of increasing GM covariance

across visits, particularly for high-performing adolescents.
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Rizzolatti and Fogassi, 2014; but see Hickok, 2009). Increased
functional integration with PMC when presented with ambigu-
ous facial expressions may reflect the emergence of a domain-
general mechanism recruited during the encoding of ambiguous
social action stimuli. Consistent with this notion, previously we
have shown developmental changes during adolescence in
functional connectivity between PMC and posterior parietal cor-
tices during the observation of socially relevant hand actions
(Shaw et al., 2011). Furthermore, in a previous study using the
same dynamic face stimuli, we observed that the ambiguous fa-
cial expressions evoked a stronger brain response than angry
expressions, particularly in females (Tahmasebi et al., 2011).
Given the female advantage in processing facial expressions
and sex differences in the number of fixations when scanning
faces (Hall et al., 2010), we speculated that this reflects a deeper
processing of the ambiguous expressions in a spontaneous ef-
fort to interpret them. Our present observations of sex-specific
developmental trajectories for functional connectivity in re-
sponse to these ambiguous-face stimuli provide further support
in favour of this interpretation. In this light, the present findings
may indicate that sex differences in facial-expression process-
ing result from sexually dimorphic developments in the func-
tional integration of these distributed neural systems.

Repeated co-activation between PMC and extra-striate ‘ob-
ligatory’ nodes (FFA, LOC) may also give rise to our observation
of their increasing structural covariation, and the strong associ-
ation between their developmental trajectories of structural
and functional covariance. Parallel trajectories of structural and
functional covariance among ‘obligatory’ and ‘optional’ nodes
may reflect age-related increases in co-activations between
these brain systems, leading to practice-induced changes in GM
(see Draganski and May, 2008; Ilg et al., 2008; Taubert et al.,
2010). Adolescence is recognized as a developmental period dur-
ing which particular emphasis is placed on social information-
processing skills. A shift towards peer-directed interactions, for
example, requires an individual to understand and share in
others’ mental and emotional states, for which facial expres-
sions present important social cues. During adolescence, then,
considerable demands are placed upon neural face-processing
systems, especially those involved in encoding expressions that
present socially ambiguous cues. This, in turn, may serve to in-
tegrate functionally the obligatory and optional systems, lead-
ing to their co-ordinated structural development. Such
functional integration would be facilitated by the maturation of
connecting white-matter pathways during this time (e.g. Scherf
et al., 2014).

The directionality (and timing) of structure–function rela-
tionships during development can be viewed in two different
ways: (i) from structure to function or (ii) function to structure
(for related discussions see Osher et al., 2015; Paus, 2013; Scherf
et al., 2012). We have suggested that both perspectives may go
some way in explaining the developmental structure–function
relationship observed in the present study: on one hand, the
organizational effects of steroid hormones secreted during pu-
berty might facilitate the functional integration of brain sys-
tems involved in face processing (see Schulz et al., 2009).
Alternatively, increased functional connectivity between ‘ob-
ligatory’ and ‘optional’ nodes driven by greater exposure to am-
biguous facial cues (see above) may result in their co-ordinated
morphological development. Importantly, however, neither per-
spective would suggest that the long-range integration of the
face-processing network ends after adolescence. Functional
interactions are likely to change throughout life in response to
changing social orientations and mental conditions (see

Stuhrmann et al., 2011), and our social environment will likely
exert experience-driven changes within any brain network
involved in social interaction. Similarly, sex hormones will con-
tinue to exert effects on both brain structure and function
throughout the life span. Indeed, this has been demonstrated
specifically in the context of (female) face processing (see
Mareckov�a et al., 2014). As such, although they may emerge less
pronounced in adulthood, changes in the structural and func-
tional integration of the face-processing and other social brain
networks are likely to be continuous processes.

Finally, our behavioural data provide additional support for
the proposal that our fMRI measures index increased communi-
cation between specific nodes of the obligatory and optional
face-processing systems. Facial expression perception is
believed to require the integrated functioning of core and ex-
tended nodes of the adult face-processing network (see Said
et al., 2011). We observed that the ability to discriminate be-
tween emotional facial expressions—but not face identity—is
related to higher structural and functional covariance among
the equivalent obligatory and optional systems of the adoles-
cence brain. More importantly, this relationship appears
stronger in females compared with males. The strength of this
brain–behaviour relationship was moderate, failing to survive
multiple-comparison correction. As such, this potential rela-
tionship requires replication before it can be considered further.
Nevertheless, this finding might indicate that sex differences in
processing facial expressions (for a review, see McClure, 2000)
reflect sexually dimorphic developmental trajectories of the
structural and functional integration of neural systems involved
in face processing.

Supplementary data

Supplementary data are available at SCAN online.
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