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The gate control theory of pain proposed by Melzack and Wall in 1965 is revisited through two mechanisms of neuronal regulation:
NMDA synaptic plasticity and intrinsic plasticity. The Melzack and Wall circuit was slightly modified by using strictly excitatory
nociceptive afferents (in the original arrangement, nociceptive afferents were considered excitatory when they project to central
transmission neurons and inhibitory when projecting to substantia gelatinosa). The results of our neurocomputational model are
consistent with biological ones in that nociceptive signals are blocked on their way to the brain every time a tactile stimulus is given
at the same locus where the pain was produced. In the computational model, the whole set of parameters, independently of their
initialization, always converge to the correct values to allow the correct computation of the circuit. To test the model, other painful
conditions were analyzed: phantom limb pain, wind-up and wind-down pain, breakthrough pain, and demyelinating syndromes

like Guillain-Barré and multiple sclerosis.

1. Introduction

The gate control theory of pain developed by Melzack
and Wall in 1965 [1] proposes that tiny neural networks
distributed along the dorsal horn of the spinal cord are
responsible for relieving the pain in a specific body location
when an intense tactile stimulation is applied at the same
place. We experience this phenomenon in our daily life when
rubbing the spot where an injury has just occurred.

According to them, axons of first order afferent nocicep-
tors and low-threshold afferent mechanoreceptors converge
to the same neurons in the substantia gelatinosa (SG) in the
dorsal horn of the spinal cord, where inhibitory interneurons
block nociceptive signals on their way to the brain. Since
mechanoreceptors are low-threshold and their axons are
myelinated, they produce high-rate action potentials. In
contrast, nociceptive stimuli are less intense (in the sense of
transmission rate) because they are transmitted through non-
myelinated axons. Figure 1(a) shows the neural arrangement
proposed by Melzack and Wall.

According to Wall, the gate theory of pain is not a final
version so that its details might be discussed and improved.

“That a gate control exists is no longer open to doubt but
its functional role and its detailed mechanism remain open
for speculation and for experiment” [2].

Other authors (see [3, 4]) detected some flaws in the
theory emphasizing the necessity of reviewing the gate
control theory.

One controversial detail of the model (see Figure 4 in [1])
is that afferent nociceptors produce an excitatory stimulus on
first central transmission (CT) neurons and, simultaneously,
an inhibitory stimulus on neurons in the SG. This fact
seems to contradict the idea that axon terminals of excitatory
neurons are all excitatory, and axon terminals of inhibitory
neurons are all inhibitory. This neuron’s specialization is due
to the absence of any mechanism in axons for guiding excita-
tory neurotransmitters from their origin at the neuron’s soma
to some specific axon terminals, while diverting inhibitory
neurotransmitters to other terminals. By considering this, we
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FIGURE 1: (a) The gate control mechanism proposed by Melzack
and Wall in 1965. Both nociceptive and mechanoreceptors signals
are projected to neurons in the substantia gelatinosa, represented
by neuron 1, and towards the first central transmission neurons,
represented by neuron 2. Mechanoreceptor signals are more intense
(higher transmission rate) than nociceptive signals. Nociceptive
signals inhibit neuron 1 (white dotted connection in figure) and,
at the same time, produce excitation on neuron 2. (b) Current
proposal: all nociceptive and mechanoreceptor axon terminals
are excitatory. Synaptic weights (w;) change according to NMDA
plasticity. Firing thresholds, ¢, and t,, of neurons 1 and 2 also vary
according to intrinsic plasticity.

have decided to test whether it is possible to obtain the normal
operation of the gate with only excitatory synapses from
nociceptive neurons. Note that in this case the gate circuit
(see Figure 1(b)) is completely symmetrical: the same type
of arrangement is present in both the upper and the lower
halves of the circuit. The only difference between these two
halves is the type of signal arriving from mechanoreceptors
(in the upper half of Figure 1(b)) that is more intense than
the signal from nociceptors (in the lower half of Figure 1(b))
arrangement.

Considering these ideas, we implemented a computa-
tional model of the neural circuit shown in Figure 1(b)
with only excitatory connections from nociceptive and
mechanoreceptors inputs. We have tested the operation of
the model with and without the property of firing threshold
adaptation also called intrinsic plasticity [5-7] and with and
without NMDA plasticity [8-10] in their synaptic inputs. For
a review of plasticity in pain, see Woolf and Salter (2000)
[11] and Todd (2010) [12]. We did not model plasticity in
the inhibitory synapses located at the axon terminals of SG
neurons because plasticity is usually absent in axon terminals
of inhibitory neurons although several types of inhibitory
plasticity have been recently described in the literature [13].
As it will be shown in the following sections, the model
only operates similarly to the gate when a standard type
of stimulation is applied and when both kinds of plasticity
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are taken into account: synaptic plasticity that modifies the
synaptic weights (synaptic efficiencies) and intrinsic plasticity
(adaptability of the firing threshold). We consider that a type
of stimulation is “standard” or “conventional” when, in first
place, the four binary combinations of inputs I, I, (00, 01, 10,
and 11) are sequentially or randomly presented to the gate
circuit (note that “1” indicates presence of stimulus and “0”
absence of stimulus). Besides, the standard type of stimula-
tion should have another feature: mechanoreceptor stimuli
should be more intense than the nociceptive stimuli. With
this kind of “standard stimuli” and considering synaptic and
intrinsic plasticity, synaptic weights and neurons’ thresholds
converge to very specific final stability values in which the
normal behavior of the gate takes place. Once parameters
are stabilized, the conventional behavior of the gate circuit
is obtained; that is to say, pain is blocked in the gate when
concomitant sensory and nociceptive stimuli are applied.

We are also going to demonstrate that when sensory and
mechanoreceptor stimulation are not the standard ones, the
final parameters’ setpoint can be different and an anomalous
pain condition can be produced. For example, in the case
of demyelination of mechanoreceptor axons in multiple
sclerosis [14] or in the Guillain-Barré syndrome [15], sensory
and nociceptive stimuli can be similar in intensity so that, due
to the symmetry of the circuit, the gate final setup can treat
somatosensory stimuli as nociceptive, thereby relaying a pain
sensation to the brain (CT neurons activation) in the presence
of touch alone (mechanical allodynia). Another example of
nonstandard combination of inputs to the gate is phantom
pain sensed after a limb amputation in a specific spot of the
nonexistent limb. Phantom pain spontaneously appears with-
out stimulation. As it will be shown, such situation occurs
because the final setup of parameters allows null stimuli to
produce a CT neuron activation that is transmitted as a pain
signal to the brain. Wind-up pain and wind-down pain will
also be studied showing that stimuli intensity is determinant
in the adjustment of gate circuit parameters. Finally, we study
the case of breakthrough pain. It corresponds to a situation
in which gate parameters cross an unstable equilibrium point
before reaching the final equilibrium setup where a situation
of intense pain prevails.

2. Methods

2.1. Configuration of Training Epochs. As it has been sug-
gested in the Introduction, a critical aspect to reach a certain
pain condition is the way sensory and nociceptive inputs are
combined when they are input to the gate circuit. The four
possible types of inputs combination are shown in Table 1(a)
in which bit = 1 means presence and bit = 0 absence of input.

In neural networks literature, a training epoch is a set
of input patterns that is repeatedly presented to a neural
network. In our case, an epoch is the set of the four possible
inputs combinations shown in Table 1(a) but with graded
sensory and nociceptive inputs as in Table 1(b). In this case,
Table 1(b) shows a specific type of epoch used to train the
network in a standard way. Numerical values correspond
to input neurons firing probabilities and are arbitrarily
selected to represent a stimulation regime. For example, in
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TaBLE 1: Configuration of a standard training epoch: (a) shows
four binary combinations in terms of the presence/absence of
certain nociceptive/mechanoreceptor input. (b) represents the same
table in terms of afferent nociceptors and mechanoreceptors’ firing
probabilities. Taking into account that axons of afferent nociceptors
are not myelinated, their firing probability is lower than in the case
of afferent mechanoreceptors.

()

Nociceptive input Mechanoreceptor input
0 0

0 1
1 0
1 1

(b)

Nociceptive input Mechanoreceptor input

0 0
0 0.6
0.3 0
0.3 0.6

TABLE 2: Stimulus intensity and firing probability of sensory/noci-
ceptive receptors. For the qualitative purposes of our research,
we elaborate a table that arbitrarily associate a verbal expression
describing the intensity of a sensory/nociceptive stimulus with a
firing probability interval.

Verbal expression
for stimulus intensity

Firing probability intervals in
sensory/nociceptive receptors

Very intense (0.8,1]
Intense (0.6, 0.8]
Medium (0.4, 0.6]
Weak (0.25,0.4]
Very weak [0, 0.20]

a standard stimulation regime, the firing probability from
sensory (mechanoreceptor) inputs is higher than the firing
probability of nociceptive ones.

Human subjects categorize the intensity of stimuli using
verbal expressions like very intense, intense, medium, low,
and so forth. It is reasonable to think that an intense stimulus
produces a higher firing probability in sensory/nociceptive
receptors than a medium stimulus. Given that, up to now,
there is not a universal criterion for associating a verbal
expression with a firing probability value; we have defined a
preliminary scale for the qualitative purposes of the present
research.

For translating the verbal expressions indicating the
intensity of sensory/nociceptive inputs into firing probabil-
ities, we arbitrarily elaborate Table 2.

With this kind of table, it is possible to translate into firing
probabilities, a sentence like the following.

“During a standard kind of stimulation, sensory inputs
are of medium to intense intensity being nociceptive inputs
weak. In the case of a demyelinating syndrome, sensory
inputs become weak. Dysesthesia might take place with

a subsequent regime of stimulation with medium nociceptive
inputs.”

We will use this verbal description in Section 3.2.2 for
studying demyelinating syndrome pain.

2.2. Neuron Model. Neurons used in the model belong to the
very simplified rate-code neuron type: their outputs, O, repre-
senting their firing frequencies. In the rate-code output
model, the probabilities of an action potential in the presy-
naptic and postsynaptic neurons are, respectively, written as
I and O. The synaptic weight w relates I and the excitatory
postsynaptic potential, E, at synapse j:

E; = w,l,. 1)

The postsynaptic action potential probability is given by
a nonlinear (sigmoidal) function of neuron’s net input: O =
f(net). Such net input, Net, is obtained after summing the
postsynaptic potentials of all synapses:

net:ZEj:ijIj. (2)

The sigmoidal function of neuron’s activation yields the
probability of an output action potential and is given in our
simulations by

o JE — ©)

- 1+ e*k(net+0.572s)’

where s is a parameter that contributes to modeling the
neuronss firing threshold, t, where t = 25 — 0.5. k is a curve-
compressing factor that was set to 50 for modeling a steep
slope of the sigmoid function. The range of sis 0 < s < 1. For
s = 0, the sigmoid is completely shifted leftwards so that, for
net = 0, O = 1. In the case s = 1, the sigmoid is completely
shifted rightwards so that, for net = 1, the output value of the
sigmoid is O = 0.

2.3. Adjustable Properties: Synaptic and Intrinsic Plasticity.
We have demonstrated elsewhere [16] that NMDA plasticity
(that, according to Woolf and Thompson [9] is present at
SG neuron synapses) can be modeled through a probabilistic
rule. Since we are utilizing rate-code neurons with outputs
indicating a probability and not real binary outputs, we need
to obtain at least a fictitious binary output for calculating the
weight value, w, of NMDA synapses. The fictitious output of
the presynaptic neuron (bit = 1 or bit = 0) is denoted by i
(lowercase) and the postsynaptic fictitious output (bit =1 or
bit = 0) is denoted by o. Binary values i and o are randomly
generated with probabilities I and O, respectively. With these
binary values, the correlation among synaptic inputs and
outputs is calculated by means of the probabilistic version
of the so-called presynaptic rule, which is the conditional
probability:

(4)

w:P(S):M,

i n (i)

where #() in the numerator counts the number of concurrent
presynaptic and postsynaptic unitary binary outputs.
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FIGURE 2: Intrinsic plasticity is the property of real neurons that
allows the neuron’s sigmoidal activation function to shift either
leftwards or rightwards, so that the sigmoid is placed over intervals
corresponding to the average net input of the neuron. (a) Initial
position of the sigmoidal activation function. (b) If the values of net
inputs of the neuron are low (as in case of inputs A, B, and C), the
activation function shifts leftwards. (c) If net input values are high
(as in D, E, and F), the sigmoid gradually shifts rightwards.

The apparent shortcoming of this probabilistic synaptic
weight modeling is that the higher the weight the more
correlated the presynaptic and postsynaptic neurons so that
weights become higher. At the end, it seems that weight
values have no other possibility rather than growing until they
saturate, that is, turn into one.

Fortunately, neurons have another property that con-
tributes to moderating the tendency of synaptic weights to
increase until saturation. This property, called intrinsic plas-
ticity [5, 6], either increments or decrements the neurons fir-
ing threshold so that the neuron is, respectively, less prone or
more prone to fire in the future. Neurons in spinal cord lami-
nae III-VI, that is, in deep dorsal horn, express intrinsic plas-
ticity (see a comprehensive review in Sandkiihler, 2009 [7]).

Rigorously, there is not a clear cut-edge defining a
threshold that changes the neuron firing probability from
zero to one. Instead of this, the transition is governed by
the sigmoid function presented in (3) that is also depicted
in Figure 2, in which the firing probability makes a gradual
transition from zero to one. For us, the firing threshold will
be defined as the value of net input that makes the neuron fire
with probability equal to 0.5.

We have demonstrated elsewhere [16] that synaptic
weights increment can be counterbalanced by the dynamic
adjustment of the shift of the sigmoidal function so that the
more the synaptic weights (and accordingly the net input
value) grow, the more the shift grows. Thus, the steepest slope
of the sigmoid tends to be placed over the average net input of
the neuron (see Figure 2). Such dynamic adjustment makes
synaptic weights stop increasing and stabilize in specific
values.

The following equation modeling intrinsic plasticity cal-
culates the shift parameter of the activation function, s, at
time ¢ in terms of the shift parameter and output probability
of the neuron at time t — 1:
v-Op g +5

s, = 5
f v+1 ©)
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where v is a small arbitrary factor that adjusts the shifting rate
of the activation function.

As previously mentioned, parameter s allows the calcula-
tion of firing threshold, ¢, which is

t=2s-0.5. (6)

Considering that the range of variable “net” after weight
stabilization is in the [0,1] interval, the arbitrary election
of this equation for modeling threshold, ¢, allows to have
the sigmoid completely shifted rightwards with s = 1 and
completely shifted to the left for s = 0.

In this paper, we show that the dynamic interactions
between synaptic and intrinsic plasticity are the factors that
allow the stabilization of parameters in the gate circuit. Once
parameters are stabilized under either standard or altered
modes of operation, they give rise to either normal or altered
pain sensations.

2.4. Some Notes regarding Units, Scales, and Iterations. In
this research, we use a phenomenological type of neuron
modelling. We take into account that, at least in mammals,
rate coding is the way neurons communicate with one
another. In gate circuit models, the neuron’s output O is a
rate (3) value. Such rate can be expressed in the form of a
probability ranging from zero to one. When O = 1, it means
that the neuron fires every time it is possible. Probabilities are
dimensionless measurements because they are obtained from
the quotient of equal type of magnitudes (see (4)). For this
reason, in the graphs of this paper, unit specification does not
appear in the vertical axes representing neuron’s output, O.

Synaptic weights are also calculated as conditional prob-
abilities and are, therefore, dimensionless. For this reason,
graphs representing weights do not have unit specifications
in their axes. In a similar way, variables that are obtained as a
combination of dimensionless variables are also dimension-
less like the net input, net, and the shift parameter, s. When
these variables appear in a graph, they are devoid of unit
specifications.

A comparison with binary bits might help in the under-
standing of these ideas. A binary bit is a dimensionless
magnitude that is either 1 or 0. For computers to work,
binary 1 is arbitrarily associated with a certain voltage level
that depends on the available technology. In TTL (transistor-
transistor logic) technology, binary 1 is arbitrarily associated
with a 5 volts’ voltage level and binary 0 with a 0 volts’ level.
In a similar way, the net input value, that is dimensionless, is
associated in real neurons with specific postsynaptic voltage
levels.

Regarding time comparisons, computers use “iterations”
to perform their instructions. An iteration is typically a
sequence of tasks in a programming loop. In our model, the
four possible combinations of sensory/nociceptive inputs that
integrate an epoch are processed inside an iteration. When
each combination of sensory/nociceptive inputs feeds the
gate circuit neurons, their net inputs and outputs are calcu-
lated, and their firing thresholds and synaptic weights are
altered. According to this, we can say that the real counterpart
of an iteration in our computer model would be a period
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FIGURE 3: Evolution of gate circuit parameters when considering both intrinsic and synaptic plasticity. Five program simulations (5 thin
colored lines) are depicted, starting with different initial weights and shifts. (a) Evolution of weights: each coordinate (w,, w;, w,) represents
the set of synaptic weights in each iteration, with the color of the point representing the value of weight w,. Along iterations, all lines converge
to the same coordinate (w,, w,, w;, w,) = (1, 0, 0.5, 0.5). (b) After 5000 iterations, the shift parameters of the activation function of the SG
neuron (s,) and of the T neuron (s,) also converge to a certain point (0.5, 0.27). (c) With the final set of weights and shift parameters, the
probability of a CT neuronss firing is given by the table being I, the mechanoreceptor input probability and I, the nociceptive input probability.

of time in which all combinations of sensory/nociceptive
stimulus are given to a subject with specific intensity degrees.
In order to relate iterations, time windows, and evolution of
patients with stimulation protocols, patterned experimental
tests with real patients should be necessary.

3. Results

This section is devoted to analyzing the behavior of the
gate circuit under standard (Section 3.1) and nonstandard
(Section 3.2) types of stimulation.

In Section 3.1, we will show that the conventional gate
operation is achieved once gate parameters (intrinsic and
synaptic plasticity) stabilize after a dynamic transitory period.
During this transitory period, a standard training epoch
(depicted in Table 1(b)) is input to the gate, being the
mechanoreceptor input higher than the nociceptor input.
As it will be demonstrated, synaptic and intrinsic plasticity
interact for allowing parameters stabilization and conver-
gence because one type of plasticity counterbalances the
other. Under such condition, the operation emerging from
the circuit consists of pain only being elicited (CT neurons
fire) when nociceptive signals are the only input to the circuit
which is the conventional gate circuit operation.

At the end of Section 3.1, we will see that the adequate
convergence of parameters does not take place when intrinsic
plasticity or synaptic plasticity alone is taken into account.
The interplay of both synaptic and intrinsic plasticity is nec-
essary to create the conditions for the circuit to reach the set-
point that makes the circuit respond in the conventional way.

In Section 3.2, we are going to study other pain conditions
that result from anomalous training epochs given to the
network, that is, (a) when mechanoreceptor input is equal
to or lower than nociceptive input as in demyelinating
syndromes, (b) when inputs are absent as in phantom pain,
(c) when continuous weak sensory inputs produce an abrupt
increment of pain sensation (wind-up pain), (d) when a
continuous intense nociceptive input produces a temporary
analgesia (wind-down pain), and (e) when an intense pain
generates a transitory wind-down episode followed by break-
through pain.

3.1. Standard Pain Responses due to Standard Stimulation
Regime. As previously mentioned, in this section, we will
study the evolution of synaptic weights, w;, and shift parame-
ters, s;, when a standard type of stimulation is input to the gate
circuit. The model uses intrinsic plasticity in SG and CT neu-
rons and NMDA synaptic plasticity in excitatory synapses. In
order to allow the conventional gate operation, the interplay



between intrinsic and synaptic plasticity is necessary for
parameter stabilization and convergence. Equation (4) has
been used for modeling weights modification and (5) was
used to model the gradual shift of the activation function. Fig-
ure 3 shows five trajectories of weights (Figure 3(a)) and shifts
(Figure 3(b)) corresponding to five different simulations (five
colored lines with the same color numbers), each of them
starting with different shifts and weight values. As we have
four weights w;, w,, w;, and w, (see location of each of these
weights in Figure 1(b)), a four-dimensional coordinate system
would be necessary for representing their evolution along
iterations. We have managed to represent the trajectory of
the four weights along 5000 iterations in a three-dimensional
coordinate system (see Figure 3(a)) by representing the value
of w; as a colored point over each trajectory. The color of each
point corresponds to a color scale in which dark blue means
w; = 0and red means w, = 1. The values of w,, w;, and w, are
represented in a conventional three-dimensional system. All
weight values are dimensionless and range from 0 to 1 because
they are obtained from a conditional probability equation (4).

Notice that the five weight trajectories converge to the
same coordinate: w; = 1, w, = 0, and w; = w, = 0.5.
Shift trajectories (Figure 3(b)) also converge to the final shifts
values s;, = 0.5 and s, = 0.27 that, according to (6),
correspond to the firing thresholds: £, = 0.51 and ¢, = 0.02.
This final coordinate is marked with “x” in Figures 3(a) and
3(b).

The table in Figure 3(c) is obtained at the final points
of each colored trajectory. In the table’s first row, the ith
colored subindex of O; refers to the same color trajectory.
The table shows the output value, O;, of the CT neuron
when applying a standard epoch to the circuit using the final
parameters of each of the ith trajectories. In this case, the
final parameters in the five trajectories are equal, so that the
output when applying a standard epoch to each of the five
circuit configurations is the same. In this case, the outputs
correspond to the standard or conventional modus operandi
of the gate circuit in which the CT neuron is only active when
only the nociceptive input is active. The output probability
that is equal to 0.1 when inputs I; and I, are equal to zero
depends on the value of the sigmoidal function in zero. If
a more realistic approximation of the activation function
was used, in which f(0) = 0, the output probability would
certainly yield zero. Graph of Figure 4 also represents the
output O of the gate circuit (i.e., the output of the CT neuron)
similarly to table in Figure 3(c). The difference between the
table and Figure 4 is that the table shows the response of the
circuit at the final setpoint marked with “x” in Figure 3(a).
Figure 4, instead, shows the response of the circuit along
iterations for each combination of inputs (in this case, in a
standard epoch). For example, the dark blue ribbon shows
the output of CT neuron when both inputs are null (I, = 0
and I, = 0) from the very first iteration until iteration 150.
The cyan ribbon represents the response of the circuit along
iterations when only a sensory signal is given (I; = 0.6 and
L, =0).

We see that under these conditions there is no CT
neuron’s output (there is no pain signal from the gate circuit
when a sensory input alone is given). The yellow ribbon
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FIGURE 4: This graph shows the output, O, of the CT neuron
in the gate circuit along computer iterations. It shows that the
circuit quickly adapts, for eliciting standard gate outputs when
standard pain and sensory signal are input to the circuit (a standard
training epoch is given to the circuit in each iteration). Each ribbon
represents the output of the circuit when a certain combination of
inputs is introduced as input to the circuit. The dark blue ribbon
yields the output (the CT neuron action potential probability) when
no inputs are introduced. Cyan, yellow, and red ribbons yield the CT
neuron output under conditions in which only sensory, nociceptive,
or both inputs are, respectively, input to the gate circuit.

represents the output when only a nociceptive signal (I; =
0 and I, = 0.3) is input. In this case, the CT neuron’s
output quickly grows from the very first iterations so that a
pain signal is only elicited by the gate circuit when a pure
nociceptive input enters the gate. Finally, the flat dark red
ribbon shows that no pain signal is elicited by the gate circuit
along all iterations when both sensory and nociceptive input
are simultaneously entering the circuit.

In summary, Figure 4 shows that the interplay between
intrinsic and synaptic plasticity, together with the presenta-
tion of a standard type of input patterns, leads the gate circuit
to the gate conventional modus operandi: when both sensory
and nociceptive inputs are simultaneously input to the gate,
CT neurons are silent. However, when nociceptive signals are
input alone, they produce the CT neuron’ output.

We performed other similar simulations, but only con-
sidering either intrinsic (Figure 5) or synaptic plasticity
(Figure 6). As before, the five thin colored lines represent
parameters evolution from five different initial conditions.
It can be noticed that with only one type of plasticity there
is no convergence of parameters and the gate circuit does
not respond in a standard manner when a standard type of
stimulation is applied.

3.2. Nonstandard Pain Responses due to Nonstandard Stimula-
tion Regimes. In this section, we will show computer simula-
tions that reveal how neuropathic pain evolves from a normal
pain situation in terms of sensory/nociceptive stimulation.
Our premise here is that the gate circuit is a kind of neural
network that is trained (achieves different parameter con-
figurations) depending on the type of external stimulation.
For creating the initial standard conditions, the gate circuit is
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FIGURE 5: Evolution of gate circuit parameters with only intrinsic plasticity. (a) Evolution of the shift parameters of neurons 1 (SG) and 2 (CT)
in five different simulations (different line colors). Crosses represent the values of shift parameters at the last iteration. (b) Truth table after
each one of the simulations. Colors in the indexes refer to the same color curves in (a).
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FIGURE 6: Evolution of gate circuit parameters with only synaptic plasticity. (a) Five computer simulations (five colors of narrow lines)
representing synaptic weights evolution during 5000 iterations, once the shifts of activation functions are fixed. Because there are four weights
and we have a 3D coordinates system, one of the coordinates, w;, is measured by a scale of colors ranging from 0 to 1. A cross indicates last

iteration. (b) Truth table for each one of the simulations.

trained with a standard set of sensory/nociceptive inputs (as
in previous sections) during the first 50 computer iterations.
In this way, at iteration 50, the gate circuit is programmed
as in Section 3.1. From iteration 51 ahead, the circuit is
exposed to an abnormal training epoch (abnormal set of
sensory/nociceptive patterns), which depends on the type of
syndrome being modeled. In this paper, we model different
syndromes: phantom pain, demyelinating pain syndromes
like multiple scleroses or Guillain-Barre syndrome, break-
through pain, wind-up pain, and wind-down pain.

3.2.1. Phantom Pain Simulation. Let us start with the so called
“phantom pain” [17] appearing in a nonexisting limb after
amputation.

As it has been mentioned, the gate circuit is initially set
to behave in a standard way by inputting a standard training

“epoch” during its first 50 iterations. Once the circuit settles
down, we model the amputation by zeroing both sensory
and nociceptive inputs along the following 50 iterations (see
Figure 7(a)). From iteration 101 to iteration 150, very subtle
sensory and nociceptive inputs enter the circuit, simulating
abnormal action potentials fired by neuromas (formed from
injured nerve endings at the stump site). Figure 7(b) shows
the CT neuron output, O, along the mentioned iterations
for the different nociceptive and sensory combinations. We
can see that, from iteration 101 ahead, two cases are possible
depending on the stability point in which model parameters
settle down. In graph (b), we notice that a CT neurons output
(a pain signal) is produced when either a nociceptive input
is present (yellow ribbon) or no inputs are present at all
(dark blue ribbon). In graph (c), a pain sensation (CT neuron
output) appears when there are no input signals at all (dark
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FIGURE 7: Modeling phantom limb pain: after presenting a standard training epoch to the gate model during 50 iterations, (a) a null training
epoch is input to the gate along 50 more iterations in order to model the period after amputation. (b and ¢) After 100 iterations, very weak
input signals are input to the gate model. Graphs correspond to two stability points. Both graphs show that pain signals are emitted from CT
neurons in a situation in which there are no inputs to the gate in a condition known as dysesthesia (blue ribbon). Graph (b) shows a situation
of a setpoint in which weak nociceptive inputs elicit a pain signal from CT neurons (yellow ribbon).

blue ribbon). Although the peripheric pain component due
to neuromas is not difficult to accept, pain when no input at
all is present at the gate is more difficult to understand. This
case is consistent with clinical findings that demonstrate that
phantom pain remains even when local anesthesia is applied
to the stump. The general consensus trying to explain this last
case is that phantom pain is a top-down phenomenon caused
by maladaptive cortical plasticity. However, a recent article
[18] has reopened the discussion regarding the peripheral
versus central origin of phantom pain. The results of our
computational model shows that the gate circuit cannot
be understood anymore as a “gate” that allows/precludes
nociceptive signals, but as a type of signal processor that
either generates or does not generate a pain signal according
to the input signals and to the gate internal parameters
configuration. Instead of always mitigating pain, the gate
circuit is also able to create pain (produce a CT output),

even in the absence of sensorial and nociceptive stimuli. For
a neuron to fire in the absence of stimuli, the only possibility
is that it has incremented its excitability by lowering its firing
threshold (according to intrinsic plasticity). In the case of our
simulations, the CT neuron lowered its threshold to t = —0.05.
The whole set of parameters for the case of Figure 7(c) is
shown in Figure 12(b).

3.2.2. Demyelinating Syndrome Simulation. Let us model a
demyelinating syndrome like multiple scleroses or Guillain-
Barré syndrome that appears after 50 iterations of a standard
pain situation. This case is also an example on how we
translate a verbal expression like the one presented at the end
of Section 2.1 for developing a stimulation protocol.

In this case, the demyelinating syndrome makes
mechanoreceptors convey weaker signals to the gate circuit.
Table in Figure 8(a) shows the training epoch used from
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FIGURE 8: Modeling demyelinating syndromes: after 50 iterations with standard training epochs, signals from sensory receptors are weakened
like in a demyelinating syndrome. Abnormal pain sensations only take place from iteration 100 with pain sensations when a sensory signal is

input to the gate (dysesthesia).

iteration 50 to iteration 100. Notice that sensory stimuli are
weaker than in the standard training epoch, almost similar
to stimuli from nociceptive nonmyelinated fibers. Here,
we see that dysesthesia appears from iteration 101, at the
onset of some concomitant event generating more intense
nociceptive signals (in this case, a new training epoch was
applied with nociceptive stimuli rising from 0.3 to 0.5). In
these new conditions, pain sensations appear with sensorial
stimuli (cyan ribbon).

Although gate parameters usually converge to an equilib-
rium point like the previously described, other equilibrium
points are possible in demyelinating syndromes. This fact is in
accordance with the literature that mentions different types of
pain associated with demyelinating diseases like the Guillain-
Barré syndrome (see [19]) and multiple scleroses (see [20]).

3.2.3. Breakthrough Pain Simulation. Breakthrough pain [21]
is defined as “a transitory exacerbation of pain experienced by
the patient who has relatively stable and adequately controlled
baseline (background) pain” [22].

In this case, after the preliminary standard setup during
the first 50 iterations, the training epoch in Figure 9(a) is
input to the gate circuit. After a few iterations, a wind-down
phenomenon takes place in which nociceptive input signals
(see yellow ribbon) produce decreasing pains sensations (CT
neurons output). When pain sensations seem to be less
intense, pain is triggered again when a moderate nociceptive
stimulus is applied. Under the same circumstances, that is,
intense nociceptive stimuli, other sequences are also possible.
Nonstandard pain responses differ from the standard case in
that in nonstandard cases there are usually secondary stability
points in which pain responses are not so easy to predict.

3.2.4. Wind-Down Pain. In this case, we will analyze wind-
down pain which also was a pain response that appeared in

previous case. Wind-down pain is usually experienced when
intense aversive nociceptive stimuli are constantly applied.
We performed the computational model of this case by letting
the circuit settle under standard conditions during the first
50 iterations. From iterations 50 to 100, the unique stimulus
applied was an intense I, input in the nociceptive entrance.

In order to better understand the response of the circuit to
the four combinations of inputs without altering parameters’
setup at the end of the intense nociceptive input presentation,
we block synaptic and intrinsic plasticity from iterations
100 to 150 (this “parameters freezing” procedure was not
performed in previous cases). In this way, we tested the circuit
with all the combination of nociceptive and mechanoreceptor
inputs. As seen at the final “tail” of colored ribbons of Fig-
ure 10, there is a reduced response to any of the combinations.
In cancer pain, this wind-down component can be masked
by the concomitant usage of analgesics like morphine [23],
so that pain relief is erroneously thought to be due to the
pharmacological treatment rather than being derived from
neural plasticity dynamics.

3.2.5. Wind-Up Pain. Wind-up pain is the pain response
elicited when a constant sensory weak stimulus is input
through mechanoreceptors. The consequence of this appar-
ently innocuous procedure is that, in the long run, an intense
pain appears in the subject. We have simulated the conditions
of wind-up pain from standard conditions (Figure 11) by
initially letting the circuit settle in a stable point along the
50 initial iterations. From iterations 50 to 100, the only
stimulus is a weak (0.1) mechanoreceptor one. To test the
circuit response immediately after the stimulation procedure,
avoiding altering circuit parameters, we block plasticity from
iterations 100 to 150 and introduce the four mechanorecep-
tor/nociceptive stimuli combinations. As it can be seen, there
is an intense pain when no input is applied to the circuit. In



10

Neural Plasticity

TaBLE 3: Output of CT neuron, O,, for each of the I, I, input pairs in the standard gate operation calculated from stability weights and
thresholds represented in Figure 12(a): Net, is obtained applying (2). In this case Net, is calculated as Net, = w, I; + w;I, for each pair. Neuron
1 output, Oy, is equal to 1 when Net, is higher than its threshold, ¢,. Net, is calculated having into account neuron 1 inhibitory output: Net, =
w,I, + w,I, — O,. Finally the pain signal relayed to the brain from neuron 2 is triggered when Net, > t,.

I, I, w, W; Net, t O, w, w, Net, t, O,
0 1 0.5 0 0.51 0 0 0.5 0 0.02 0
0 0.3 1 0.5 0.15 0.51 0 0 0.5 0.15 0.02 1
0.6 0 1 0.5 0.6 0.51 1 0 0.5 -1 0.02 0
0.6 0.3 1 0.5 0.75 0.51 1 0 0.5 -0.85 0.02 0
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FIGURE 9: Modeling breakthrough pain: after 50 iterations with standard training epochs, an intense nociceptive stimulus is input to the gate.
Initially, wind-down pain (yellow ribbon) takes place concomitantly with a mild episode of dysesthesia (cyan ribbon). After a period in which
pain seems to be relieved, pain is again installed as in breakthrough pain.

this case, the pain that is actually felt by the subject undertak-
ing repetitive weak sensory stimulation seems to be a type
of dysesthesia that possibly comes up between repetitive
sensorial stimuli.

4. Discussion

One of the objectives of this work is to highlight the depen-
dence of pain responses on gate circuit parameters (synaptic
weight and firing threshold values) and on the relative
contribution of afferent mechanoreceptors and nociceptors.
Usually afferent mechanoreceptors have myelinated
axons generating more intense responses than nociceptors.
At the same time, sensory and nociceptive stimuli are
usually delivered to the central nervous system according
to a stimulation protocol (epoch) that is similar to the
standard one presented in Section 2.1. Under these standard
conditions, the synaptic weights and firing thresholds of the
gate circuit evolve until settling in a stable point that allows
the conventional operation of the circuit (see synaptic weight
values, w, and firing threshold values, ¢, in Figure 12(a)).
This conventional operation means that when a
mechanoreceptor’s input alone is input to the gate circuit
or when mechanoreceptor and nociceptive inputs are both

input to the circuit, no pain (CT neuron response) is relayed.
Table 3 helps in calculating the output of the circuit, O,, for
each of the I, I, combinations of sensory/nociceptive inputs
under standard conditions.

Table 3 uses the final weights and neurons firing thresh-
olds shown in Figure 12(a). For calculating the output of
neuron 1, O;, the computer program applies the sigmoidal
activation function of (3) to its net input (see (2)). As our
sigmoid is very similar to a step function, it is also possible
to obtain O, by simply comparing Net, with threshold ¢,. If
the net input of neuron 1 is higher than its threshold, neuron
1 output is 1, which is almost the same result of applying the
sigmoid to Net,. For calculating the final response of neuron
2, it is necessary to introduce the inhibitory contribution of
SG neuron, as follows: Net, = w,I; + w,I, — O,. The final
output, O,, results from applying the sigmoidal function to
Net,, that is roughly the same result as checking whether Net,
is higher than threshold t,, as explained.

A similar table might be elaborated for testing the
response of the circuit after settling in a nonstandard set of
parameters (see Figures 12(b), 12(c), 12(d), 12(e), and 12(f)).
Nonstandard parameters make the gate circuit behave in non-
standard ways like in phantom limb pain, pain in demyeli-
nating syndromes, breakthrough pain, and wind-down and
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FIGURE 10: Modeling wind-down pain: after 50 iterations of standard
training epochs, signals from nociceptive receptors become very
intense. From iterations 50 to 100, the gate circuit, instead of
receiving different stimuli like in previous cases, receives an intense
nociceptive stimulus of value 1. For testing pain responses to other
types of stimuli during the phase of intense nociceptive stimulation,
all types of plasticity (synaptic and intrinsic) are blocked from
iterations 100 to 150 (this procedure was not done in previous
examples). As seen, after a long intense pain stimulation, the circuit
becomes less responsive to all types of stimuli.
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FIGURE 11: Modeling wind-up pain. After 50 iterations with standard
training epochs, signals from mechanoreceptors become weak but
repetitive, without any other type of stimulation. This situation is
modeled from iterations 50 to 100 in which the gate circuit, instead
of receiving different stimuli like in previous cases, only receives a
repetitive weak sensory stimulus. For understanding pain responses
to other types of stimuli during the phase of repetitive weak
sensory stimulation, all types of plasticity (synaptic and intrinsic) are
blocked from iterations 100 to 150 (as done in previous example). As
can be seen, after a prolonged weak sensory stimulation, the circuit
relays a pain output in the case of no stimulation (between periods
of weak sensory stimulation).

1

wind-up pain. Readers can confer that parameters of Fig-
ure 12(b) allow phantom pain only in the case of no inputs
to the gate (Figure 7(c)).

The versatility of pain responses obtained by the com-
putational model is a consequence of the vertical symmetry
of the proposed gate architecture (Figure 1(b)) in which all
afferents to the circuit are excitatory. For the gate circuit,
there is no way to differentiate a nociceptive or a sensory
afferent. The only difference is that the spiking rate from
mechanoreceptors is higher than from nociceptors due to the
lower mechanoreceptors firing threshold and to the absence
of a myelin sheath in nociceptors. When mechanoreceptor
intensity (normalized spiking rate) is weak, as in demyelinat-
ing syndromes, the gate circuit is, some way, “deceived” and
its dynamics become the same as if the sensory input was a
nociceptive input.

The chart of Figure 13 represents an attempt to charac-
terize the “standard” and “nonstandard” modus operandi of
the gate circuit concerning the intensity of mechanoreceptor
and nociceptive inputs. The sensory input intensity (the
x coordinate) represents the normalized mechanoreceptor
spiking rate measured at the mechanoreceptor axon terminal
whereas the y-coordinate represents the normalized nocicep-
tive spiking rate measured at the nociceptive terminal. The
normalization is performed by dividing the spiking rate in a
certain axon terminal by the highest possible spiking rate in
any of the two axon terminals.

By exploring Figure 13, we can see that the diagonal is
the place where sensory and nociceptive intensities are equal.
Along the diagonal, and due to the symmetry of the circuit, it
is not possible for the circuit to establish a difference between
sensory and nociceptive inputs. From the point of view of
neurons in the gate circuit, the two inputs are equivalent.

Below the diagonal of Figure 13, sensory inputs are more
intense than nociceptive ones so that a standard type of
stimulation is possible in this region.

Above the diagonal, sensory signals are weaker than
nociceptive signals. Demyelinating syndromes like multiple
scleroses and Guillain-Barré syndrome can reduce the rate of
mechanoreceptor signals, thereby producing such situation.
In these demyelinating syndromes, the network can misin-
terpret incoming signals so that the weaker mechanoreceptor
input is treated like a nociceptive one, thereby generating a
pain signal from CT neurons in a condition called dysesthe-
sia.

We must emphasize that Figure 13 only shows two of
the at least 8 initial parameters that influence the final set-
point of the circuit in which parameters stabilize and a pain
condition is established. Besides the two inputs’ value, the
other six parameters are the value of the four modifiable
synaptic weights, w, and the value of the firing threshold, ¢,
of the two neurons of the circuit.

Other nonstandard pain conditions are depicted in the
chart: like wind-up pain that is produced, according to the
computational model, when a continuous weak stimulation
is delivered to a subject and is manifested by pain sensations
in the intervals without stimuli similar to dysesthesia (see
Section 3.2.5). Phantom pain is an extreme case of wind-
up pain in which sensory and nociceptive inputs are zero
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I,: nociceptive input
(c) Demyelinating syndrome operation

I;: mechanoreceptor input

I,: nociceptive input

(e) Wind-down pain

Neural Plasticity

I;: mechanoreceptor input

I,: nociceptive input
(b) Phantom limb operation

I,: mechanoreceptor input

I,: nociceptive input
(d) Breakthrough pain operation

I;: mechanoreceptor input

I,: nociceptive input

(f) Wind-up pain

FIGURE 12: Synaptic weights and firing threshold values when the gate circuit arrives to stability for the different cases previously explained.
When placing the different type of inputs in the gate circuit, neuron 2 response is according to the type of response expected in each case. In
the case of graph (b), we considered the parameters of gate circuit that only produces phantom pain when no inputs at all enter the gate (see

Figure 7(c)).

(see Section 3.2.1). According to the model, wind-down pain
takes place when either very intense sensory or nociceptive
stimuli are delivered. One interesting case that was not
tested in previous sections is the hypothetical situation in
the right upper corner of the chart where intense nocicep-
tive and sensory stimuli are delivered simultaneously and
continuously. Although the gate usually mediates a wind-
down phenomenon (as shown in Figure 14), unpredictable
behaviors also take place because the diagonal is the main
feature in this region of the chart.

Chart of Figure 13 is far from being final. Future research
will surely contribute to improve this chart. In this paper, we
trained the gate circuit with very specific combinations of
sensory and nociceptive inputs. For the chart to be complete,
a continuous sequence of sensory and nociceptive stimuli
should be input to the gate. With each stimulus, little distur-
bances can be applied for gathering statistic measurements
in order to study other aspects of gate circuit dynamics like
stability and robustness.

This paper research shows that pain conditions are the
result of a dynamic adjustment of circuit parameters in the
presence of different type of stimulation that are external
and/or derived from internal conditions like axon conductiv-
ity in demyelinating syndromes. We showed that the interplay
between synaptic and intrinsic plasticity is necessary for the
circuit to settle down in stability points that allow standard
and nonstandard gate operations.

5. Conclusions

In this paper, we present a parsimonious computational
model of the gate circuit that is able to account for a
large number of different pain conditions. When compared
with the Melzack and Wall gate circuit, our model only
considers strictly excitatory afferents to the gate. However,
the pain conditions modelled by this simpler architecture are
numerous: it models normal gate functioning, phantom limb
pain condition, wind-up and wind-down pain, breakthrough
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FIGURE 13: Different pain conditions for the different combinations
of sensory and mechanoreceptor inputs according to the results of
the gate circuit computer model. When the sensory input intensity
(normalized firing rate) is higher than the nociceptive input inten-
sity (below the diagonal), the circuit behaves in a “normal pain”
mode. Above the diagonal, nociceptive input intensity is higher than
the sensory input intensity. In this condition, the parameters of the
gate circuit evolve so that pain is triggered in abnormal situations
generating dysesthesia. When sensory and/or nociceptive inputs are
very low, the gate circuit parameters evolve to produce wind-up
pain. Phantom pain is included in this case as an extreme situation.
Finally, when either nociceptive or mechanoreceptor stimulus is
extremely high, wind-down pain is produced (see Figure 14).

Wind-down
pain

Sensory input intensity

pain, and demyelinating syndromes like Guillain-Barré and
multiple sclerosis. Two very simple equations allow the
adaptation of synaptic weights (4) and firing thresholds (5)
when different input patterns are delivered to the circuit.
In the case of standard gate operation, modelled synaptic
weights and firing thresholds values converge to very specific
values independently of their starting values. The obtained
parameters allow the same normal operation of the real gate
circuit. When stimulation is not standard, due to external
or internal factors, like demyelination syndromes, modelled
synaptic weights and thresholds spontaneously settle down
in stability points that give rise to precisely the same non-
standard pain conditions associated with the nonstandard
type of stimulation. For example, intense constant stimuli
produce pain reduction in the model like in real wind-
down pain; weak constant sensorial stimuli produce growing
pain in the model like in real wind-up pain; weakening of
mechanoreceptor inputs produces abnormal pain (allodynia)
in the model like in real demyelinating syndromes; and null
inputs produce abnormal pain sensations (dysesthesia) like in
phantom pain.

Our work opens a door in which computational models
can be useful for treating pain syndromes: for relieving pain,
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FIGURE 14: Modelling the hypothetical situation where, after a period
of standard stimulation, gate circuit inputs are both very intense
as from iteration 50 to iteration 100. After iteration 100, the four
different combinations of nociceptive/sensory inputs are presented
to the circuit. In the present case, as in Figures 10 and 11 cases,
plasticity is blocked from iterations 100 to 150, in order to analyze
the response of the circuit. As can be noticed, pain response is only
intense when both sensory and nociceptive inputs are intense and
are simultaneously applied. When only a nociceptive intense input is
applied, the pain response is moderate. No pain response is obtained
in the remaining cases.

it is possible to plan a strategy involving plasticity blockers
or plasticity enhancers, together with stimulation schedules.
This plan can be initially tested in a computer environment
so that a personalized strategy can be planned depending on
the subject’s pain condition.
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