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The aim of this Letter is to present a new capsule endoscopy (CE) image analysis scheme for the detection of small bowel ulcers that relate to
Crohn’s disease. More specifically, this scheme is based on: (i) a hybrid adaptive filtering (HAF) process, that utilises genetic algorithms to the
curvelet-based representation of images for efficient extraction of the lesion-related morphological characteristics, (ii) differential lacunarity
(DL) analysis for texture feature extraction from the HAF-filtered images and (iii) support vector machines for robust classification
performance. For the training of the proposed scheme, namely HAF-DL, an 800-image database was used and the evaluation was based
on ten 30-second long endoscopic videos. Experimental results, along with comparison with other related efforts, have shown that the
HAF-DL approach evidently outperforms the latter in the field of CE image analysis for automated lesion detection, providing higher
classification results. The promising performance of HAF-DL paves the way for a complete computer-aided diagnosis system that could
support the physicians’ clinical practice.
1. Introduction: The advent of capsule endoscopy (CE) [1]
marked a revolution in the field of gastroenterology and medical
imaging as it permitted, for the first time, non-invasive and
successful visual inspection of the entire length of small bowel
(SB). A disposable miniature capsule is swallowed by the patient
and, along its journey through the digestive track (DT), it
captures and wirelessly transmits two frames per second at a
wearable data recorder. At the end of the examination, these
images are transferred from the recorder to a personal computer
and reviewed by the physician. CE is beneficial in evaluating
various disorders, such as bleeding, polyps, ulcers and Crohn’s
disease (CD). CD is a chronic inflammatory bowel disease that
causes internal lesions, which evolve to open sores and ulcers, in
the DT and especially in SB. Despite the revolutionary benefits
introduced by CE, there are still challenging issues to deal with.
A CE examination produces 60.000 images, approximately, and
the burdensome task of reviewing them is highly time-consuming
as it may cost up to 2 h for an experienced clinician. Moreover,
abnormalities may appear only in a couple of frames, i.e.
milliseconds on the computer screen, and be easily missed. These
issues have motivated researchers to develop computer-assisted
diagnosis systems in order to reduce the labour of the clinician
and the possibility of omitting a lesion.
In the recent literature, various approaches have been reported

towards automatic DT content interpretation. However, the majority
of them deal with the detection of bleeding, polyps and tumours and
only a small proportion targets ulcer and CD-related lesions recog-
nition [2]. The detection of such kind of erosion is rather challen-
ging due to its great diversity in appearance (size, shape, colour
and texture) and probably this is the reason for its small popularity
among the researchers’ community. The most promising proposed
efforts utilise various image analysis techniques and texture and
colour features extracted from various colour spaces. More specif-
ically, ulcer detection is achieved using: the intensity of pixels at
the three colour channels [3], curvelet transform (CT)-based
uniform rotation invariant local binary patterns (LBP) classified
by multilayer perceptron [4], bag-of-words-based features
[scale-invariant feature transform (SIFT) and LBP] [5] and wavelet-
based second-order statistical features [6]. In the same direction, the
potential of structural features extracted from images presented in
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the empirical mode decomposition [7] and CT space [8] is investi-
gated. Regarding CD-related lesion detection, the most competent
works are based on mean-shift algorithm, colour histogram statis-
tics and Haralick features [9, 10] and a fusion of MPEG-7 descrip-
tors and support vector machines (SVM) classifiers [11]. The above
approaches, although they exhibit promising results, they suffer
from the shortcomings of LBP, SIFT and MPEG-7 tools and
engage quite limited databases.

In this Letter, an innovative CE image analysis system is intro-
duced for the efficient detection of CD-related lesions. This
system combines, for the first time, the space-frequency of curva-
ture structures domain [8] with the spatial morphology distribution
domain [7] that both have been proven to be in line with the basic
characteristics of the inflammatory tissue recognition problem and
provide with useful information towards this direction, when
engaged individually. The space-frequency domain is defined by
the curvelet-based sub-images and is used in order to extract the
lesion-related structural characteristics and reconstruct more
informative images via a filtering process called hybrid adaptive
filtering (HAF). The spatial morphology distribution domain is
defined by the differential lacunarity (DL) analysis that is applied
on the HAF-processed images in order to extract texture features.
The classification step is implemented by SVM and the whole
process takes place in the Cr channel of YCbCr space.

2. Background
2.1. Curvelet transform: CT constitutes the central part of HAF
section of the proposed approach that targets to reveal
multi-resolution and multi-scale curved structural components of
CD lesions towards efficient feature extraction. The motive for
using multi-resolution and multi-scale analysis is that CD lesions
are characterised by great diversity in terms of size, shape,
orientation and illumination and the background variation is
intense. Thus, a robust tool is required that is capable of revealing
structural and morphological information in multiple scales and
directions. In addition, since the lesions are not characterised by a
specific shape, the analysis has to capture efficiently curved
structures as they accommodate the majority of informative content.

A popular tool that has been used for multi-resolution image ana-
lysis is wavelet transform (WT). WT is very efficient in describing
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Fig. 1 Proposed HAF-DL scheme
one-dimension (1D), piecewise smooth signals and capturing point
singularities. However, 2D signals exhibit edges (1D singularities),
being typically smooth curves that separate smooth regions, that
cannot be described appropriately by wavelets. The reason is that
2D wavelets are constructed by a tensor product of 1D wavelets
and follow an isotropic scaling law. These characteristics lead to
low adaptation to the geometry of the curve as well as to isolation
of strongly directional (horizontal, vertical and diagonal) structures.

In an attempt to overcome these weaknesses, CT has been intro-
duced [12]. The main idea of CT is to engage a superposition of an-
isotropic functions of multiple widths and lengths, that follow a
parabolic scaling law (width≈ length2), in order to represent a
curve. For the definition of continuous CT, two windows are
used, an angular V(θ) and a radial W(r), that are real-valued, non-
negative and smooth. The product of V and W is a parabolic
wedge Uj that constitutes the Fourier transform (FT) of a mother
curvelet wj(x). All the other curvelets at scale 2−j, orientation θl
and position xk

( j,l) are obtained by rotations, scaling and translations
of wj. A curvelet coefficient is then defined as the inner product
between an element MɛR2 and a curvelet wj,l,k. The needle-shaped
elements of CT are highly sensitive in the direction and their
number depends on the analysis scale (finer scales contain more
curvelets than coarser scales); hence, providing better analysis
capabilities that WT counterparts [12].

The continuous CT can be extended to the digital space via either
unequispaced fast FT or wrapping. Both techniques have the same
complexity, however, the wrapping algorithm is somewhat simpler
and, thus, more popular [12].

2.2. DL analysis: DL is a robust tool for multi-scale and translation
invariant analysis of spatial patterns of dispersion, able to identify
slight or sharp changes in pixel neighbourhoods with no direction
selectivity, useful in the case of CE images.

2.2.1. Lacunarity: Lacunarity [13], meaning gappiness and deriving
from the Latin term lacuna, is a fractal property, counterpart to
fractal dimension (FD) that was proposed in order to differentiate
surfaces that exhibit the same FD, but vary in appearance. More
specifically, lacunarity describes the texture of a fractal by analysing
the distribution of gap sizes in the data set across multiple scales.
The more gaps with a broad range of sizes a set contains, the
higher the lacunarity index. In a similar context, lacunarity is
defined as a measure of heterogeneity and translational invariance.
Sets with almost uniform distribution of gaps can be considered
homogenous and are characterised by lower lacunarity than transla-
tionally and rotationally variant (heterogeneous) sets. However,
homogeneity depends on the analysis scale. In other words, sets
that appear homogeneous at large scales can be rather heteroge-
neous at smaller scales and vice versa. From this perspective, lacu-
narity is regarded as a scale-dependent measure of texture of an
object [13]. Various techniques have been proposed to calculate
lacunarity, but the simplest and most popular is the gliding box
algorithm (GBA) [14] that is functional on 1D binary data.

2.2.2. Differential lacunarity: DL is another version of lacunarity
that was introduced by Dong [15] in order to enable multi-scale
lacunarity-based texture analysis of grayscale images. The exten-
sion of GBA in 2D is quite straightforward, but the requirement
of binary data, even if it can be accomplished by thresholding, con-
stitutes a serious limitation. The concept behind DL is the same as
in lacunarity, but its calculation is based on a differential box count-
ing method that engages a gliding window W (w ×w pixels) and a
gliding box R (r × r pixels). W scans the entire image and deter-
mines the area in which the ‘mass’ M will be calculated. R is an
auxiliary box that helps to determine M at every position of W. In
this context, w and r determine the analysis scale. If Q(M, r, w) is
the probability function of the distribution of M across the image,
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DL at scale r and w is defined as

L(w, r) =
∑

M M2Q M , w, r( )
∑

M MQ M , w, r( )[ ]2 . (1)

To achieve multi-scale analysis, it is common practice to calculate
DL for a variety of scales, resulting in a DL–w curve, which
characterises the specific space-filling pattern.
3. Proposed approach
3.1. Overview: The aim of the proposed HAF-DL system is that
given a region of interest (ROI) J within a CE image, detect if J
depicts CD lesion or normal mucosa. The overall structure of
HAF-DL scheme is presented in Fig. 1. At first, the image is
converted from RGB to YCbCr space and the Cr channel is
isolated since it has been shown [8] that the majority of
lesion-related information lie on the red–green difference plane.
This conclusion was attributed to the fact that the reflected green
light depends on the blood volume and the existence of lesion
disturbs the microstructure of blood vessels and the thickness of
mucosa. YCbCr space was selected because it is a perceptually
uniform colour space that separates colour from brightness
information and overcomes the disadvantage of high correlation
between the RGB channels [16]. Then, the Cr channel is inputted
to HAF section of HAF-DL scheme. The role of this filtering
procedure is to identify the CD lesion-related characteristics,
facilitating the feature extraction procedure that follows. In this
perspective, HAF entails a genetic algorithm (GA) that acts upon
the representation of CE images on the CT space. In the latter,
the image (Cr channel) is decomposed into a series of
curvelet-based sub-images of various scales and orientations.
Then, GA, by engaging a fitness function (FF) that is based on
the distribution of spatial relationships between pixels, selects the
optimum sub-images that relate the most with the CD
lesion-associated characteristics. The selected sub-images are
combined through a reconstruction process, i.e. inverse CT, to
produce a refined image. The latter enters the DL section of the
HAF-DL scheme, where DL-based analysis takes place, resulting
in powerful colour-texture information that after light processing
produce an efficient feature vector (FV). At last, SVM-based
classification is performed.
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3.2. Hybrid adaptive filtering: The aim of HAF process is to extract
the CE image characteristics and isolate the ones that mostly relate
to the CD lesion information. As denoted by the word ‘hybrid’,
HAF is composed of two analysis tools, i.e. CT and a GA
optimisation concept, in order to implement an adapted to the
signal filtering procedure. CT can be considered as a filter bank
that provides a pseudo-spectral representation since it decomposes
an image into components (sub-images) at multiple scales and
orientations. In order to take full advantage of the preceding
capability, a GA-based technique was engaged for the
identification and selection of the most optimum sub-images that
correspond to informative structures within the image. The
motive for such a concept was the observation that sub-images at
specific scales and directions present higher CD-lesion detection
capabilities than others [8].
One primary component of HAF is the FF of the GA, since it

defines the selection criterion on which the filtering process is struc-
tured. In this Letter, a FF was applied that is based on the textural
and morphological characteristics of the sub-images, as expressed
by the DL–w curve. As noted above, DL is a scale-dependent
measure of textural patterns and distributions. To this end, an
image with uniform structures and patterns exhibits lower DL
values than an image that is composed of arbitrary patterns. The
DL–w curve can be regarded as a multi-scale representation of
texture and its decay can disclose the existence of specific structures
in the image. For instance, the presence of micro-patterns with mod-
erate differentiation for a variety of analysis scales leads to a DL–w
curve with smaller gradient than that of a DL–w curve extracted
from either highly irregular and diverse or almost uniform struc-
tures. The rationale of applying such a FF is to capture the varia-
tions in morphological and textural characteristics of CE images.
Images that produce DL–w curves with small gradient may
account for informative mucosa, either normal or eroded, whereas
images with DL–w curves with steep slope may correspond to
worthless content, such as bubbles and folds. From this perspective,
the DL-based filtering would suppress the components of the initial
image that do not relate to useful texture information. This hypoth-
esis is justified by the observations made, based on the results of [8],
where the efficient sub-images corresponded to DL–w curves with
smaller gradient than that of the less efficient sub-images.

3.3. Feature vector: HAF process is followed by DL analysis that
targets the calculation of efficient colour-texture features. As
noted before, the appearance of CD-related lesions varies a lot;
hence, the texture analysis tool should be capable to achieve
multi-scale, rotation invariant feature extraction. Such a tool is
DL due to, not only its simple calculation, but also its precision
in identifying either slight or sharp changes in pixel
neighbourhoods at various scales and without direction
selectivity, necessary in the case of CE data. The multi-scale
analysis property of DL is triggered by calculating the DL value
for a variety of window sizes (w) and a specific box size (r)
instead of a single set of parameters. The reason for manipulating
the analysis scale through w instead of r is that w determines the
region on which the mass M is going to be calculated, and in line
with [17], the bigger the area of M calculation, the coarser the
analysis turns. On the other hand, r determines only to a certain
degree the analysis scale as it mainly affects the granularity of
intensity variation recognition. Consequently, in the current
approach, by selecting a constant and small value for r and
varying values for w, identification of slight variations in
neighbouring pixels and multi-scale analysis is achieved. Last but
not least, the DL–w curves are normalised to the DL value that
corresponds to the smallest w in order to secure an identical
reference level that has been shown to be essential [18]. To this
end, the normalised DL–w curve (ΛN(w)) may form the FV.
However, the observation that the DL–w curves resemble the
behaviour of hyperbola, as well as the need to reduce the FV
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dimension, highlights the essence of modelling the normalised
DL–w curves with the function of hyperbola that is defined as

L(w) = b

wa
+ c, w = [wmin, wmax], (2)

where a represents the convergence of L(w), b is the concavity of
hyperbola and c is the translational term. The best interpretation of
ΛN(w) by the model L(w) is computed as the solution of a least
squares problem, where parameters a, b and c are the independent
variables [7]. Another way to extract useful features from the DL
analysis is to use six statistical measures that are calculated on the
DL–w curve [5, 19]. The six common statistical features extracted
from ΛN(w) curve are mean, standard deviation, entropy, energy,
skewness and kurtosis. It has been shown [20] that the utilisation
of the aforementioned statistical measures along with the [a, b, c]
parameters, that both express the global behaviour of the DL–w
curve, but from a different perspective, and the three first values of
DL–w curve (ΛN(wmin+ 1), ΛN(wmin+ 2) and ΛN(wmin+ 3); the
value ΛN(wmin) is not used as it is always equal to one), that
express the local behaviour of the DL–w curve, constitutes the
most efficient FV (FV1). For comparison purposes, two other FVs
will be examined: FV2 contains all the values from the normalised
DL–w curve and FV3 contains the six statistical measures along
with the parameters [a, b, c].

4. Experimental dataset and implementation
4.1. Training and testing dataset: To develop a competent and
robust CD-related lesion detection methodology, apart from
employing suitable mathematical tools, a sufficiently rich
database is required, on which the proposed scheme will be
trained and tested. Unfortunately, the majority of related reported
efforts in the literature (59%) utilise databases that consist of no
more than 500 images [2]. Using a limited training and testing
dataset, or an expanded dataset but with highly correlated entries
may cause unrealistic improved performance and not allow safe
generalisation of the conclusions.

In this Letter, in order to construct the training dataset, 950 CE
frames were used. More specifically, 500 frames depicting lesion
free tissue and 450 frames presenting CD-related lesions and
erosion were acquired from 13 patients who undertook a CE exam-
ination in NIMTS Gastroenterology Clinic, Athens, Greece. It
should be highlighted that, in order to achieve the lowest possible
similarity, each lesion frame comes from a different lesion event,
which means that no two frames depict the same lesion region,
even if it is rotated or zoomed in/out. Moreover, the lesions depicted
are of various severities and sizes, based on the Lewis scores [21].
In the same direction, the non-lesion frames depict, not only normal
mucosa, but also misleading content, such as bubbles, folds, villus,
intestinal juices and so on, in order to create realistic conditions that
hamper the detection problem. Afterwards, two experts, upon
mutual agreement, cropped each image to a ROI, since the detection
algorithms cannot be applied to the entire CE frame due to its rich
content. Each lesion ROI contains the entire or part of the eroded
region, while in cases of extended damage, the whole ROIs lie
within the lesion region. Then, two other clinicians rated these
ROIs, twice, and only the ones that were classified all four times
in the same class were included in the dataset. This procedure
allowed to assess the inter-/intra-rater variability and acquire a
highly confident dataset that consists of 400 normal and 400
lesion ROIs. Some exemplary CE frames along with the corre-
sponding ROIs are given in Fig. 2. It should be commented that
the size of the ROIs varies from 40 × 40 to 120 × 120 pixels,
since the extracted features are minimally affected by the resolution
of ROI, and can be located anywhere in the frame. Deterministic
ROI size and position in the frame was not an option in order to
achieve as much generalisation as possible and produce a robust
system.
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Fig. 2 CE frames from the adopted training dataset and corresponding ROIs
As far as the testing procedure is concerned, we did not use the
above database with some sort of cross validation. On the contrary,
ten 30 s (sec) long CE videos were employed that came from five
new patients. From each video, 60 frames were extracted, consider-
ing the speed of the camera of the endoscopic capsule. Then each
frame was segmented automatically in 12 ROIs (60 × 60 pixel),
as presented in Fig. 3, since the proposed scheme was trained in
such ROIs and could not provide efficient performance in case of
entire CE frames. Each video contained at least one lesion, while
each frame depicted no, one or more abnormal regions. The size
of the lesions varied and in some cases it was big enough to fit in
more than one ROI. The ROIs were labelled by two experts,
upon mutual agreement.

4.2. HAF and DL implementation: Regarding CT implementation,
the number of analysis scales and the number of analysis angles at
Fig. 3 Predetermined CE image segmentation in 12 regions (60 × 60 pixel)
on which the HAH-DL scheme will be applied for the testing procedure
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the second scale had to be set. Related applications tend to apply
three or four scales [4]; hence, in this approach, after exhaustive
experiments, we opted for four [8]. As far as the number of
angular resolution is concerned, it has been shown [8] that the
optimum number of angles at the second scale is eight (minimum
eligible value), as a trade-off between data redundancy and
complexity. Other approaches use 16 angles [3], however, a p-test
showed that differences between the angles 1–5, 2–6, 3–7 and
4–8 (in the case of eight angles) were statistically significant at
3.2%, while the statistical difference between the angles 1–9,
2–10, …, 8–16 (in the case of 16 angles) were statistically
significant at 9.8% on average [20].

Considering the implementation of DL analysis, Λ(w) was calcu-
lated for gliding box size r = 3 pixels and gliding window size
w= 4–30 pixels, so as to be sufficiently lower than the size of
ROI. Moreover, pilot experiments showed that the DL value for
w> 30 is almost constant. The value of r was selected after exhaust-
ive trials.

The GA used in HAF was based on [22]. The initial population
was set to 20 chromosomes and the number of generations was set
to 50. The mutation probabilities were Pm(0→1)= 0.001 and Pm
(1→0)= 0.01, for eliminating tendencies to select the majority of
sub-images.

For the HAF-based curvelet sub-image selection, the 25% of the
training dataset was used. In other words, 100 normal and 100
abnormal samples were randomly selected. For each generation of
GA, the FF value was calculated accordingly to the whole dataset
Fig. 4 Cr channel of a normal and a CD lesion WCE image prior to (left)
and after (right) the application of HAF
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Table 1 CD lesion versus normal features of HAF-DL1 accompanied by
t-test analysis. The format #±# corresponds to mean ± standard deviation

Feature CD lesion Normal p-value

mean 0.8511 ± 0.0622 0.7740 ± 0.1158 2.8869 × 10−9

standard deviation 0.0415 ± 0.0191 0.0595 ± 0.0367 4.2577 × 10−6

energy 0.7302 ± 0.0979 0.6171 ± 0.1722 7.6905 × 10−8

entropy 3.3989 ± 0.4665 3.8563 ± 0.6381 0.0486
skewness 1.4354 ± 0.4229 1.8545 ± 0.6195 3.9515 × 10−5

kurtosis 4.2490 ± 1.4056 6.1426 ± 2.6988 5.7685 × 10−11

a 2.0688 ± 0.6692 2.5933 ± 0.4849 0.0491
b −1.2947 ± 0.1582 −1.1752 ± 0.0671 0.0427
c 0.7764 ± 0.1796 0.6333 ± 0.6948 0.0255
ΛN(wmin+ 1) 0.9622 ± 0.0177 0.9563 ± 0.0196 0.0199
ΛN(wmin+ 2) 0.9321 ± 0.0297 0.9195 ± 0.0366 0.0057
ΛN(wmin+ 3) 0.9092 ± 0.0379 0.8902 ± 0.0508 0.0018
of the 200 images. The selected sub-images were found to be (scale/
angle): 1/(1), 2/(6), 3/(1, 4, 8, 12), 4/(1, 5, 8, 9, 13, 16) and they co-
incide to a certain degree with the most efficient sub-images as
derived from [8]. Fig. 4 presents the Cr channel of a normal and
CD-lesion image, prior (left) and after (right) the application of
HAF. It is clear that HAF processing smooth’s the image and
accentuates the lesion region while diminishing the misleading attri-
bute (deep red vein) of the normal image.

4.3. Classification setup: The classification process of the proposed
scheme is based on a SVM classifier with radial basis function [23]
which has been used extensively in related applications [5, 8, 11],
showing superior performance. The classification performance is
evaluated via the measures of sensitivity and specificity under three
scenarios that assess the efficient of lesion detection in: ROI level
(ROI scenario), frame level (frame scenario) and event level (event
scenario). Regarding the frame scenario, one correctly predicted
ROI in the frame is sufficient to characterise the frame as positive.
On the other hand, the event scenario assumes that if a single
lesion event appears in more than one consecutive frames, then,
the correct characterisation of just one frame is enough to consider
that the specific lesion event has been detected successfully.

4.4. Baseline approaches (BAs): For more effective evaluation of
the performance of the proposed HAF-DL scheme, comparison
with three of the most competent methodologies reported in the
literature, that constitute the BAs in the current work, is
performed, i.e. BA1 [3], BA2 [5] and BA3 [9].

5. Results and discussion: The performance of HAF-DL scheme is
evaluated through the experimental results derived from the
application of the proposed CD lesion detection technique to the
ten endoscopic videos. To this end, the recognition results for
each classification scenario (ROI, frame and event) are presented.
Table 2 Classification results at ROI scenario. The format #–# corresponds to TP

Methodology Num

1 2 3 4 5
P: 60 N:
660

P: 150 N:
570

P: 5 N:
715

P: 6 N:
714

P: 30 N
690

HAF-DL1 45–592 119–461 4–648 5–602 26–57
HAF-DL2 34–520 91–398 2–659 3–550 19–50
HAF-DL3 40–561 106–430 3–621 3–652 22–52
BA1 31–407 73–351 0–472 0–519 17–45
BA2 36–458 88–401 0–539 3–555 21–49
BA3 39–541 107–473 3–590 4–615 23–54
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Prior to presenting the classification results, Table 1 presents the
mean value ± standard deviation of the CD lesion versus normal
features engaged in HAF-DL1, as calculated from the training
dataset, along with the t-test probability [24] of each feature.
From the t-test results, tabulated in Table 1, it can be concluded
that all the features included in the proposed FV, namely
HAF-DL1, exhibit significant difference and contribute to the
differentiation between abnormal and normal regions.

5.1. ROI scenario: Table 2 presents the classification results in
terms of true positives (TP) and true negatives (TN) for each
video separately for the three FVs of HAF-DL scheme
(HAF-DL1, HAF-DL2 and HAF-DL3) and the three BAs. In the
third row, P and N are the actual number of positives and
negatives, respectively. The format #–# corresponds to TP–TN.

As far as the three FVs of the proposed HAF-DL scheme are con-
cerned, the results in Table 2 make it clear that the raw data from
DL–w curve (FV2) are less efficient in discriminating lesions
from normal tissue than the DL–w synopsis from the statistical
measures and the hyperbola parameters (FV3), in terms of both
sensitivity and specificity. More specifically, FV2 (HAF-DL2)
achieves 40.0–70.0% sensitivity (61.0% mean value) and 63.3–
95.9% specificity (79.0% mean value), while FV3 demonstrates
60.0–75.5% sensitivity (70.0% mean value) and 74.3–91.3% speci-
ficity (84.0% mean value). On the other hand, the combination of
features that describe the local and the global behaviour of the
curve (FV1) provide with the best performance, achieving 75.0–
86.7% sensitivity and 79.0–91.3% specificity, with mean values
81.0 and 87.0%, respectively. The inferior results derived from
HAF-DL2 may be attributed to the increased length of FV2 that
causes the curse of dimensionality effect.

By comparing the results from HAF-DL scheme with those from
the BAs, it can be concluded that the advanced nature of HAF as
well as the powerful texture features extracted from DL are far
more competent in detecting CD lesions. BA1, which attempts
pixel wise erosion detection based on within pixel channel intensity
relationships, proves to be unusable since the sensitivity for two
videos is 0%, and for the rest ranges around the randomness level
(44.4–60.0%). Thus, it can be concluded that exclusive utilisation
of colour features is inappropriate for CD lesions analysis. To con-
tinue, BA2, by using CT-based LBP features, achieves slightly
improved performance, compared to BA1, 50.0–70.0% (60.0%
mean value) sensitivity and 69.4–87.6% (76.0% mean value) speci-
ficity, but the DL-based features prove to be far more efficient. At
last, BA3, by applying MPEG-7 descriptors, although it succeeds
the highest results between BAs (60.0–76.7% sensitivity and
78.6–92.0% specificity), is less competent that HAF-DL1, mainly
in detecting the abnormal regions, as mean sensitivity is 10%
lower than that of the proposed approach.

5.2. Frame scenario: The classification results at a frame level are
presented in Table 3 in a similar way as the results in ROI
–TN and P(N ) is the actual number of positive (negative) ROIs

ber of video

6 7 8 9 10
: P: 20 N:

700
P: 50 N:
670

P: 10 N:
710

P: 83 N:
637

P: 18 N:
702

4 17–639 43–529 8–645 68–551 14–620
1 14–572 31–496 5–681 54–403 12–572
9 15–605 36–562 6–637 60–473 12–599
3 11–483 28–451 6–582 42–461 8–429
9 12–510 33–540 6–622 51–488 9–500
2 15–597 36–586 6–653 58–509 12–571
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Table 3 Classification results at frame scenario. The format #–# corresponds to TP–TN and P(N ) is the actual number of positive(negative) images

Methodology Number of video

1 2 3 4 5 6 7 8 9 10
P:12 N:48 P:45 N:15 P:3 N:57 P:6 N:54 P:14 N:46 P:5 N:55 P:25 N:35 P:10 N:50 P:31 N:29 P:7 N:53

HAF-DL1 10–43 37-14 3–44 5–44 12–43 5–43 22–33 8–44 25-15 6–47
HAF-DL2 6–35 30-11 1–45 3–40 9–35 3–37 16–31 5–46 20-11 5–43
HAF-DL3 8–38 32-13 2–42 3–48 10–38 3–40 18–33 6–45 22-13 5–44
BA1 6–26 26-10 0–35 0–35 9–30 3–29 14–27 6–40 15-12 3–32
BA2 6–28 30-11 0–38 3–38 10–35 3–32 16–30 6–41 20-11 3–37
BA3 8–39 32-15 2–40 4–44 11–40 4–40 18–33 6–44 22-12 5–43
scenario. The format #–# corresponds to TP–TN images, while P
(N) is the number of actual positive (negative) images in each
video sequence. It should be highlighted that these results are
more informative than the previous ones (ROI scenario), since it
is more important to evaluate the ability of a scheme to correctly
identify positive and negative frames than areas inside the frames.
Regarding the FVs of the proposed approach, the first one (FV1)
is the most efficient, as expected, delivering 80.0–100% (84.2%
mean value) sensitivity and 51.7–94.3% (83.7% mean value)
specificity, while FV2 and FV3 achieve 22.2%/8.1% and 15.2%/
3.6% lower mean sensitivity/specificity, respectively. The BAs, as
in the ROI scenario, exhibit rather inferior performance compared
to HAF-DL1. More specifically, BA1, BA2 and BA3 achieve
0.0–64.3% (51.9% mean value), 0.0–71.4% (61.4% mean value)
and 60.0–80.0% (70.9% mean value) sensitivity and 41.4–80.0%
(62.4% mean value), 37.9–85.7% (69.8% mean value) and 41.4–
100% (79.2% mean value) specificity, respectively. It can be
concluded that the proposed methodology is considerably more
efficient in correctly classifying CD lesion frames as it delivers
13.3% higher mean sensitivity than the second most potent
approach (BA3). Regarding specificity, BA3 manages to classify
properly all normal frames in video #2; however, HAF-DL1

achieves the overall highest results. It is noteworthy that the
specificity rates of video #9 range from 37.9 to 51.7% due to
excessive misleading intestinal content (because of poor patient
pre-CE preparation). In case of ignoring these results, the overall
specificity of HAF-DL1 reaches 86.0%.
5.3. Event scenario: Although the above results seem rather
satisfactory, from a medical expert’s point of view they might
seem quite inadequate, especially when it comes to sensitivity,
since almost one out five positive frames is omitted. However,
these rates correspond to individual frame detection and the latter
notion is somewhat unfair. It is not rear that a single lesion
appears in more than one consecutive frames; hence, leading to a
better chance of detection. Table 4 presents the classification
results of event scenario, where the format #/# corresponds to the
Table 4 Classification results at event scenario. The format #/#
corresponds to number of unique lesions detected/total number of unique
lesions

Methodology Percentage of video

1 2 3 4 5 6 7 8 9 10

HAF-DL1 3/3 6/7 1/1 1/1 5/5 2/2 5/6 2/2 3/3 1/1
HAF-DL2 2/3 5/7 1/1 1/1 3/5 1/2 4/6 1/2 2/3 1/1
HAF-DL3 2/3 5/7 1/1 1/1 3/5 1/2 4/6 1/2 2/3 1/1
BA1 2/3 4/7 0/1 0/1 3/5 1/2 3/6 1/2 2/3 1/1
BA2 2/3 5/7 0/1 1/1 3/5 1/2 4/6 1/2 2/3 1/1
BA3 2/3 5/7 1/1 1/1 4/5 2/2 4/6 2/2 2/3 1/1
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number of unique lesions detected/the total number of unique
lesions, in other words, these fractions correspond to the
sensitivity rate. In this Letter, it is observed that HAF-DL1

scheme identified correctly all lesion events for eight out of ten
CE videos, while for the other two videos (#2 and #7) the
success rate was 85.7 and 83.3%, respectively, leading to 93.5%
mean sensitivity. On the other hand, BA1, BA2 and BA3
achieved 54.8, 64.5 and 77.4% mean sensitivity, respectively.
Hence, the proposed scheme, by employing a CT-based adaptive
filtering techniques and DL-based texture features is far more
efficient than other similar techniques in the literature.

5.4. Computational cost: Considering the computational cost, the
unoptimised Matlab (The Mathworks, USA) implementation of
HAF-DL scheme requires 32.2 s to process each 30 s video on a
4-core, 2.67 GHz desktop computer, something quite
disappointing in case of a real-time application. Focusing on even
more efficient realisations, other programming languages (such as
C++), and multithreading programming should be considered.

6. Conclusion: A novel methodology, namely HAF-DL, for
CD-related lesion detection using only the Cr channel of CE
images in YCbCr colour model was presented. The proposed
approach coupled HAF, an adaptive CT-/GA-based filtering
technique for isolating the hidden lesion information, with DL
analysis, a robust texture feature extraction tool, resulting in three
different FVs with increased classification potential. Two lengthy
datasets, one with 800 frames and another with ten 30-s-long CE
videos, were used for the training and the evaluation of the
proposed scheme, respectively. Three classification scenarios
were implemented, concerning the level of detection (ROI, frame
and event), that evidenced the increased effectiveness and
consistency of HAD-DL scheme versus other relevant methods.
The promising performance of HAF-DL approach paves the way
for a holistic computer-aided diagnosis system on the service of
clinicians.

7. Funding and declaration of interests: Conflict of interest: none
declared.
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