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SUMMARY

Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and 

therapy are central questions in cancer biology. We identify 44 recurrently mutated genes and 11 

recurrent somatic copy number variations through whole-exome sequencing of 538 chronic 

lymphocytic leukemia (CLL) and matched germline DNA samples, 278 of which were collected in 

a prospective clinical trial. These include previously unrecognized cancer drivers (RPS15, IKZF3) 

and collectively identify RNA processing and export, MYC activity and MAPK signaling as 

central pathways involved in CLL. Clonality analysis of this large dataset further enabled 

reconstruction of temporal relationships between driver events. Direct comparison between 

matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal 

evolution. Thus, large sequencing datasets of clinically informative samples enable the discovery 

of novel cancer genes and the network of relationships between the driver events and their impact 

on disease relapse and clinical outcome.

INTRODUCTION

In recent years, unbiased massively parallel sequencing of whole exomes (WES) in chronic 

lymphocytic leukemia (CLL) has yielded fresh insights into the genetic basis of this 

disease1-4. Two important constraints have limited previous WES analyses. First, cohort size 
is critical for statistical inference of cancer drivers5, and prior CLL WES series3 had a power 

of only 68%, 23% and 7%, to detect putative CLL genes mutated in 5%, 3% and 2% of 

patients, respectively (http://www.tumorportal.org/power)5. Limited cohort size has also 

curtailed the ability to effectively learn the relationships between CLL driver events, such as 

their co-occurrence and the temporal order of their acquisition. Second, the composition of 
the cohort of prior WES studies has limited the ability to accurately determine the impact of 

drivers and clonal heterogeneity on clinical outcome since they included samples collected 

at variable times from subjects exposed to a variety of therapies.

To overcome these challenges, we analyzed WES data from 538 CLLs, including 278 pre-

treatment samples collected from subjects enrolled on the phase III CLL8 study6. This trial 

established the combination of fludarabine (F), cyclophosphamide (C) and rituximab (R) as 
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the current standard-of-care first-line treatment for patients of good physical fitness, with a 

median of >6 years of follow-up. We herein report the discovery of novel CLL cancer genes, 

the comprehensive genetic characterization of samples from patients prior to exposure to a 

uniform and contemporary treatment, and the uncovering of features contributing to relapse 

from this therapy.

RESULTS

Unbiased candidate CLL genes discovery

We performed WES of CLL and matched germline samples, collected from 278 subjects 

enrolled on the CLL8 trial, with mean read depth of 95.0 and 95.7, respectively 

(Supplementary Tables 1 & 2). Consistent with previous CLL WES studies, we detected a 

mean+/−SD rate of 21.5+/−7.9 silent and non-silent single nucleotide variants [sSNVs] and 

somatic insertions and deletions [sINDELs] per exome (Supplementary Tables 2 & 3)1,3.

We inferred candidate cancer genes in CLL through implementation of MutSig2CV5,7. To 

maximize statistical sensitivity for driver detection5 we combined the CLL8 cohort with two 

previously reported and non-overlapping WES cohorts1,3, thereby increasing the size of the 

cohort to 538 CLLs. This cohort size is expected to saturate candidate CLL gene discovery 

for genes mutated in 5% of patients, and provides 94% and 61% power to detect genes 

mutated in 3% and 2% of patients, respectively5.

We detected 44 putative CLL driver genes, including 18 CLL mutated drivers that we 

previously identified3, as well as 26 additional putative CLL genes (Fig. 1-2, Extended Data 
Fig. 1-2). In total, 33.5% of CLLs harbored mutation in at least one of these 26 additional 

genes. Targeted DNA sequencing as well as variant allele expression by RNAseq 

demonstrated high rates of orthogonal validation (Extended Data Fig. 3).

Of the newly identified putative cancer genes, some were previously suggested as CLL 

drivers in studies using other detection platforms. For example, the suppressor of MYC 

MGA (n=17, 3.2%), which we detected as recurrently inactivated by insertions and nonsense 

mutations, was previously found to be inactivated through deletions8 and truncating 

mutations8,9 in high-risk CLL (Extended Data Fig. 4). A gene set enrichment analysis of 

matched RNAseq data revealed down-regulation of genes that are suppressed upon MYC 

activation in B-cells10 (Supplementary Table 4). In addition to MGA, we report two 

additional candidate driver genes that likely modulate MYC activity (PTPN1111 [n=7, 1.3%] 

and FUBP112 [n=9, 1.7%]), highlighting MYC-related proteins as drivers of CLL.

Another cellular process affected by novel CLL drivers is the MAPK-ERK pathway, with 

8.7% of patients harboring at least one mutation in CLL genes in this pathway. These 

included mutations in RAS genes (NRAS, n=9 and KRAS n=14, totaling 4.1%); BRAF 
(n=21, 3.7%); or the novel putative driver MAP2K1 (n=12, 2%). This finding suggests 

further therapeutic exploration of MAPK-ERK pathway inhibitors in CLL. Intriguingly, 

BRAF mutations in CLL did not involve the canonical hotspot (V600E) seen in other 

malignancies5,13,14, but rather clustered heavily around the activation segment of the kinase 

domain (Fig. 2). This may hint at a different mechanism of activity15,16, and has clinical 
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implications, as BRAF inhibitors are thought to be less effective for non-canonical BRAF 

mutations17,18.

In addition to highlighting novel cellular processes and pathways affected in CLL, many of 

the 26 additional CLL genes more densely annotated pathways or functional categories 

previously identified in CLL19, including RNA processing and export (FUBP1, XPO4, 
ESWR1, NXF1), DNA damage (CHEK2, BRCC3, ELF420 and DYRK1A21), chromatin 

modification (ASXL1, HIST1H1B, BAZ2B, IKZF3) and B cell activity related pathways 

(TRAF2, TRAF3, CARD11).

We discovered a number of putative CLL drivers previously unrecognized in human cancer. 

In a first example, we found that RPS15 was recurrently mutated (n=23, 4.3%), with 

mutations localized to the C-terminal region (Fig. 2) at highly conserved sites (median 

conservation score of 94/100). This component of the S40 ribosomal subunit, has not been 

extensively studied in cancer, although rare mutations have been identified in Diamond-

Blackfan anemia22. A gene set enrichment analysis revealed upregulation of gene sets 

related to adverse outcome in CLL as well as immune response gene sets (Supplementary 
Table 4). In another example of a previously unrecognized cancer gene, we identified 

recurrent L162R substitutions (n=11, 2.0%) in IKZF3, targeting a highly conserved amino 

acid (93/100 conservation score). This gene is a key transcription factor in B cell 

development23, and its upregulation has been associated with adverse outcome24,25.

In addition to sSNVs and sINDELs, we characterized somatic copy number variations 

(sCNVs) directly from the WES data (Extended Data Fig. 5, Supplementary Tables 5 & 6). 

When we accounted for all 55 identified driver events – including non-silent sSNVs and 

sINDELs in putative CLL genes (n=44), and recurrent sCNVs (n=11) —91.1% of CLLs 

contained at least one driver. Moreover, 65.4% of CLLs now harbor at least 2 drivers, and 

44.4% at least 3 drivers, compared with 55.9% and 31.8% were we to exclude the 26 

additional CLL genes.

Drivers and CLL characteristics

The larger cohort size also provided statistical power to examine associations between 

genetic alterations and key CLL features. First, we examined whether mutations differed 

between IGHV mutated and unmutated subtypes, the two main subtypes of CLL. In 

agreement with the relative clinical aggressiveness of IGHV unmutated CLL, most drivers 

were found in a higher proportion in this subtype (Extended Data Fig. 6A). Only three 

driver genes were enriched in the IGHV mutated CLL (del(13q), MYD88, CHD2), 

suggesting a role for these specific alterations within the oncogenic process of this subtype.

Second, since therapy could lead to selection of particular driver events, we examined the 33 

samples (6.2%, none enrolled on CLL8) that had received therapy prior to sampling. Prior 

treatment was associated with enrichment in TP53 and BIRC3 mutations, del(17p) and 

del(11q) as previously indicated26, as well as in mutated DDX3X and MAP2K1, suggesting 

their selection by therapeutic interventions (Extended Data Fig. 6B).
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Third, we examined whether coherent patterns of co-occurrence of driver events were 

evident, limiting our analysis to the 31 drivers with >10 affected patients. Of 465 possible 

pairs, 11 combinations had statistically significant high or low co-occurrence (Extended 
Data Fig. 6C-D). As expected, a high degree of co-occurrence was found between mutated 

TP53 and del(17p), and between mutated ATM and del(11q). Both mutated ATM and 

del(11q) significantly co-occurred with amp(2p), and associations between presence of 

tri(12) with mutated BIRC3 and with mutated BCOR were also found. A significantly low 

rate of co-occurrence was seen between del(13q) and tri(12).

Fourth, we examined the temporal sequence of driver acquisition in the evolutionary history 

of CLL. To do this, we computed the cancer-cell fraction (CCF) of each mutation across the 

538 samples, and identified mutations as either clonal or subclonal27 (58.1% of mutations 

classified as subclonal). Both clonal and subclonal sSNVs were similarly dominated by C>T 

transitions at C*pG sites (Extended Data Fig. 7).

We first classified driver events likely acquired earlier or later in the disease course based on 

the proportion of cases in which the driver was found as clonal (Fig. 3A). This large dataset 

further enabled the inference of temporal relationships between pairs of drivers. We 

systematically identified instances in which a clonal driver was found together with a 

subclonal driver within the same sample, as these pairs reflect the acquisition of one lesion 

(clonal) followed by another (subclonal), providing a temporal ‘edge’ leading from the 

former to the latter28,29. For each driver, we calculated the relative enrichment of out-going 

edges compared to in-going edges to define early, late and intermediary drivers 

(Supplementary Table 7). For 23 pairs connected by at least 5 edges, we further established 

the temporal relationship between the two drivers in each pair, and thereby constructed a 

temporal map of the evolutionary trajectories of CLL (Supplementary Table 8, Fig. 3B). 

This network highlights sCNVs as the earliest events with two distinct points of departure 

involving del(13q) and tri(12). It further demonstrates an early convergence towards 

del(11q) and substantial diversity in late drivers. Finally, this analysis suggests that in the 

case of the tumor suppressor genes ATM and BIRC3, copy loss precedes sSNVs and 

sINDELs in biallelic inactivation.

Impact on clinical outcome

We examined whether presence of any of the drivers detected in at least 10 of the 278 pre-

treatment CLL8 samples was associated with impact on clinical outcome (Fig. 4A, 
Extended Data Fig. 8-9; the genomics analysis team was blinded to the clinical outcome 

data). Previous investigations suggested an impact for 7 CLL genes (SF3B1, ATM, TP53, 
XPO1, EGR2, POT1 and BIRC3)30-33. We found shorter progression-free survival (PFS) 

associated only with TP53 and SF3B1 mutations. Of the newly identified recurrent lesions 

evaluated (MGA, BRAF and RPS15), we observed a shorter PFS with mutated RPS15 
(Bonferroni P = 0.024).

Presence of a detectable pre-treatment subclonal driver has been previously associated with 

shorter remissions in patients treated with heterogeneous therapies3. In the CLL8 cohort, we 

again found that the presence of a pre-treatment subclonal driver was associated with a 

significantly shorter PFS (hazard ratio (HR) 1.6 [95%CI 1.2-2.2, P = 0.004). This 
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association remained significant in both the FC and FCR treatment arms (Fig. 4B), with a 

non-significant trend when IGHV mutation status was added to a multivariable model in 

addition to the treatment arm (1.3 [0.9-1.9], P=0.102).

Clonal evolution at disease relapse

To define clonal evolution in disease relapse, we performed WES on matched samples 

collected at the time of relapse from 59 of 278 CLL8 subjects (Supplementary Tables 9 & 
10). We observed large clonal shifts between pre-treatment and relapse samples in the 

majority of cases (57 of 59), thus demonstrating that CLL evolution after therapy is the rule 

rather than the exception (Fig. 5A). The relapse clone was already detectable in pre-

treatment WES in 18 of 59 (30%) cases, demonstrating that the study of pre-treatment 

diversity anticipates the future evolutionary trajectories of the relapsed disease34. By 

targeted deep sequencing, we detected relapse drivers in 11 of the 41 of pre-treatment 

samples in which WES did not detect the relapse driver. In 7 of these 11 CLLs, at least one 

relapse driver was detected in the pretreatment sample (Supplementary Table 10).

We further compared the pre-treatment and relapse CCF for each driver, and observed three 

general patterns. First, tri(12), del(13q) and del(11q), suggested as early drivers (Fig. 3B), 

tended to remain stably clonal despite marked, often branched, evolution (Fig. 5B [CLL 

cases: GCLL-115, 307], Fig. 5C-top; Extended Data Fig. 10). This confirms that these are 

indeed early events likely shared by the entire malignant population. Second, TP53 
mutations and del(17p) demonstrated increases in CCF upon relapse, suggesting a fitness 

advantage under therapeutic selection (Fig. 5B [GCLL-27, Fig. 5C-middle]). The novel 

driver IKZF3 increased in CCF in 3 of 4 relapse cases (and remained clonal in the fourth), 

supporting that these mutations likely enhance fitness. Third, mutations in SF3B1 and ATM, 

identified as a temporally intermediate or late drivers, seemed just as likely to fall in CCF as 

they were to rise (Fig. 5C-Bottom). These results suggest that within this therapeutic context 

such mutations do not provide as strong of a fitness advantage as TP53 disruption. In 

addition, we observed 9 instances each of multiple distinct alleles of ATM and SF3B1 
mutations within the same CLL, (e.g., GCLL-307 in Fig. 5B), indicating convergent 

evolution of these late-occurring CLL drivers.

This series also informs us regarding the mutagenesis of the tumor suppressor genes TP53 
and ATM, where biallelic inactivation is common. In the case of ATM, we typically find a 

fixed clonal del(11q22.3) and subclones harboring sSNVs affecting the other allele that shift 

in CCF over time (e.g., GCLL -307). We confirmed that the breakpoints of sCNVs in 

matched relapse and pre-treatment samples were highly consistent, likely representing the 

same deletion event. These data thus suggest that mono-allelic ATM deletion provides a 

fitness advantage that enables the expansion of the malignant population with subsequent 

growth of multiple co-existing clones that harbor a second hit in the remaining allele. Thus 

while a biallelic lesion is clearly selected for (Extended Data Fig. 6C), the longitudinal data 

support the temporal analysis (Fig. 3B) in which del(11q) precedes ATM mutations, 

reflecting the higher likelihood of a focal copy number loss compared with a deleterious 

point mutation35,36. In contrast, we consistently observed a concordant rise of del(17p) and 

TP53 mutations in all 12 CLLs harboring both of these events, and none of these cases 

Landau et al. Page 6

Nature. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exhibited multiple shifting TP53 sSNVs/sINDELs. These observations suggest that a true 

biallelic inactivation of TP53 is required, and indeed, across the 538 CLL samples, the odds 

ratio for co-occurrence of del(17p) and TP53 mutation was far greater than the odds ratio for 

co-occurrence of del(11q) and ATM mutation (97.22 vs. 10.99, respectively). These 

observations are in agreement with a recent analysis that suggested that with the exception 

of a few genes such as TP53, tumor suppressor genes in sporadic cancers are 

haploinsufficient to begin with, and that the second hit only further builds on this fitness 

advantage37.

CONCLUSIONS

This study of WES in CLL enabled a comprehensive identification of putative cancer genes 

in CLL, generating novel hypotheses regarding the biology of this disease, and identifying 

previously unrecognized putative CLL drivers such as RPS15 and IKZF3. The detailed 

characterization of the compendium of driver lesions in cancer is of particular importance as 

we strive to develop personalized medicine, as driver genes may inform prognosis (e.g., 

RPS15 mutations) and identify lesions that may be targeted by therapeutic intervention (e.g., 

MAPK pathway mutations and specifically the unexpected enrichment for non-canonical 

BRAF mutations). Through the inclusion of samples collected within a landmark clinical 

trial with mature outcome data, we could further study of the impact of genetic alterations in 

the context of the current standard-of-care front line therapy. As targeted therapy is rapidly 

transforming the treatment algorithms for CLL, future studies will be required to reexamine 

these associations in this context38.

An important benefit of the larger cohort size is the enhanced ability to explore relationships 

between driver lesions based on patterns of their co-occurrence. Focusing on temporal 

patterns of driver acquisition – based on the distinction between clonal versus subclonal 

alterations in a cross-sectional analysis – we derived a temporal map for the evolutionary 

history of CLL. In the context of relapse after first-line fludarabine based therapy, we note 

highly frequent clonal evolution, and that the future evolutionary trajectories were already 

anticipated in the pre-treatment sample in one third of cases with WES.

This study provides a glimpse of some of the anticipated fruits of the application of novel 

genomic technologies to growing cohort sizes across leukemias: the continued discovery of 

novel candidate cancer genes, the deeper integration of genetic analysis with standardized 

clinical information (collected within clinical trials) to inform prognosis and therapy, and the 

ability to delineate the complex network of relationships between cancer drivers in the 

history and progression of the malignant process.
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Extended Data

Extended Data Figure 1. Candidate CLL cancer genes discovered in the combined cohort of 538 
primary CLL samples
Significantly mutated genes identified in 538 primary CLL. Top panel: the rate of coding 

mutations (mutations per megabase) per sample. Center panel: Detection of individual gene 

found to be mutated (sSNVs or sINDELs) in each of the 538 patient samples (columns), 

color-coded by type of mutation. Only one mutation per gene is shown if multiple mutations 

from the same gene were found in a sample. Right panel: Q-values (red: Q<0.1; purple 

dashed: Q<0.05) and Hugo Symbol gene identification. New candidate CLL genes are 

marked with asterisks (*) Left panel: The percentages of samples affected with mutations 

(sSNVs and sINDELs) in each gene. Bottom panel: plots showing allelic fractions and the 

spectrum of mutations (sSNVs and sINDELs) for each sample.
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Extended Data Figure 2. Cellular networks and processes affected by putative CLL drivers
Putative CLL cancer genes cluster in pathways that are central to CLL biology such as 

Notch signaling, inflammatory response and B cell receptor signaling. In addition, proteins 

that participate in central cellular processes such as DNA damage repair, chromatin 

modification and mRNA processing, export and translation are also recurrently affected. 

Boxed in yellow—new CLL subpathways highlighted by the current driver discovery effort. 

Red circles- putative driver genes previously identified3 ; purple circles- newly identified in 

the current study.
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Extended Data Figure 3. RNAseq expression data for candidate CLL genes and targeted 
candidate driver validation
A. Matched RNAseq and WES data were available for 156 CLLs (103 CLLs previously 

reported in Landau et al.3 and 53 CLLs from the ICGC studies1). From the WES of these 

156 cases, we identified 318 driver mutations (sSNVs and sINDELs). For each site, we 

quantified the number of alternate reads corresponding to the somatic mutation in matched 

RNAseq data. We subsequently counted the number of instances in which a mutation was 

detected (‘detected’) and compared it to the number of instances in which mutation detection 

had >90% power based on the allelic fraction in the WES and the read depth in the RNAseq 

data (‘powered’). Overall, we detected 78.1% of putative CLL gene mutations at sites that 

had >90% power for detection in RNAseq data B. Targeted orthogonal validation (Access 

Array System, Fluidigm) was performed for 71 mutations (sSNVs and sINDELs) in putative 

CLL genes, affecting 47 CLLs from the CLL8 cohort (selected based on sample 

availability). With a mean depth of coverage of 7472X, 65 of the 71 mutations (91.55%) 
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validated, with a higher variant allele fraction compared with normal sample DNA (binomial 

P <0.01).

Extended Data Figure 4. Gene mutation maps for candidate CLL genes
Individual gene mutation maps are shown for all newly identified candidate CLL cancer 

genes not included in Fig. 2. The plots show mutation subtype (e.g., missense, nonsense etc) 

and position along the gene.
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Extended Data Figure 5. CLL copy number profiles
Copy number profile across 538 CLLs detected from WES data from primary samples (see 

Methods).
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Extended Data Figure 6. Annotation of drivers based on clinical characteristics and co-
occurrence patterns
A. Putative drivers affecting greater than 10 patients were assessed for enrichment in IGHV 
mutated vs. unmutated CLL subtype (Fisher's exact test, magenta line denotes P = 0.05). B. 

Putative drivers affecting greater than 10 patients were assessed for enrichment in samples 

that received therapy prior to sampling (Fisher's exact test). Putative drivers affecting greater 

than 10 patients were tested for co-occurrence. Significantly high (C) or low (D) co-

occurrences are shown (Q<0.1, Fisher's exact test with BH FDR, after accounting for prior 

therapy and IGHV mutation status, see Methods).

Extended Data Figure 7. Mutation spectrum analysis, clonal vs. subclonal sSNVs
The spectrum of mutation is shown for the clonal and subclonal subsets of coding somatic 

sSNVs across WES of 538 samples. The rate is calculated by dividing the number of 

trinucleotides with the specified sSNVs by the covered territory containing the specified 

trinucleotide. Both clonal and subclonal sSNVs were similarly dominated by C>T 

transitions at C*pG sites. Thus, this mutational process that was previously associated with 

aging39, not only predates oncogenic transformation (since clonal mutations will be highly 

enriched in mutations that precede the malignant transformation40), but also is the dominant 

mechanism of malignant diversification after transformation in CLL.
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Extended Data Figure 8. The CLL driver landscape in the CLL8 cohort
Somatic mutation information shown across the 55 candidate CLL cancer genes and 

recurrent sCNVs (rows) for 278 CLL samples collected from patients enrolled on the CLL8 

clinical trial primary that underwent WES (columns). Recurrent sCNA labels are listed in 

blue, and candidate CLL cancer genes are listed in bold if previously identified in Landau et 

al.3, and with an asterisk (*) if newly identified in the current study.
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Extended Data Figure 9. CLL8 patient cohort clinical outcome (from 278 patients) information 
by CLL cancer gene
Kaplan-Meier analysis (with logrank P values) for putative drivers not associated with 

significant impact on progression free survival (PFS) or overall survival (OS) in the cohort 

of 278 patients that were treated as part of the CLL8 trial. For candidate CLL genes tested 

here for the first time regarding impact on outcome, a Bonferroni P value is also shown.
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Extended Data Figure 10. Comparison of pre-treatment and relapse cancer cell fraction (CCF) 
for non-silent mutations in candidate CLL genes across 59 CLLs
For each CLL gene mutated across the 59 CLLs that were sampled longitudinally, the modal 

CCF is compared between the pre-treatment and relapse samples. CCF increases (red), 

decreases (blue) or stable (grey) over time are shown (in addition to CLL genes shown in 

Figure 6). A significant change in CCF over time (red or blue) was determined if the 95%CI 

of the CCF in the pre-treatment and relapse samples did not overlap.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The landscape of putative driver gene mutations and recurrent somatic copy number 
variations in CLL
Somatic mutation information is shown across the 55 putative driver genes and recurrent 

sCNVs (rows) for 538 primary patient samples (from CLL8 [green], Spanish ICGC [red], 

DFCI/Broad [blue]) that underwent WES (columns). Blue labels- recurrent sCNVs; Bold 

labels- putative CLL cancer genes previously identified in Landau et al.3); asterisked labels- 

additional cancer genes identified in this study. Samples were annotated for IGHV status 

(black-mutated; white-unmutated; red-unknown), and for exposure to therapy prior to 
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sampling (black-prior therapy; white – no prior therapy; red-unknown prior treatment 

status).
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Figure 2. Selected novel putative driver gene maps
Individual gene mutation maps for select putative drivers, showing mutation subtype (e.g., 

missense), position and evidence of mutational hotspots, based on COSMIC database 

information (remaining gene maps shown in Extended Data Fig. 4).
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Figure 3. Inferred evolutionary history of CLL
A. The proportion in which a recurrent driver is found as clonal or subclonal across the 538 

samples is provided (top), along with the individual cancer cell fraction (CCF) values for 

each sample affected by a driver (tested for each driver with a Fisher's exact test, comparing 

to the cumulative proportions of clonal and subclonal drivers excluding the driver evaluated). 

Median CCF values are shown (bottom, bars represent the median and IQR for each driver). 

B. Temporally direct edges are drawn when two drivers are found in the same sample, one in 

clonal and the other in subclonal frequency. These edges are used to infer the temporal 

Landau et al. Page 23

Nature. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences in CLL evolution, leading from early, through intermediate to late drivers. Note 

that only driver pairs with at least 5 connecting edges were tested for statistical significance 

and only drivers connected by at least one statistically significant edge are displayed (see 

Methods, and Supplementary Tables 6 & 7).
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Figure 4. Associations of CLL drivers with clinical outcome
A. Kaplan-Meier analysis (with logrank P values) for putative drivers with associated impact 

on progression free survival (PFS) or overall survival (OS) in the cohort of 278 patients that 

were treated as part of the CLL8 trial. For candidate CLL genes tested here for the first time 

regarding impact on outcome, a Bonferroni Q value is also shown. B. Presence of a 

subclonal driver is associated with shorter PFS, in both the FC and FCR arms, and a trend 

towards shorter OS.
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Figure 5. Matched pre-treatment and relapse samples reveal patterns of clonal evolution in 
relation to therapy
A. The number and proportion of the patterns of clonal evolution of CLLs studied at pre-

treatment and at relapse. B. Selected plots of 2D clustering of pre-treatment and relapse 

cancer cell fraction (CCF) demonstrating clonal stability of tri(12) (CLL case: GCLL115), 

concordant increase in CCFs of TP53 and del(17p) (GCLL27), clonal shifts in ATM sSNVs 

in a sample with clonally stable monoallelic deletion of ATM (GCLL307). Red coloring was 

added when greater than half of the CCF probability indicated >0.1 increase in CCF at 
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relapse. C. Clonal evolution of CLL drivers. Left panel – for each driver with at least 4 

instances detected across the 59 CLLs, the proportion of instances where the CCF increased 

(red), decreased (blue) or remained stable (grey) over time is shown (see Methods for details 

of the statistical analysis). The driver events were distributed to three main groups: 

predominately stable events (top); predominately increasing CCF (middle), and all other 

patterns (bottom). Right panel - Comparison (modal CCF with 95%CI) between pre-

treatment and relapse samples for select CLL drivers (see Extended Data Fig. 10 for the 

remaining driver events from the cohort of 59 CLLs).
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