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family protein possibly involved
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Abstract: Lpg0406, a hypothetical protein from Legionella pneumophila, belongs to carboxymuco-
nolactone decarboxylase (CMD) family. We determined the crystal structure of lpg0406 both in its

apo and reduced form. The structures reveal that lpg0406 forms a hexamer and have disulfide

exchange properties. The protein has an all-helical fold with a conserved thioredoxin-like active
site CXXC motif and a proton relay system similar to that of alkylhydroperoxidase from Mycobacte-

rium tuberculosis (MtAhpD), suggesting that lpg0406 might function as an enzyme with peroxidase

activity and involved in antioxidant defense. A comparison of the size and the surface topology of
the putative substrate-binding region between lpg0406 and MtAhpD indicates that the two enzymes

accommodate the different substrate preferences. The structural findings will enhance understand-

ing of the CMD family protein structure and its various functions.
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Introduction

The carboxymuconolactone decarboxylase (CMD) fam-

ily includes alkylhydroperoxidase (AhpD), g-CMD, and

a distinct member protein TTHA0727 from Thermus

thermophiles HB8. AhpD participates in bacterial anti-

oxidant defense by regenerating its partner AhpC for

further reduction of peroxides into alcohols. It has a

conserved thioredoxin-like active site CXXC motif criti-

cal for the peroxidase activity. g-CMD catalyzes the con-

version of g-Carboxymucolactone to b-ketoadipate enol-

lactione in the b-ketoadipate pathway,1 which is a key

part of the degradation process of aromatic compounds

in bacteria and in some eukaryotes. However, the active

site residues of g-CMD have not been identified.

TTHA0727 lacks peroxidase activity due to the absence

of the CXXC motif and its function is unknown.2

Known structures for the CMD family include

Mycobacterium tuberculosis AhpD (MtAhpD, PDB

codes 1knc, 1gu9, 1me5),3–5 the protein TTHA0727

(PDB code 2cwq),2 protein PA0269 from Pseudomonas

aeruginosa (PDB code 2o4d)6 and a number of unpub-

lished structures (PDB codes 1p8c, 1vke, 3d7i, 2qeu,

2af7, and 3bey). According to the previous studies,2–7

the CMD family proteins mediate a various biochemi-

cal reactions and contain a conserved structural motif,

CMD core, which is involved in the formation of the

structural core region and stable multimerization.

Lpg0406 from Legionella pneumophila is 113

amino acids long, with a molecular mass of 12.2 kDa.

Size-exclusion chromatography of the protein expressed

in Escherichia coli suggests that lpg0406 is present as

an oligomeric, possibly hexameric, species. Similar to

AhpD, the lpg0406 sequence has a CXXC motif. The

two cysteines are separated by a glycine and a proline.

In order to better understand the details of the biologi-

cal functions, we determined the crystal structure

of lpg0406 in its apo-state and in reduced form.

Our structural analyses suggest that lpg0406 might

function as an enzyme with peroxidase activity and

involved in antioxidant defense.

Results and Discussion

The refined model contains three lpg0406 monomers

in the asymmetric unit. The lpg0406 protomer has

an AhpD-like fold consisting of six a helices (a1-a6),

a V-shaped N-terminal helical hairpin (a1, a2)

followed by the three-helical CMD core (a3-a5, resi-

dues 44-94) and C-terminal helix (a6).[Fig. 1(A)]

Structure homology search by the DALI server8

revealed that 0406 has the highest similarity to

TM1620 from Thermotoga maritima (PDB codes 1p8c

and 1vke), with a Z score of 15.5 and a root-

mean-square deviation (RMSD) of 1.8 Å for 110

common Ca atoms. The superimposition of lpg0406

monomer structure and its homologs showed that the

architecture of the CMD core motif is remarkably con-

served, and supported that the three a-helix structure

feature is the common structural motif for the CMD

family proteins. Despite of the high similarity in CMD

core, there are some significant differences in the size

and orientation of the other parts [Fig. 1(B)].

The structures of the three lpg0406 chains are

essentially similar, with RMSD (root mean square

deviations) of only 0.06 Å for main chain atoms. The

three monomers form a homohexamer with their

crystallographic symmetry (CS) mates [Fig. 1(C)].

The interactions between helices a2-a5, including the

typical CMD-CMD contacts, results in three tight

dimers formation (Chains A-B’, B-A’, and C-C’). The

interactions between chains A-A’, B-C’, C-B’ by using

a2 further stabilize the hexamer ring structure.

Hydrophobic interactions make the major contribu-

tion to the stability of the whole ring architecture.

Structural superposition of MtAhpD and lpg0406

structures indicated that lpg0406 dimer and hexamer

are structurally related to MtAhpD monomer and

trimer, respectively [Fig. 1(D)]. Similar to MtAhpD

and TTHA0727 structures, there is a small tunnel in

the center of lpg0406 hexameric ring [Fig. 1(C)].

In apo-form structure, Cys61 and Cys64 are mod-

eled in two alternative conformations for oxidized

and reduced states, which indicate lpg0406 probably

has disulfide exchange properties [Fig. 1(E)]. To test

if the disulfides could be fully converted into sulf-

hydryls, we resolved the lpg0406 structure in reduced

form. When soaked for 5 min in a solution consisting

of 2mM DTT, these crystals were found to be repro-

ducibly changed to the space group I213 with an

intact dimer in the asymmetric unit. However, this

dimer appears to trimerize by the crystallographic

3-fold symmetry axis to form a homohexameric ring

structure. The hexamer remained intact, and overlap

very well after aligning with its apo-form structure.

As expected, the cysteine residues in the active site

CXXC motif were present in the reduced form, in

which the sulfhydryls of the two cysteines lie 3.6 Å

apart [Fig. 1(E)]. Except this, the reduction induced

no other notable conformational change.

In MtAhpD structure, the proton relay system

consists of five residues, Glu118, Cys130, His132,

Cys133, and His137, and one water molecule.4,5

Lpg0406 shares the CXXC signature with AhpD. The

motif is located at the fourth helix (a4) and near the

central cavity of the hexamer. Structure-based align-

ment revealed that the active site of lpg0406 is struc-

turally similar to that of MtAhpD [Fig. 2(A)]. His68

forms hydrogen bond with Cys64 via a structurally

conserved water molecule. The carboxylate anion of

Glu49 is hydrogen-bonded to the nitrogen of His68.

These hydrogen-bonding interactions provide a rea-

sonable mechanism for deprotonation of Cys64, the

residue thought to react with the OAO bond of perox-

ides [Fig. 2(B)]. In MtAhpD, His132 could serve as a

base for deprotonation of either cysteine. The ana-

logues position in lpg0406 is occupied by Gly63,
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which does not have the same effect. Based on the

analysis of PA0269 structure, the catalytic role of

His132 in MtAhpD could be played by tyrosine.6 In

lpg0406 structure, the location of Tyr100* (from a

neighboring subunit) 4.6 Å from Cys61, and Tyr91’

(from another neighboring subunit) 6.5 Å from Cys64

and 3.8 Å from His68 suggested that they might be

involved in the proton relay system [Fig. 2(B)]. There-

fore, the hexameric assembly may be of importance

in maintaining the structure of the active site, sug-

gesting the hexameric form is the functioning biologi-

cal unit.

On the basis of the structures of MtAhpD and

protein TTHA0727, the putative substrate binding

Figure 1. A: Cartoon representation of lpg0406 structure (Stereo view). The N and C termini and each of the six alpha helices

are labeled. An interactive view is available in the electronic version of the article. B: Superposition of lpg0406 structure (green),

TM1620 from T. maritima (PDB code 1p8c) (red), MJ0742 from M. jannaschii (PDB code 3d7i) (cyan), putative CMD from B. xen-

ovorans LB400 (PDB code 2qeu; orange), g-CMD from M. thermoautotrophicum (PDB code 2af7; blue), O27018 from M. ther-

moautotrophicum (PDB code 3bey; yellow), and TTHA0727 from T. thermophilus HB8 (PDB code 2cwq; magenta). C: Ribbon

representation and the electrostatic surface plots of the hexamer organization of lpg0406 with each of the subunits colored sep-

arately in green (chain A), cyan (chain B), magenta (chain C), limon (chain A’), blue (chain B’), and pink (chain C’). The positive

surface was drawn in blue and negative surface in red. Arrows point to the putative substrate binding site. An interactive view

is available in the electronic version of the article. (D) Superposition of the lpg0406 dimer (colored in cyan and green) and

MtAhpD monomer (orange). E: Electron density map contoured at 1.0d for lpg0406 active-site cysteines in apo form (left 1.9 A)

and reduced (right, 2.1 A). 83 3 81mm (300 3 300 DPI).

This figure also includes an iMolecules 3D interactive version that can be accessed via the link at the bottom of this figure’s caption.
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site is a cleft region which extends from the outer,

solvent-exposed edge to the active site CXXC motif

[Figs. 1(C) and 2(C)]. All helixes appear to be

involved in the binding site construction. The

lpg0406 substrate-binding site is a pocket, with posi-

tively charged outer edges and internal hydrophobic

region, formed by residues from a1-a4 of an individ-

ual subunit, and a5’, a6* of two different neighbor-

ing subunits. Despite of the high similarity in active

site, there are some notable differences in the size

and the surface topology of the putative substrate-

binding region between lpg0406 and MtAhpD [Fig.

2(C)]. Substrate-binding pocket of lpg0406 is much

shallower and smaller than that of MtAhpD, sug-

gesting that the two enzymes accommodate the dif-

ferent substrate preferences.

Taken together, the structural findings suggested

that lpg0406 is probably an enzyme with peroxidase

activity and involved in antioxidant defense. There-

fore, lpg0406 is more functionally related to AhpD

than g-CMD and protein TTHA0727.

Materials and Methods

Cloning, expression, purification, and crystallization

were described as shown in the electronic Support-

ing Information.

Figure 2. A: Structure-based sequence alignment of lpg0406, MtAhpD (PDB code 1knc) and TTHA0727 (PDB code 2cwq).

B: Superposition of the putative proton relay system of lpg0406 (green) and MtAhpD (orange). The “’” and “*” indicate the

residues from the different neighboring subunits. C: Comparison of the electrostatic surface plots of putative substrate-binding

pocket between lpg0406 (left) and MtAhpD (right). The positive surface was drawn in blue and negative surface in red. a1, a2,

a3, and a4 are from a single subunit, a5’ and a6* are from different neighboring subunits.
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Data collection and processing
The apo-lpg0406 X-ray data were collected at 100 K

from a single crystal diffracting X-ray to 1.9 Å resolu-

tion at a wavelength of 0.97915 Å. A total of 250 images

were recorded with 1 s exposure using an oscillation

range of 18. While the SeMet-lpg0406 X-ray data were

collected at 100 K from a single crystal diffracting

X-ray to 2.3 Å resolution at a wavelength of 0.97911 Å.

A total of 265 images were recorded with 0.5s exposure

at a crystal-to-detector distance of 250 mm using an

oscillation range of 18. Reduced_lpg0406 crystals were

obtained by soaking apo-lpg0406 crystals with 2 mM

DTT and the diffraction were collected in a similar way

as described above but at a wavelength of 0.97861 Å.

The SeMet-lpg0406 data were processed with

Mosflm9 and scaled using the CCP4 suite.10 Native

data sets for apo and reduced crystals were processed

and scaled with HKL-200011 and programs from the

CCP4 package.10 All crystal parameters and data

collection statistics are summarized in Table I.

Structure determination and refinement

The initial phase was calculated using AutoSol, and an

initial model was built using AutoBuild from PHE-

NIX.12 Using the native data set and the initial model

as a search coordinate, the structure of apo-lpg0406

was determined by molecular replacement with the

Phaser program.13 The model was completed by itera-

tive manual building in Coot14 and refined with

REFMAC15 and PHENIX.12 The reduced-lpg0406

structure was solved by molecular replacement using

the apo-lpg0406 monomer structure as a search model.

Both structures contain all the residues except the

recombinant 6-his tag and the initiation methionine.

All final crystallographic models were evaluated using

MolProbity.16 The refinement statistics are summar-

ized in Table I. The coordinates and structure factors

have been deposited in the Protein Data Bank under

the accession code 5dik and 5dip.

Sequence analysis and structural presentation

Amino acid sequences were aligned by Multalin,17

and the figure of structure-based sequence align-

ment was generated using ESPript.18 All illustra-

tions were prepared with PyMOL.19
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Table I. Data Collection and Refinement Statistics

Apo Reduced Se-peak

Wavelength (Å) 0.97915 0.97861 0.97911
Space group C2221 I213 C2221

Cell parameters
a/b/c (Å) 62.80/104.81/106.75 145.71/145.71/145.71 62.65/104.75/106.41
Resolution range (Å) 50–1.9(1.97–1.90) 50–2.1 (2.14–2.10) 48–2.3 (2.42–2.30)
No. of unique reflections 27,567 (2759) 30,286 (1523) 15,238 (2304)
Rmerge

a (%) 11.1 (41.4) 11.2 (42.5) 10.6 (17.6)
I/r(I) 9.0 (3.6) 29.1 (10.6) 15.5 (10.8)
Redundancy 2.9 (2.9) 20.3 (20.8) 9.8 (10.3)
Completeness (%) 98.6 (99.9) 100 (100) 95.6 (100)
Anomalous completeness 95.5 (100)
Anomalous multiplicity 5.2 (5.3)
Refinement summary
R factorb (%) 18.3 13.4
Free R factorc (%) 20.4 15.8
rmsdd in bond lengths (Å) 0.011 0.007
rmsd in bond angles (8) 1.38 1.12
No. of protein atoms/ASU 2575 1762
No. of water molecules/ASU 79 210
Ramachandran plot (%)
Ramachandran favored 99 99
Ramachandran outliers 0 0
Average B-factor(Å2) 24.60 24.8
PDB ID code 5DIK 5DIP

Values in parentheses refer to the highest resolution shell.
a Rmerge5

P
|Ihkl -< Ihkl >|/< Ihkl >, where Ihkl is a single value of the measured intensity of the hkl reflection

and< Ihkl> is the mean of all measured values of the intensity of the hkl reflections.
b R-factor 5

P
h | |Fobs|2|Fcalc| |/

P
|Fobs|, where |Fobs| and |Fcalc| are the observed and calculated structure factor

amplitudes, respectively. Summation includes all reflections used in the refinement.
c Free R factor 5

P
| |Fobs|2|Fcalc| |/

P
|Fobs|, evaluated for a randomly chosen subset of 5% of the diffraction data not

included in the refinement.
d Root-mean square-deviation from ideal values.
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