
Influence of diffusion on the kinetics of
multisite phosphorylation

Irina V. Gopich* and Attila Szabo

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,
Bethesda, Maryland 20892

Received 29 March 2015; Accepted 5 June 2015

DOI: 10.1002/pro.2722
Published online 9 June 2015 proteinscience.org

Abstract: When an enzyme modifies multiple sites on a substrate, the influence of the relative diffu-

sive motion of the reactants cannot be described by simply altering the rate constants in the rate
equations of chemical kinetics. We have recently shown that, even as a first approximation, new

transitions between the appropriate species must also be introduced. The physical reason for this

is that a kinase, after phosphorylating one site, can rebind and modify another site instead of dif-
fusing away. The corresponding new rate constants depend on the capture or rebinding probabil-

ities that an enzyme-substrate pair, which is formed after dissociation from one site, reacts at the

other site rather than diffusing apart. Here we generalize our previous work to describe both ran-
dom and sequential phosphorylation by considering inequivalent modification sites. In addition,

anisotropic reactive sites (instead of uniformly reactive spheres) are explicitly treated by using

localized sink and source terms in the reaction-diffusion equations for the enzyme-substrate pair
distribution function. Finally, we show that our results can be rederived using a phenomenological

approach based on introducing transient encounter complexes into the standard kinetic scheme

and then eliminating them using the steady-state approximation.

Keywords: enzyme; kinase; binding; catalysis; translational and rotational diffusion; encounter com-

plex; steady-state approximation; escape and capture probabilities; splitting probability

Introduction

Posttranslational modification of proteins plays an

important role in signal transduction. Using the rate

equation of chemical kinetics, it has been shown

that phosphorylation–dephosphorylation cycles

exhibit remarkable behavior1 such as ultrasensitive

response to small changes in the relative kinase and

phosphatase concentrations2 and the existence of

multiple steady states when the substrates have

multiple modification sites.3,4 A few years ago, it

was found from simulations of the diffusive dynam-

ics of hundreds of reactants that when diffusion is

sufficiently slow, the kinetics can be dramatically

altered due to the natural emergence of processive

phosphorylation.5 After modifying one site, the

enzyme–substrate pair do not always diffuse apart

allowing the enzyme to phosphorylate another site.

The importance of such processive phosphorylation

is greater, slower the diffusion. Because processivity

can lead to the loss of bistability6 in phosphoryla-

tion-dephosphorylation cycles and a crowded envi-

ronment slows down diffusion, the same system can

be bistable in vitro but not in vivo.5,7,8

Recently we have shown that all the key results

obtained from many-particle simulations5 can be

reproduced in the framework of chemical kinetics by

not only using diffusion-influenced rates, but by also

introducing new transitions between certain spe-

cies.9 The rates of these new reaction channels

turned out to have a physically transparent inter-

pretation. They are proportional to the probability

that an isolated enzyme–substrate pair, just formed

by dissociation or catalysis at one site, will react at
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the other site rather than diffuse apart (escape).

These escape/capture (also called splitting or com-

mitment) probabilities appear to have been intro-

duced in chemical physics by Onsager10,11 to

describe ion recombination. In the context of

diffusion-influenced rates, they have been used12 to

give a physical interpretation to the Collins–Kim-

ball association rates13 for spherical reactants

interacting via a potential of mean force. These

probabilities also play a key role in modern

transition-path theories of unimolecular reac-

tions.14–16 In the context of protein folding, they

are called p-fold, which is the probability that a

configuration in the transition state region folds

rather than unfolds.17

In this article we generalize our previous work

by obtaining diffusion-modified rate equations that

describe the double phosphorylation of a substrate

with inequivalent sites. We assume that the binding

and catalytic sites of the enzyme are the same and

the substrate cannot bind more than one enzyme.

Let S denote the unphosphorylated substrate with

binding sites labeled by 1 and 2. Let SEi denote the

species where the enzyme is bound to site i, i 5 1, 2.

Let Pi denote substrates where only site i is phos-

phorylated and P12 denote substrates where both

sites are phosphorylated. Finally, let PiEj be the spe-

cies in which the site i is phosphorylated and the

enzyme is bound to site j. In summary, the index on

P denotes which substrate site is phosphorylated,

the index on E denotes the site on the substrate to

which the enzyme is bound.

For the Michaelis–Menten mechanism, the

chemical kinetic scheme that describes these reac-

tions is

S1E�
a1

d1

SE1�!c1 P11E

S1E�
a2

d2

SE2�!c2 P21E

P11E�
a02

d0
2

P1E2�!c02 P121E

P21E�
a01

d0
1

P2E1�!c01 P121E (1)

Here ai, di, and ci (i 5 1, 2) are the association

(binding), dissociation, and catalytic rate constants

for the ith site of the unmodified substrate. The cor-

responding rate constants for the substrate Pj phos-

phorylated at site j 6¼ i are a0i; d0i and c0i. Note that in

this kinetic scheme [see also Fig. 1(a)] the enzyme

acts distributively (i.e., at most one site can be modi-

fied before the enzyme-substrate complex dissoci-

ates).18,19 Processivity will arise naturally when

diffusion is accounted for.

The kinetic scheme in Eq. (1) can describe both ran-

dom and sequential phosphorylation.18 For example, by

setting the rate constants in the lower pathway in Fig-

ure 1(a) to zero, we obtain the kinetic scheme for

sequential phosphorylation, where site 1 is always

modified first. By setting the rates in the upper path-

way equal to those in the lower one, we recover the

scheme that describes random binding to equivalent

sites. In this limit, since for example SE1 and SE2 are

indistinguishable, we can simply add the concentrations

of the upper and lower species and recover the model

that was explicitly analyzed in our previous paper.9

Results

The kinetic scheme in Eq. (1) [and in Fig. 1(a)] corre-

sponds to the reaction-controlled limit when diffusion

Figure 1. (a) Standard Michaelis–Menten kinetic scheme for

the double phosphorylation of a substrate with two inequiva-

lent sites: 1(green) and 2 (yellow). The rate constants are

specified in Eq. (1). In this mechanism, the dissociation of the

product is assumed to be much faster than catalysis. The

subscript on E indicates the site that is bound to the enzyme.

The subscript on P indicates the site that is phosphorylated.

For example, P1E2 indicates that the first (green) site is phos-

phorylated and the enzyme is bound to the second (yellow)

site. (b) The diffusion-modified kinetic scheme with the rate

constants specified in Eqs. (2) and (3). The blue arrows indi-

cate that the corresponding chemical rate constants have

been scaled by the appropriate escape probabilities. The red

arrows correspond to new reaction channels with rate con-

stants obtained by multiplying the chemical ones by the

appropriate capture probabilities.
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is much faster than reaction and therefore does not

affect the kinetics of phosphorylation. We will account

for the effect of diffusion by deriving new diffusion-

modified rate equations using two different

approaches (see Methods). The first starts with the

exact rate equations for a microscopic model where an

enzyme and a substrate must diffuse together and

reorient before reaction can occur. These equations

contain enzyme-substrate pair distribution functions

for which no closed set of equations exists. The time

dependence of these pair distribution functions can be

approximated in increasingly sophisticated ways20–24

but here we use the simplest one that is valid only for

sufficiently low reactant concentrations and long (but

not asymptotically so25) times. Specifically, we assume

that the position-dependent pair distribution functions

have reached steady state and can be found by bal-

ancing the changes due to diffusion and reaction (i.e.,

binding, dissociation, and catalysis). The resulting for-

malism is rather complicated but we have been able

to express all rate constants of our diffusion-modified

rate equations in terms of the chemical (intrinsic)

rates and the escape and capture probabilities of a

variety of isolated enzyme–substrate pairs that can

react irreversibly.

The second approach is a phenomenological one

based on Eigen’s concept of an encounter complex,26

which is a transient kinetic species formed by the

reactants diffusing together. Basically, one first adds

encounter complexes to the standard kinetic scheme

and then eliminates them using the steady-state

approximation. In this way new transitions can

occur between the original species that were con-

nected to directly interconverting encounter com-

plexes. The expressions for the resulting rate

constants are rather messy since they depend on all

the new phenomenological rate constants that gov-

ern the encounter complex concentrations. However,

if one calculates the escape and capture probabilities

in the framework of the encounter complex model by

solving the appropriate rate equations, then the new

rate constants can be rewritten in a form identical

to that obtained using the microscopic approach dis-

cussed previously. It is not obvious that the phenom-

enological and microscopic approaches lead to the

same results.27 This was proved previously12 only

for the rates and escape probabilities of the Collins–

Kimball model13 for diffusion-influenced reactions

between two spherical molecules interacting via a

potential of mean force.

The resulting diffusion-modified kinetic scheme

for double phosphorylation with inequivalent sites is

shown in Figure 1(b). The renormalized rates for the

transitions that exist in the conventional kinetic

scheme (the blue and black arrows) are

S1E �
a1�1

d1�1

SE1������!ð12q0
1!2
Þc1

P11E

S1E �
a2�2
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2
�
2
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a02�

0
2
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1
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d0
1
�0
1
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The corresponding differential equations are

given in Eq. (14). Here �i and �0i are the escape prob-

abilities corresponding to unphosphorylated and sin-

gly phosphorylated substrates, respectively, and q0i!j

are the corresponding capture or rebinding probabil-

ities. They are defined and explained in detail in the

caption of Figure 2. Note that the chemical associa-

tion (ai, a0i) and dissociation (di, d0i) rate constants

have been scaled by the diffusion-dependent escape

probabilities in such a way that the binding equilib-

rium constants do not depend on the �’s and hence

on diffusion. The catalytic rate constants of the first

phosphorylation steps (ci, i 5 1, 2) are scaled by

12q0i!j. These scaling factors are the probabilities

that an enzyme–substrate pair, where initially the

enzyme is close to the phosphorylated site i, diffuses

apart (escapes) rather than binds at site j. When dif-

fusion is fast, the escape probabilities are close to

unity and hence conventional kinetics becomes an

excellent approximation.

The rate constants for the transitions that did

not exist in the conventional kinetics scheme [shown

in red in Fig. 1(b)] are

SE1 �
d1q1!2

d2q2!1

SE2

SE1����!c1q01!2

P1E2

SE2����!c2q02!1

P2E1 (3)

All these rate constants have simple physical

interpretations. The rate constants for the direct

transition SE1 ! SE2 is the product of the dissocia-

tion rate constant of SE1 (d1) and the probability

(q1!2) that the configuration generated immediately

after dissociation (i.e., the binding site of the enzyme

and the first site of the substrate are close together),

reacts to form the complex in which the enzyme is

bound to site 2 rather than diffusing apart or rebind-

ing to site 1 [see Fig. 2(a)]. Similarly, the rate con-

stant for the direct catalytic transition SE1 ! P1E2 is

the product of the rate of phosphorylating site 1 (c1)

and the probability (q01!2) that the enzyme initially
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near the phosphorylated site binds to the unphospho-

rylated one rather than diffusing away.

Discussion

The attractive feature of the above formalism is that

the influence of diffusion is completely described by

the appropriate escape and capture (rebinding) prob-

abilities. The expressions for the diffusion-influenced

rate constants in retrospect seem so obvious that the

mathematical derivations presented in the next sec-

tion appear to be hardly necessary. But this trans-

parency is the very reason that the approach

presented here is so powerful. In application, the

escape and capture probabilities can be treated as

adjustable but physically meaningful parameters.

Alternately one can adopt a microscopic model

where even for realistic geometries (anisotropic

sites, rotational and translational diffusion of arbi-

trary shaped proteins) these probabilities can be

obtained from simulations of just pairs of reactants

rather than hundreds that would be required to

directly calculate concentrations.

The magnitude of the capture (or rebinding) prob-

abilities, and hence the flux that flows through the

new reaction channels, depends on a variety of fac-

tors. For example, the capture probability increases

as the relative diffusion coefficient decreases. This is

why the crowded environment of the cell can induce

processivity.5,7,8 Another factor is the relative proxim-

ity of the two phosphorylation sites. The capture prob-

ability and hence the likelihood that the same enzyme

phosphorylates both sites increases with their proxim-

ity. This is illustrated in Figure 3, which was obtained

by numerically solving the coupled differential equa-

tions [see Eq. (14)] that correspond to the diffusion-

modified kinetic scheme [see Fig. 1(b) and Eqs. (2)

and (3)]. We considered sequential phosphorylation

(the upper pathway in Fig. 1 with the rates for the

binding in the lower pathway set to zero). We first

assumed that the two sites are so far apart that

q01!2 ¼ 0. In this case we recover the “naive”

diffusion-modified scheme, in which only the rate con-

stants of the existing transitions have been scaled by

the escape probabilities. The resulting progress curves

are dashed. When the two sites are close together, the

capture probability is assumed to be q01!2 ¼ 0:5, so

the bound states SE1 and P1E2 are now directly con-

nected [see the upper part of Fig. 1(b)]. Consequently

the relative concentrations of doubly phosphorylated

substrate (solid red line) increases faster than when

the sites are far apart (dashed red line).

This work can be extended in a number of direc-

tions. It can immediately be applied to dephospho-

rylation, so the influence of diffusion on the

properties of phosphorylation–dephosphorylation

cycles can be obtained by solving the same number

of ordinary differential equations as in chemical

kinetics. One can readily construct diffusion-

modified kinetic schemes when multiple phosphoryl-

ation sites are present. This can be done by analogy

without recourse to mathematical derivations. It can

be readily shown that our expressions for the rate

constants in the diffusion-modified kinetic scheme

are valid when the enzyme and substrate interact.

An attractive potential would increase the capture

probabilities and thus magnify the contributions of

the new reaction channels.

Figure 2. Definition of the escape and capture probabilities

that determine the rate constants in the diffusion-modified

kinetic scheme shown in Figure 1(b). (a) The fate of unphos-

phorylated substrate–enzyme pairs that can either irreversibly

react or diffuse apart. Initially, the active site of the enzyme is

near site 1 (green, left) or site 2 (yellow, right) of the sub-

strate. These transient states can be produced by the

enzyme and substrate diffusing together or by dissociation of

the bound complex. The escape probability �i, i 5 1, 2, is the

probability that a pair, with the substrate site i initially near

the active site of the enzyme, diffuses apart rather than binds

at either the first or second site. The capture probability qi!j

is the probability that the enzyme initially near site i of the

substrate will bind to site j rather than diffuse away or bind to

site i. (b) and (c) The fate of singly phosphorylated substrate-

enzyme pairs. The escape probability e0i (the prime indicates

that the substrate is singly phosphorylated) is the probability

that an enzyme, initially near the unphosphorylated site i of

the substrate, will not bind. The capture probability q0i!j (i 6¼ j)

is the probability that the enzyme binds to site j given that

initially the phosphorylated site i of the substrate was near

the active site of the enzyme. Thus 12q0i!j is the escape

probability of such a pair.
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Generalization to more complex mechanisms is

less straightforward. For example, suppose that

the enzyme is inactivated after phosphorylating a

site and needs time to become active again.5 Previ-

ously we considered only the limit when the reacti-

vation time is very fast9 and the resulting

diffusion-modified rate equations did not exactly

reduce to those of chemical kinetics in the fast dif-

fusion limit. Preliminary results show that the cor-

rect diffusion-modified kinetic scheme contains

negative rate constants but fortunately lead to pos-

itive steady-state concentrations. This is a result

of a Markovian approximation implicit in our

treatment and its full implications remain to be

explored.

Methods

In this section we derive the diffusion-modified kinetic

equations for double phosphorylation occurring via the

Michaelis–Menten mechanism. In the reaction-

controlled limit (reaction slow compared to diffusion),

it is described by the scheme shown Figure 1(a) with

the rate constants given in Eq. (1). We begin by

describing a microscopic model, which considers diffus-

ing molecules explicitly. Then we obtain the diffusion-

modified kinetic schemes in Eqs. (2) and (3) by extend-

ing our previous derivation9 to the case where only

small regions on protein surfaces are reactive. Finally,

we rederive these results in the framework of a phe-

nomenological model involving transient encounter

complexes, in which the interconversions are described

by ordinary rate equations.

Microscopic model
Let us specify our microscopic model of binding, dis-

sociation and catalytic conversion. Binding of the

substrate and enzyme can occur only when they are

in close proximity and oriented so that their reactive

sites are in contact. The binding rate depends on the

relative position, r, and on the orientation of the

enzyme and substrate, XE and XS. This dependence

is described by functions r1ðxÞ and r2ðxÞ for the

binding to the first and second site, respectively,

where x ¼ fr;XE;XSg denotes a collective coordinate,

which specifies the relative location and orientation

of the enzyme and substrate. The space-dependent

factor riðxÞ differs from zero in a small region

near the ith site. It is defined such thatð
riðxÞdx �

ð
ri drdXEdXS ¼ 1. Let ai be the bimolec-

ular rate constant of binding (association) to site i in

the reaction-controlled limit. Then airiðxÞ is a unim-

olecular rate constant, which equals to the reciprocal

of the mean time required for the enzyme and sub-

strate pair fixed at x to bind at site i.

After binding, the enzyme E and substrate S

form the bound states SE1 and SE2, where the sub-

script indicates the site where binding has occurred.

The bound state can then dissociate and form an

unbound enzyme-substrate pair located at x. Micro-

scopic reversibility requires that the spatial and

angular distribution for binding and dissociation

must be the same, so the unimolecular rate constant

to form an unbound pair at x via dissociation is dirið
xÞ (i 5 1, 2). We also assume that the rate constant

to form an unbound pair at x via catalysis is ciriðxÞ.
The site that has been phosphorylated becomes

unreactive. The substrate with the first site modified,

P1, can bind to the enzyme via its second site and

form a bound state P1E2. The unimolecular binding

rate constant for the pair of P1 and E is a02r2ðxÞ, where

the prime indicate that these quantities are for the

singly phosphorylated substrate. The bound state P1

E2 can dissociate and form a P1 and E pair at x with

unimolecular rate constant d02r2ðxÞ. The enzyme can

also phosphorylate the second site and form a P12 and

E pair at x with the unimolecular rate constant

c02r2ðxÞ. The rate constant for the binding of P2 and E

is a01r1ðxÞ. The corresponding dissociation and cata-

lytic rate constants are d02r2ðxÞ and c02r2ðxÞ.
To obtain the diffusion-modified rate equations,

we start with the conventional rate equations that

correspond to the kinetic scheme shown in Figure

1(a) with the rate constants defined in Eq. (1)

d½S�
dt
¼ 2

X2

n¼1

ðan½S�½E�2dn½SEn�Þ

Figure 3. The relative concentrations of the unphosphorylated

substrates (½S�=½S�tot, green), the singly phosphorylated sub-

strates (½P1�=½S�tot, blue) and the doubly phosphorylated sub-

strates (½P12�=½S�tot, red) as a function of time for diffusion-

modified sequential phosphorylation. The solid lines corre-

spond to sites close together (q01!2 ¼ 0:5), whereas the

dashed lines correspond to sites that are so far from each

other that q01!2 ¼ 0. The curves were obtained by numerically

solving Eq. (14). Initially, the substrate is unbound and unphos-

phorylated. All other parameters are a1½S�tot ¼ a02½S�tot ¼ d1

¼ d02 ¼ 1; c1 ¼ c02 ¼ 10; a2 ¼ a01 ¼ 0; e1 ¼ e02 ¼ 0:5; ½S�tot

¼ ½E�tot.
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d½SEi�
dt

¼ ai½S�½E�2ðdi1ciÞ½SEi�

d½Pj�
dt
¼ 2a0i½Pj�½E�1d0i½PjEi�1cj½SEj�

d½PjEi�
dt

¼ a0i½Pj�½E�2ðd0i1c0iÞ½PjEi� (4)

Here i; j ¼ 1; 2 and i 6¼ j. The equations for ½P12�
and ½E� are similar. The total concentration is con-

served, therefore

½S�1½P1�1½P2�1½P12�1½SE1�1½SE2�1½P1E2�1½P2E1�
¼ ½S�tot

½E�1½SE1�1½SE2�1½P1E2�1½P2E1� ¼ ½E�tot (5)

To account for the influence of enzyme and sub-

strate diffusion, we use the fact that the binding rates

are in general related to the pair distribution functions,

which depend on the relative location and orientations

of the reactants. Let the pair distribution function of

the enzyme and unphosphorylated substrate be denoted

by qðx; tÞ. The pair distribution of an enzyme and a

substrate that has been phosphorylated at site i is

qiðx; tÞ. When jrj ! 1, the reactants are uncorrelated,

so q! ½E�½S� and qj ! ½E�½Pj�. The binding rate for the

unphosphorylated substrate is found by summing over

all possible configurations that can bind, so the binding

rate in Eq. (4), ai½S�½E�, is replaced by ai

ð
riðxÞqðx; tÞdx.

Similarly, the binding rate of the singly phosphorylated

substrate is obtained by replacing a0i½Pj�½E� ! a0i

ð
riðxÞ

qjðx; tÞdx; i 6¼ j. In this way we get:

d½S�
dt
¼ 2

X2

n¼1

ðan

ð
rnðxÞqðx; tÞdx2dn½SEn�Þ

d½SEi�
dt

¼ ai

ð
riðxÞqðx; tÞdx2ðdi1ciÞ½SEi�

d½Pj�
dt
¼ 2a0i

ð
riðxÞqjðx; tÞdx1d0i½PjEi�1cj½SEj�

d½PjEi�
dt

¼ a0i

ð
riðxÞqjðx; tÞdx2ðd0i1c0iÞ½PjEi� (6)

The dissociation and catalytic terms are the same

as in Eq. (4). When diffusion is sufficiently fast, the

pair distribution functions are well approximated by

the product of the appropriate bulk concentrations and

Eq. (6) reduces to Eq. (4).

The above equations are exact for our model.

The pair distribution functions q and qj are now

assumed to satisfy the following approximate equa-

tions, which equate steady-state fluxes due to diffu-

sion and reaction

Lq2
X2

n¼1

rnðxÞ anq2dn½SEn�ð Þ ¼ 0

Lqj2riðxÞ a0iqj2d0i½PjEi�
� �

1rjðxÞcj½SEj� ¼ 0 (7)

where i; j ¼ 1;2 and j 6¼ i in the last equation.

Here L is the operator describing translational

and rotational motion of the enzyme and sub-

strate. For the sake of simplicity we assume that

phosphorylation does not alter the dynamics of

the substrate. When the reactants are uniformly

reacting spheres and their relative motion is

described by diffusion, then L ¼ Dr2, where D is

the sum of the enzyme and substrate diffusion

coefficients. The terms with ai and a0i describe

depletion in the distribution functions q and qj

due to binding to site i; the terms with di and d0i
describe the influence of the pairs that appear at

x due to the dissociation of the bound complexes

SEi and PjEi; the term proportional to cj

describes the effect of the pairs that are formed

after phosphorylation of site j. The reactants

are treated as impenetrable bodies, so the q’s sat-

isfy reflecting boundary conditions when the

enzyme and substrate are in contact. When jrj
! 1; q! ½E�½S� and qj ! ½E�½Pj�. Equation (7) is

approximate because we neglected the influence

of the distribution functions that involve three

molecules. In addition, we assumed that the pair

distributions depend on time only through the

time-dependent concentrations.

Equations (6) and (7) completely specify our

theory. To solve them, we first rewrite Eq. (7) in terms

of the deviations of the pair distribution functions from

their chemical kinetics (bulk) values, dqðxÞ ¼ qðxÞ2½S�½
E� and dqjðxÞ ¼ qjðxÞ2½Pj�½E�, j 5 1, 2:

Ldq2
X2

n¼1

anrnðxÞdq ¼
X2

n¼1

rnðxÞ an½S�½E�2dn½SEn�ð Þ

Ldqj2a0iriðxÞdqj ¼ 2wijðxÞ (8)

where we have defined

wijðxÞ ¼ rjðxÞcj½SEj�1riðxÞðd0i½PjEi�2a0i½E�½Pj�Þ (9)

and used L½S�½E� ¼ 0 and L½Pj�½E� ¼ 0. Then we intro-

duce the Green’s functions gðx; x0Þ and giðx; x0Þ (i 5 1,

2), which satisfy

Lg2
X2

n¼1

anrnðxÞg ¼ 2dðx2x0Þ (10a)
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Lgi2a0iriðxÞgi ¼ 2dðx2x0Þ (10b)

subject to reflecting boundary conditions at contact.

They are required to vanish as jrj ! 1. These time-

independent Green’s functions describe irreversible

binding to both sites of the unphosphorylated

substrate (g) and to the ith site of the singly phos-

phorylated one (gi). They are time integrals of the

time-dependent Green’s functions or propagators,

i.e., gðx; x0Þ ¼
ð1

0

Gðx; t j x0; 0Þdt and giðx; x0Þ ¼ð1
0

Giðx; t j x0;0Þdt, where Gðx; t j x0;0Þ and Giðx;tjx0;0Þ

are the probabilities to be in x at time t provided ini-

tially the system was in x0 in the presence of two

and one (ith) absorbing sinks, respectively. Both

dq’s, Eq. (8), and g’s, Eq. (10), satisfy the same

boundary condition at the contact and when the

enzyme-substrate separation tends to infinity.

As can be verified by direct substitution, the

solution of Eq. (8) can be written in terms of the

above Green’s functions as

dqðxÞ ¼
X2

n¼1

ð
gðx; x0ÞrnðxÞ ðdn½SEn�2an½E�½S�Þdx0

dqjðxÞ ¼
ð

giðx; x0Þwijðx0Þdx0 (11)

where i; j ¼ 1;2; i 6¼ j. Using these we find after

some algebra that the binding terms in Eq. (6) can

be written as

ð
airiðxÞqðxÞdx ¼ ai�i½S�½E�1

X2

n¼1

dnqn!i½SEn� (12a)

ð
a0iriðxÞqjðxÞdx ¼ a0i�

0
i½Pj�½E�1d0ið12�0iÞ½PjEi�1cjq

0
j!i½SEj�

(12b)

where we have introduced the notation (i; j ¼ 1;2)

qi!j ¼ aj

ð
rjðxÞgðx; x0Þriðx0Þdxdx0 (13a)

�i ¼ 12qi!12qi!2 (13b)

q0i!j ¼ a0j

ð
rjðxÞgjðx; x0Þriðx0Þdxdx0 (13c)

�0i ¼ 12q0i!i (13d)

In the derivation of Eq. (12a), we used the

detailed balance condition aiqi!j ¼ ajqj!i (which fol-

lows from the definition of qi!j and

gðx; x0Þ ¼ gðx0; xÞ). We have chosen our notation well

because, as explained below, �i, �
0
i; qi!j, and q0i!j are

indeed the escape and capture probabilities depicted

in Figure 2.

Finally, using Eq. (12) in Eq. (6), we find that

the diffusion-modified rate equations are

d½S�
dt
¼ 2

X2

n¼1

ðan�n½S�½E�2dn�n½SEn�Þ

d½SEi�
dt

¼ ai�i½S�½E�2ðdi�i1ciÞ½SEi�

d½Pj�
dt
¼ 2a0i�

0
i½Pj�½E�1d0i�

0
i½S

p
j Ei�1cjð12q0j!iÞ½SEj�

1djqj!i½SEj�2diqi!j½SEi�

d½PjEi�
dt

¼ a0i�
0
i½Pj�½E�2ðd0i�0i1c0iÞ½PjEi�1cjq

0
j!i½PiEj� (14)

where i; j ¼ 1;2 and i 6¼ j. These equations corre-

spond to the kinetic scheme in Figure 1(b) with rate

constants defined in Eqs. (2) and (3). Comparing

these equations with the conventional rate equa-

tions, Eq. (4), one can see that the “old” binding and

dissociation rates have been multiplied by the corre-

sponding escape probabilities (�’s). The terms propor-

tional to the capture or rebinding probabilities qi!j

and q0j!i correspond to the new reaction channels.

The scaling coefficients qi!j; q0j!i, �i, and �0i are

defined in Eq. (13). Reading Eq. (13a) from the right

to the left, it can be seen that the coefficient qi!j is

the probability that an enzyme and unphosphoryl-

ated substrate with configuration x0 chosen from the

distribution riðx0Þ will eventually bind to (be cap-

tured by) the reactive site j with the unimolecular

rate constant ajrjðxÞ. The Green’s function g in the

definition of qi!j implies that both sites are reactive

and the enzyme-substrate pair binds irreversibly

and cannot dissociate [see Eq. (10a))]. The coefficient

�i in Eq. (13b) is the probability that an enzyme and

unphosphorylated substrate pair initially near the

site i will eventually diffuse apart (escape). q0j!i and

�0i are the capture and escape probabilities that

involve the singly phosphorylated substrate. q0i!j in

Eq. (13c) is the probability to be captured by the

only reactive site j starting out near the inactive

(phosphorylated) site i (see the definition of the

Green’s function gi in Eq. (10b)). The escape proba-

bility �0i in Eq. (13d) is the probability to diffuse

apart rather than to bind to site i having started

near the active site i. In general, the capture and

escape probabilities in Eq. (13) must be found

numerically. Approximate expressions for these

probabilities can be found applying approaches simi-

lar to those used to calculate diffusion-controlled

rates involving reactants with two active sites.28–31
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Encounter complex model

The new connections in the diffusion-modified

kinetic scheme in Figure 1(b) can be also obtained in

the framework of the encounter complex model of

Eigen.26 In this model, the overall diffusion-

influenced binding is considered as a two-step chem-

ical reaction described by conventional rate equa-

tions. First, the reactants diffuse together and form

an encounter complex (i.e., the reactants that are in

close proximity but not yet bound) and then either

diffuse apart or bind. In this way the problem is

reduced to solving conventional rate equations with

a finite number of states. The advantage of the

encounter complex model is that it is simple. Some

results, such as Collins–Kimball rate constants for

partially absorbing spheres, can be readily obtained

using the encounter complex model.12 In the context

of multisite phosphorylation, encounter complexes

have been used in Refs. 27, and 32. In this section

we show how the encounter complex model can be

adapted to get our results in Results section.

The encounter complex model for double phos-

phorylation with two inequivalent sites is given in

Figure 4. There are two different encounter com-

plexes involving the unphosphorylated substrate, S

. . . E1 and S . . . E2, which correspond to the enzyme

being near the first and the second site of the sub-

strate, respectively. Just after the first site is phos-

phorylated, the encounter complex P1 . . . E1 is

formed, in which the enzyme is near the site of the

substrate that has been phosphorylated. This com-

plex can be transformed into the encounter complex

P1 . . . E2 where the enzyme is near the unphospho-

rylated site of the singly phosphorylated substrate.

The encounter complexes with the second site phos-

phorylated are P2 . . . E2 and P2 . . . E1.

We are going to apply the steady-state approxi-

mation and eliminate the encounter complexes from

the rate equations. The scheme in Figure 4 has three

groups of species, in which an unbound enzyme and

a substrate and two encounter complexes are con-

nected by magenta arrows. The generic kinetic

scheme for such a group is shown in Figure 5(a),

where A stands for a substrate (S, P1 or P2), B for

the enzyme, C1 and C2 are the bound states, and A

. . . B1 and A . . . B2 are the encounter complexes. The

bimolecular rate constant k1
Di describes the formation

of the encounter complex A . . . Bi due to diffusion. k2
Di

is the rate constant for the dissociation of A . . . Bi.

The b’s describe the interconversion of the encounter

complexes. These rate constants are restricted by the

detailed balance condition:

b1k1
D1k2

D2 ¼ b2k1
D2k2

D1 (15)

The rate equations corresponding to the scheme in

Figure 5(a) involve concentrations of A, B,

A . . . B1; A . . . B2, C1, and C2. We use the steady-state

approximation, d½A . . . Bi�=dt ¼ 0, to find the concentra-

tions of the two encounter complexes, and then elimi-

nate them from the rate equations. The rate constants

in the resulting rate equations for the concentrations of

Figure 4. The standard kinetic scheme in Figure 1(a) augmented by six encounter complexes that have been shaded. The tran-

sitions not present in the chemical kinetics scheme are magenta colored. The subscript on E denotes the site on the substrate

(1, green, or 2, yellow) that is close to the active site of the enzyme. The subscript on P indicates which site is phosphorylated.

Thus Pi . . . Ej; i; j ¼ 1;2 is an encounter complex in which an enzyme is close to site j of a substrate with site i phosphorylated.
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A, B, C1, and C2 are complicated when expressed in

terms of the rates in the scheme in Figure 5(a). For

example, the rate constant of the transition C1 ! C2 is

equal to

d1b1a2

ðk2
D11a11b1Þðk2

D21a21b2Þ2b1b2

(16)

However, we will now show that this and all

other rate constants can be simplified if expressed in

terms of the capture and escape probabilities.

Let us now define the capture probabilities in

the framework of the encounter complex model. Con-

sider two interconverting encounter complexes,

which decay irreversibly [see Fig. 5(b)]. In this

kinetic scheme, an encounter complex A . . . Bi can

either bind (through the first or second binding

channel) or separate (through the escape channel).

The probabilities to eventually exit through the two

binding channels are qi!1 and qi!2. The probability

to exit through the escape channel is �i. These prob-

abilities must add up to 1 (i 5 1, 2):

qi!11qi!21�i ¼ 1 (17)

The capture and escape probabilities can be

expressed in terms of the total flux through the cor-

responding channels:

qi!j ¼ aj

ð1
0

Gðj; t j i; 0Þdt

�i ¼
ð1

0

k2
D1Gð1; t j i;0Þ1k2

D2Gð2; t j i;0Þ
� �

dt (18)

where Gðj; t j i;0Þ (i; j ¼ 1;2) is the probability to be

in state A . . . Bj at time t given that initially the sys-

tem was in state A . . . Bi. These are the discrete ana-

logues of the expressions in Eqs. (13a) and (13b).

The probabilities Gðj; t j i;0Þ satisfy the kinetic

equations corresponding to the scheme in Figure 5(b):

dGð1; t j i;0Þ
dt

¼ 2ða11k2
D11b1ÞGð1; t j i;0Þ1b2Gð2; t j i;0Þ

dGð2; t j i;0Þ
dt

¼ 2ða21k2
D21b2ÞGð2; t j i;0Þ1b1Gð1; t j i;0Þ

(19)

with the initial condition Gðj;0 j i; 0Þ ¼ dji. This equa-

tion can be written in matrix form for the matrix G

with the elements Gðj; t j i; 0Þ:

dGðtÞ
dt

¼ 2MG (20)

where M is the 2 3 2 matrix:

M ¼
k2

D11a11b1 2b2

2b1 k2
D21a21b2

 !
(21)

with the initial condition Gðt ¼ 0Þ ¼ I, where I is the

unit matrix. To find the splitting probabilities qi!j

and �i we only need the time integrals of G [see Eq.

(18)]. Integrating both sides of Eq. (20) with respect

to t and using Gðt ¼ 1Þ ¼ 0, we have

I ¼Mg (22)

where g �
ð1

0

GðtÞdt. This is the discrete analogue

of Eq. (10a).

Figure 5. (a) Definition of a generic three-state motif involv-

ing two encounter complexes. Species A has two sites,

A . . . Bi denotes an encounter complex where B is close to

the ith site of A. The association (dissociation) constants k1
Di

(k2
Di) depend on diffusion but the unimolecular rate constants

ai and di do not. (b). The irreversible kinetic scheme used to

calculate the capture and escape probabilities of the encoun-

ter complexes. The capture probability �i is the probability

that the encounter complex A . . . Bi eventually diffusively sep-

arates. The capture probability qi!j (i; j ¼ 1;2) is the probabil-

ity that the encounter complex A . . . Bi eventually reacts to

form Cj. (c) The diffusion-modified scheme obtained using the

steady-state approximation for A . . . Bi in panel (a) and rewrit-

ing the rates in terms of the escape and capture probabilities

calculated from the kinetic scheme in panel (b). The new

transitions are shown in red, the transitions with the modified

rate constants are in blue.
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Thus the capture and escape probabilities in Eq.

(18) are

qi!j ¼ ajgji ¼ aj½M21�ji

�i ¼
X2

n¼1

k2
Dn½M

21�ni

(23)

Using these expressions, one can verify that the

rate constant of C1 ! C2 in Eq. (16) can be simply

expressed as d1q1!2. The same procedure for all

transitions leads to the kinetic scheme shown in Fig-

ure 5(c). In this scheme, the bimolecular chemical

binding constants are defined as ai ¼ aik
1
Di=k

2
Di and

the capture and escape probabilities are given by

Eq. (23). The chemical rate constants ai do not

depend on diffusion because k1
Di=k

2
Di is an equilib-

rium constant. The new rates in Figure 5(c) (shown

in red) have a transparent physical interpretation.

For example, the rate from C1 to C2 is equal to the

product of the dissociation rate from site 1 (d1) and

the probability that the enzyme binds to site 2

before escaping to infinity. The capture probabilities

q1!2 and q2!1 are not independent because the cycle

shown in Figure 5(c) obeys detailed balance (i.e., the

product of the clockwise rates is equal to the product

of the counterclockwise ones). The rate constants in

the kinetic scheme shown in Figure 5(c) depend on

the phenomenological rate constants k6
Di, bi, ai only

through the chemical rate constants ai and di, the

escape probabilities, �i, and the capture probability,

q1!2 (or equivalently q2!1).

Now we are ready to eliminate the encounter

complexes in the scheme in Figure 4 using the

steady-state approximation and exploiting the

results in Figure 5. To treat the triangular motif on

the left side of Figure 4, we make the following cor-

respondence: A! S; B! E; Ci ! SEi. For the motif

on the top, A! P1; B! E; C1 ! SE1 and

C2 ! P1E1, and similarly for the one at the bottom.

The resulting kinetic scheme has the same structure

as that in Figure 1(b) with the new reaction

channels shown by red arrows. Because the transi-

tions SE1 ! P1 . . . E1 and SE2 ! P2 . . . E2 in Figure

4 are irreversible, they lead to the one-way connec-

tions SE1 ! P1E2 and SE2 ! P2E1. The rate con-

stants are the same as in Eqs. (2) and (3), but with

the capture and escape probabilities defined in the

framework of the encounter complex model. Thus, in

this case, the phenomenological encounter complex

model reproduces the diffusion-modified kinetic

scheme obtained using the microscopic model, even

though the kinetic scheme in Figure 5(b) yields a

poor description of the irreversible diffusive gemi-

nate recombination of an isolated contact pair in

solution, whose time course is not exponential, but a

power law.
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