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Abstract: The growing structural coverage of proteomes is making structural comparison a power-

ful tool for function annotation. Such template-based approaches are based on the observation

that structural similarity is often sufficient to infer similar function. However, it seems clear that, in
addition to structural similarity, the specific characteristics of a given protein should also be taken

into account in predicting function. Here we describe PredUs 2.0, a method to predict regions on a

protein surface likely to bind other proteins, that is, interfacial residues. PredUs 2.0 is based on the
PredUs method that is entirely template-based and uses known binding sites in structurally similar

proteins to predict interfacial residues. PredUs 2.0 uses a Bayesian approach to combine the

template-based scoring of PredUs with a score that reflects the propensities of individual amino
acids to be in interfaces. PredUs 2.0 includes a novel protein size dependent metric to determine

the number of residues that should be reported as interfacial. PredUs 2.0 significantly outperforms

PredUs as well as other published interface prediction methods.

Keywords: interface prediction; template; structural similarity; interface propensity; Bayesian

network; protein surface patch

Introduction

Knowledge of a protein’s interaction partners is

important for elucidating a protein’s function and for

a detailed characterization of protein networks. High-

throughput experimental techniques are beginning

to identify interacting partners on a genome-wide

scale,1 but the physical basis of these interactions is

generally unknown. The location on a protein surface

where it is likely to bind to its partners (its interfa-

cial residues) is important in determining the mecha-

nism by which a protein carries out its function as

well as for understanding the effects of mutations

and for designing experiments to perturb targeted

biological networks. The prediction of interfacial resi-

dues is therefore an important goal which, among

other applications, can be used in elucidating an

organism’s complete interactome computationally.2,3

A variety of approaches have been developed to

predict interfacial residues. These have typically

relied on the observation that proteins often interact

with their partners at locations in the primary

sequence with characteristic sequence motifs4–6 or

evolutionarily conserved sequence patterns.7–9 The

growing availability of protein structures through

crystallography and computational modeling has

enabled other approaches that typically depend on

the fact that protein surface patches involved in

protein-protein interactions (PPIs) tend to have cer-

tain characteristics that distinguish them from the

rest of the surface.10 These characteristics typically

include physico-chemical and geometric properties,

evolutionary conservation and the tendency of differ-

ent types of amino acids to be involved in protein-
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protein interfaces.11–15 When a binding partner is

known, other structure-based approaches, are based

on docking procedures which rely on shape comple-

mentarity and use broad conformational sampling

combined with physical–chemical force fields to iden-

tify favorable interaction sites on a protein sur-

face.16,17 Such methods are difficult to apply to a

large number of proteins because of their computa-

tional complexity.

Template-based approaches use comparison of

protein structures to make functional inferences.

They have proven to be a powerful technique for

function prediction in general18 and interfacial resi-

due prediction in particular19,20 and can be applied

on a genome-wide scale. Their success is based on

the fact that expanded structural coverage of

genomes has resulted in a situation where, given a

query protein of unknown function, it is highly

likely that there is a structurally similar protein in

databases that binds to other proteins in similar

way. Such functional similarities are not necessarily

evident from sequence similarity, and their identifi-

cation requires the exploitation of both remote

sequence20 and structural relationships.21

The information used in prediction methods

based on surface patch features or templates is

largely orthogonal, so combining them should result

in improved performance. Here we describe PredUs

2.0, a protein–protein interface prediction method

that uses a template-based score implemented in

our program PredUs19 and a novel patch-based

score. Combined with a dynamic approach to esti-

mating the size of an interface for individual query

proteins, the method is shown to be quite effective

in predicting interfacial residues and outperforms

both the original PredUs and other widely used

interface prediction methods.

Results

To predict an interface, we calculate two scores for

each residue ri on a query protein surface. The first is

calculated using PredUs which has been described pre-

viously.19,21 Briefly, for a residue at a given position on

the surface, the PredUs score reflects the frequency

with which residues at geometrically equivalent posi-

tions in structurally similar proteins are involved in a

protein–protein interaction. The second score (patch)

reflects the properties of ri and its local environment,

which include the propensities of individual residue

types to be involved in a PPI [see Fig. 1(A)], and the

relative accessible surface areas (RASA) of residue ri

and residues in a surface patch surrounding ri.

The propensities are calculated from a dataset of 2766

non-redundant complexes in the PDB (see Methods).

A likelihood ratio (LR) is calculated for each score using

a Bayesian approach and a final LR reflecting the

Figure 1. Propensities and surface area-dependent probabilities for amino acids to be interfacial. (A) Interface propensities for

the 20 amino acids (see Materials and Methods). Positive numbers indicate that residues of that type are enriched in interfaces

and negative numbers indicate that they are reduced. (B) Probabilities (y axis) for residues to be interfacial conditioned on the

level of accessible surface area. Each number on the x axis represents a bin of relative accessible surface area (0–10%,

10–20%, etc.).
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likelihood that ri is interfacial is calculated with a na€ıve

Bayesian network as LRinterface 5 LRPredUs 3 LRpatch.

The propensity for residues of a given type to be

interfacial and accessible surface area have been

used as components of patch-based interface predic-

tion methods reported previously.10,11 Figure 1(B)

reports probabilities for a residue type to be interfa-

cial conditioned on its accessible surface area. As

shown in the figure, large relative accessible surface

area is a significant factor in determining whether

hydrophobic/aromatic amino acids are interfacial,

but has no effect for the polar amino acids. Hence,

to take this into account when calculating our patch

score, we weight the amino acid propensities by the

associated conditional probability for that amino

acid. How the weighted propensities are combined

into a single patch score, construction of the patch

and calculation of the propensities and ASA depend-

ent probabilities are described in detail in Materials

and Methods.

Figure 2 contains precision-recall (PR) curves

showing the performance of the combined score

applied to a set of proteins (denoted DB34) taken

from Docking Benchmark 3.022 and 4.023 (see Mate-

rials and Methods). As shown in the figure, PredUs

2.0 (solid black line) outperforms the previous ver-

sion of PredUs (solid orange line). To decide which

residues to report as interfacial in a given applica-

tion, it is necessary to develop an algorithm which

provides such a list. Most interface prediction meth-

ods derive this list from predicted residues with a

score higher than some cutoff value, or use the top

scoring n residues where n is some preset value. In

addition, a number of other methods require that

interfacial residues be in a contiguous surface patch

and report only top scoring residues in the largest

such patch. The original PredUs19 does not require

that residues be in a patch but simply reports all

residues with a score, calculated by a support vector

machine (SVM), above a cutoff (0.0). PredUs 2.0

does not directly identify contiguous patches but the

LR of a particular residue is dependent on proper-

ties of neighboring residues as defined by its patch

score (see Methods).

The use of a fixed cutoff can adversely affect pre-

cision and recall achieved for a given query protein.

This can be understood by assuming a perfect predic-

tor, for which the true interfacial residues are always

top ranked. If a cutoff on the score is used, recall suf-

fers if it is too strict (some true interfacial residues do

not meet the cutoff) and precision suffers if it is too

liberal (non-interfacial residues are incorrectly pre-

dicted). Using a fixed number of residues to include in

the prediction, a similar reduction in performance

occurs if this number is smaller (recall suffers) or

larger (precision suffers) than the true interface size.

These issues cause the average performance achieved

in practice to fall below the performance represented

by the PR curve. This is illustrated in Figure 2 which

shows the performance of PredUs using the fixed cut-

off for its SVM score (orange circle) and PredUs 2.0

taking the top 27 residues ranked by LRinterface (blue

diamond, 27 was the average number of true interface

residues in our benchmark).

Hence, for a perfect predictor, optimal perform-

ance can be achieved by taking the top n residues

ranked by the score as the predicted interface, and

allowing n to vary to reflect the true interface size

for a specific query protein. Even for an imperfect

predictor, it is reasonable to take the true interface

size into account in this way, assuming it can be

expected that true interfacial residues are highly

ranked. Although the true interface size is not

known of course, it has been shown24 that it can be

approximated by a power law function of the num-

ber of surface residues of a protein. We therefore

implemented a dynamic cutoff (DC) where we choose

the number, n, of residues to include in a predicted

interface for each query protein using the function

n ¼ 6:1N0:3

where N is the total number of surface residues for

that protein (see Supporting Information Fig. S1 for

how this function was derived).

As shown in Figure 2 this brings the average

precision/recall for both PredUs (green diamond)

Figure 2. Prediction performance. Solid lines show the preci-

sion calculated as a function of recall which was varied at

1% increments, and averaged over all query proteins in our

benchmark. Single points show precision/recall using differ-

ent approaches to deciding which residues to include in a

predicted interface for the methods shown in the legend. For

PredUs and PredUs 2.0 this is described in the text. Pre-

dicted interfaces for PINUP and cons-PPISP are obtained

using the default parameters for those methods.

Hwang et al. PROTEIN SCIENCE VOL 25:159—165 161



and PredUs 2.0 (red diamond) to their optimal val-

ues represented by the precision/recall curve. In

fact, this performance essentially equivalent to what

can be achieved using a cutoff based on “native con-

tacts” (NC, Fig. 2), that is, assuming the actual

number of residues in an interface is known for each

query protein.

Finally, we note that the method has potential

applications in the identification of “crystal contacts,”

that is, interfaces formed in a crystal structure that

do not occur in a biological context. Given that we

use properties of real interfaces to make predictions

and the general accuracy of our method, we expect

that residues in crystal contacts will be less likely to

be predicted as interfacial by PredUs 2.0. To examine

this, we used the program Pymol25 to reconstruct the

the unit cell for the complexes in our benchmark and

calculated the percentage of residues predicted to be

interfacial in interfaces that are formed only upon

unit cell reconstruction. On average, 16% of residues

in these interfaces are predicted to be interfacial,

compared to 47% of residues in the true interfaces

defined in the benchmark. Hence, the percentage of

predicted residues in an observed interface in a crys-

tal structure should provide a simple indication of

whether it is likely to be biologically relevant and

provides a complementary approach to crystal contact

prediction methods based, for example, on identifica-

tion of interfaces with poor affinity26 or the consistent

presence of an interface under different crystallliza-

tion conditions.27

Discussion

As we have previously shown,21 the overall shape of

a protein is a strong determinant of where on a pro-

tein surface other proteins are likely to bind. That is,

two proteins with sets of secondary structure ele-

ments with similar relative orientations and positions

are likely to bind partners at structurally equivalent

locations. This allows prediction of interfaces from

structurally similar templates, but an obvious draw-

back of this approach is that not all structural frag-

ments with a particular arrangement of secondary

structure elements will bind other proteins. We have

addressed this problem here by combining a

template-based score with a score that accounts for

the propensities of individual residues to be in an

interface. Bayesians statistics provides a convenient

means of integrating the contributions of different

sources of evidence and indeed Bayesian methods

have found increasing application in structural biol-

ogy. We also trained a linear regression model to com-

bine a patch-based score and a template-based score

for interface prediction with four-fold cross validation.

The performance with a linear regression model is

similar to that with Bayesian methods.

A novel feature of our scoring scheme for inter-

facial residues is the method used to weight residue

propensities by probabilities to be interfacial condi-

tioned on accessible surface area. In particular, the

high propensity, hydrophobic/aromatic amino acids

are no more likely to be in interfaces than low pro-

pensity amino acids when they have low accessible

surface area. However, high accessible surface area

has a strong effect. Taking tryptophan as an exam-

ple [Fig. 1(B)], it is no more likely than random to

be interfacial when it is on the surface with low

accessible surface area, but interfacial half of the

time when it is highly exposed.

Other structural features incorporated into the

final PredUs2.0 score include the local environment

of a given residue reflected in the patch-based score

and the size of the query protein which is used to

determine the dynamic cutoff on the number of resi-

dues to include in a predicted interface. A concern

with predicting an interface by taking the top n resi-

dues is that they may be distributed over the surface

without forming contiguous patches. The identifica-

tion of the true binding site would be problematic in

such a situation, despite the levels of precision/recall

we report.

We therefore identified contiguous patches

formed by predicted interfacial residues (a residue

was included in a patch if any atom in that residue

was within 6.5 Å of another residue in the patch) and

found that only a single patch was formed for half of

the query proteins. As shown in Table I the perform-

ance for the set of proteins with a single predicted

patch is actually better than the performance aver-

aged over all query proteins, hence predictions for

proteins that have only a single patch reliably indi-

cate the binding site. However, Table I also shows

that the prediction performance decreases for those

proteins where multiple patches are predicted, likely

because these patches may indicate additional inter-

action sites that are not defined in our benchmark

data set as discussed in previous studies.13,28,29

To test for this possibility, we collected 25 pro-

teins (non-redundant at a sequence identity cutoff of

40%) not in DB34 that are involved in heterotri-

meric interactions at non-overlapping interfaces

(denoted the HET-TRI set and listed in Supporting

Information Table SI). For this set, only 20% of the

predictions formed single patches and, consistent

with multiple known interaction sites, there was a

higher proportion of multiple patch predictions (see

Supporting Information Figure S2 which compares

the distribution of the number of contiguous patches

for the DB34 and HET-TRI proteins).

Table I shows that prediction performance

depends on how the separate interfaces are treated.

When each interface in the heterotrimer is considered

as a separate target (i.e., falsely classifying the sec-

ond interface as non-interfacial) prediction precision

was similar to multiple patch predictions in the

DB34 (0.31 vs. 0.36). However, when the union of
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both interfaces is classified as a true positive, the

average precision is comparable to the single patch

predictions in DB34 (0.57 vs. 0.56), suggesting that

PredUs2.0 is correctly predicting the second interface

in HET-TRI as well as the first. Although the average

recall does not improve when considering both inter-

faces together, this is because our dynamic cutoff

assumes a single interface and, thus, PredUs2.0

under-predicts when there is more than one. When

the number of interfacial residues included in the

prediction is arbitrarily increased 25% beyond the

dynamic cutoff for all proteins in the HET-TRI data-

set, recall increases from 0.24 to 0.38 with precision

decreasing moderately from 0.57 to 0.55. These

results suggest that future algorithmic developments

will enable the prediction of multiple binding sites on

protein surfaces.

The combined use of the set structural features

incorporated into PredUs 2.0 more completely reflects

the properties of real interfaces. The final score

addresses problems with a purely template-based

approach, and results in a method that, as shown in

Figure 2, outperforms PredUs as well as other top

performing programs11,24 as determined by recent

surveys of interface prediction techniques.30,31 Pre-

dUs2.0 should therefore represent the current state-

of-the-art in interfacial residue prediction.

Materials and Methods

Datasets
The 302 protein structures contained in DB34 are

taken from the Docking Benchmark 3.0 and 4.022,23

and listed in Supporting Information Table SII.

They form 52 enzyme–inhibitor complexes and 99

“other” categories of protein-protein complexes.

Twenty-five antibody–antigen complexes in Docking

Benchmark 3.0 and 4.0 were excluded from this

work. Our benchmark is non-redundant at the

SCOP32 family level except for 10 proteins that are

in complexes with different partners. We treat these

as separate targets since, although the interfaces

with their partners overlap, they are not identical.

Two copies of each protein are available, one in the

context of its interacting partner (bound form) and

one in its isolated state (unbound form). Only the

unbound form was used as a query protein.

A residue in a benchmark protein was consid-

ered to be interfacial if any atom of that residue was

within 6 Å of any atom from its interacting partner

in the complex.

PredUs interface score
The PredUs program was run locally but identical

software is available from the PredUs web server.19

Interface propensity

We calculated the propensity for each residue type r

to be in an interface using a set of 2,766 heterodi-

meric complexes (listed in Supporting Information

Table SIII). This set represents all heterodimers

(excluding proteins in our benchmarks) in the PDB

as of April 2015 which satisfied the following crite-

ria: non-redundant at the 40% sequence identity

level, interface size �1500Å2 and no disulfide bonds

in the interface. Propensity measures the enrich-

ment of accessible surface area (ASA) from residues

of type r in protein–protein interfaces compared to

the protein surface in general and is calculated as

follows:

Propensity rð Þ5
RASAinterface

r

RASAinterface
all

RASAsurface
r

RASAsurface
all

0
B@

1
CA

Here RASAX
r is the sum of the relative accessible

surface areas of all residues of type r that have char-

acteristic X (on the interface or on the surface) in all

proteins from the benchmark, and RASAX
all is the

sum of relative ASAs of residues of all types with

characteristic X. Relative ASA for a given residue is

defined as the solvent exposed area of that residue

in the context of the protein structure, normalized

by the area of that residue in the context of an

extended ALA-r-ALA tripeptide.33,34 An amino acid

was considered to be at protein surface if its

RASA� 5%. Areas were calculated with a probe size

of 1.4 Å using the surfv program.35

Although propensity to be in an interface should

implicitly reflect the general properties of residue

types that make them more or less likely to be

involved in PPIs, whether a specific residue in a

given query protein is involved in an interaction will

Table I. Relationship Between Prediction Performance and the Number of Contiguous Patches of Predicted Interfa-
cial Residues

Average precision Average recall

DB34 All query proteins 0.46 0.46
Query proteins with one patch 0.56 0.55
Query proteins with multiple patches 0.36 0.37

HET-TRI All query proteins separate interfaces 0.31 0.25
All query proteins combined interfaces 0.57 0.24
All query proteins combined interfaces

with 25% increase in dynamic cutoff
0.55 0.38
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also depend on its structural context. To take this

into account, we weighted the propensity for specific

residues based on that residue’s RASA. To do this,

we defined 10 general levels of RASA (RASA< 10%,

10%<RASA<20%, etc.) and calculated Pr IjRASAð Þ,
i.e., the probability that a residue of type r is

involved in an interface, given that it has a certain

level of RASA. For a specific residue ri of type r in a

query protein the weighted propensity (WP) for that

residue is then

WP rið Þ ¼ propensity rð Þ3Pr IjRASAð Þ

Conditional probabilities were calculated from

directly from our benchmark.

Definition and Scoring of Surface Patches
To take into account the local environment of each

amino acid in predicting its interfacial likelihood, we

implemented the algorithm described in Ref. 10 to

define patches on a protein surface. For each surface

residue ri, another residue rj is considered to be in

the patch if its Ca atom is within 10 Å of the Ca of

ri, and if the angle between the solvent vectors of ri

and rj are <1208. The solvent vector points from the

Ca atom of ri to the center of mass of the Ca atoms

of the 10 residues nearest to ri. As discussed in Ref.

10, the solvent vector comparison is designed to

avoid including residues from the opposing face of a

protein surface, which may lead to discontinuous

patches.

Each surface residue of a query protein is thus

associated with a surface patch, Patch(ri)={x1,

x2,. . .,xn}, containing residues x1-xn. Two scores were

calculated for each patch: (a) the average of the

weighted propensities of residues calculated as

hWP Patch rið ÞÞi5Average WP x1ð Þ; :::;WP xnð Þð Þð

(b) the joint probability for residues in the patch to

be in a protein-protein interface given their levels of

RASA calculated as:

Q
Patch rið Þ ¼

Xn

j¼1

log pxj
IjRASAð Þ

� �

The Pearson’s correlation coefficient between hWP

Patch rið Þið and
Q

Patch rið Þ was found to be 0.21 so

they are providing orthogonal information. A single

patch-based score, patch, was calculated using a vot-

ing method. Voting methods which combine multiple

classifiers have demonstrated superior performances

compared to individual classifier.36 In our voting

approach, if a residue ri appears as a member in n of

the top 15 patches ranked by hWPðPatch rið Þi and in

m out of the top 15 patches ranked by
Q

Patch rið Þ, its

patch score would be (n1m). The number 15 was

chosen by examining the performance using values

from 5 to 22.

Bayesian network

The Pearson’s correlation coefficient between the

PredUs score and the patch-based score was 0.38 so

they are also providing orthogonal information. We

used a na€ıve Bayes approach to combine them,

dividing the scores into uniform bins and calculating

an LR for each bin. We arbitrarily chose 10 as the

total number of bins for each of the PredUs and

patch scores. We further required that the LRs

increase monotonically from bin to bin as the score

increased. This was mostly satisfied for the PredUs

score but the behavior of the LR was erratic for the

patch score. Testing different values for the total

number of bins for the patch score showed that 14

bins produced largely monotonic increases in LR.

The bin ranges and LRs are provided in Supporting

Information Table SIV. LRs for each bin are calcu-

lated as the percentage of interfacial residues with a

score in a given bin divided by the percentage of

non-interfacial residues with a score in that bin and

were obtained from our benchmark using 10-fold

cross validation. The product of the PredUs LR and

patch LR becomes the PredUs 2.0 score for each

residue.

Performance evaluation
Precision was calculated as TP/(TP1FP) and recall

was calculated as TP/(TP1FN) where TP means

“true positive,” FP means “false positive,” and FN

means “false negative.”
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