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Abstract: Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic

and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine

is driving the development of computational tools for accelerating antibody design and discovery. We report
a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods

for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with

experimentally determined changes in binding free energies (DDG) across 32 complexes. Using the AB-Bind

data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in
binding free energies upon mutagenesis. Numerical correlations between computed and observed DDG val-

ues were low (r 5 0.16–0.45), but the potentials exhibited predictive power for classifying variants as improved

vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator
characteristic (ROC) curves; the highest AUC values for 527 mutants with |DDG| > 1.0 kcal/mol were 0.81,

0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods

could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to cor-
rectly rank 42% and 30%, respectively, of the 80 most improved binders (those with DDG < 21.0 kcal/mol) in

the top 5% of the database. This modest predictive performance has value but demonstrates the continuing

need to develop and improve protein energy functions for affinity prediction.

Abbreviation and Symbols: DDG, change in free energy of binding; Ab, antibody; mAbs, monoclonal antibodies; Fab, fragment anti-
gen binding; CDR, complementarity determining region; MD, molecular dynamics; KIC, kinematic closure; ROC, receiver opera-
tor characteristic; AUC, area under the curve; SPM, single point mutation; SPR, surface plasmon resonance; Yeast Disp. Flow
Cyt, yeast surface display analyzed using flow cytometry; ELISA, enzyme-linked immunosorbent assay; phage ELISA, phage
display ELISA; KinExA, kinetic exclusion assay; ITC, isothermal titration calorimetry; ASA, accessible surface area; SASA, sol-
vent-accessible surface area; bASA, buried accessible surface area; VdW, van der Waals; CI, confidence interval; D. Studio,
Discovery Studio.

Additional Supporting Information may be found in the online version of this article.

Short Statement: We report a data set of 1101 antibody and antibody-like interface mutations with experimentally determined free
energies of binding and at least one experimental structure that enables structure-based modeling. The database, AB-Bind, was
used to benchmark computational scoring potentials for their ability to predict observed changes in binding free energies. Although
there was a clear signal in tests discriminating mutations that improved/reduced binding, the prediction performance of all methods
was modest, indicating a continued need to improve computational approaches for binding affinity predictions.
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Introduction
Antibodies (Abs) are an important class of molecules

used in research and increasingly as therapeutic

agents to treat human diseases. Currently, 46 mono-

clonal antibodies (mAbs) are marketed for therapeu-

tic use in the United States or Europe, and an

increasing number of mAbs are entering late-stage

clinical studies or receiving first approvals.1–4 Ther-

apeutic antibodies have certain advantages over

small molecules or other protein therapeutics, such

as longer serum half-lives, higher avidity and selec-

tivity, and the ability to invoke desired immune

responses.5–8 Antibody paratopes—the parts of anti-

bodies that interact with the target antigen—can

recognize almost any biomolecular target, with a

large range of specificities and affinities. This bind-

ing flexibility is due to the antibody complementar-

ity determining regions (CDRs), 6 loop regions that

are parts of the fragment antigen-binding (Fab)

heavy and light chains. The CDRs are supported on

a b-sheet framework and can adopt a number of

canonical conformations, although CDR3 of the

heavy chain exhibits more conformational diversity.9

The high mutational tolerance of CDRs enables opti-

mization of properties necessary for the development

of effective antibody-based therapeutics, including

the critical properties of high affinity and specific

binding. Fab domains isolated from phage/yeast dis-

play screens on the basis of binding must frequently

be further engineered to improve drug-like proper-

ties such as stability, solubility, and reduced immu-

nogenicity.5,10,11 Constant regions of Ab heavy

chains are also optimized to enhance or reduce

effector-mediated immune response and/or half-

life.12 Antibody engineering is typically accom-

plished using high-throughput screening of combina-

torial libraries, most typically by phage display,13,14

but the enormous candidate sequence space makes

it very challenging to identify optimal molecules

that meet specifications.

Knowledge of the structure of an antibody–anti-

gen or antibody–receptor complex provides insight

into how the antibody recognizes its binding partner

and can guide the process of antibody design. But

structures alone do not directly reveal the influence

of specific amino-acid mutations on binding affinity.

Molecular modeling can in theory be used to predict

specific favorable contacts, and this information can

direct the design of high-throughput experimental

screens. However, the predictive performance of

computational tools must be established before these

can be effectively used in prospective antibody para-

tope design projects.

Accurate prediction of the effect of a mutation

on protein binding energy is a challenging task,15

requiring knowledge of the interface structure and

the relative energies of other possible states, includ-

ing conformational variants of the bound state as

well as unbound states.16–18 The role of solvent is a

particular challenge, whether modeling water-

mediated interface contacts or correctly accounting

for tradeoffs in protein–solvent and protein–protein

interactions.19,20 Methods such as free-energy per-

turbation or thermodynamic integration, which

model these complexities in detail, are computation-

ally expensive and are not always accurate.21–23

Empirical methods that use implicit solvation mod-

els are computationally more tractable, but accuracy

is often further reduced.24 Even faster and less accu-

rate methods used to model protein interactions

often ignore complex physics and use potentials

based on the statistics of known structures. Combi-

nations of these approaches are also available.

Computational methods have been used to

design antibodies with improved binding properties,

particularly when combined with input from expert

designers.8,18 Lippow et al. generated higher affinity

variants for 3 antibody targets by computationally

selecting mutations that improved antibody–antigen

interaction energy, focusing on binding electro-

statics.25 Similarly, Clark et al. searched for affinity

improving mutations by evaluating electrostatics

and van der Waals (VdW) energies, and these

authors were able to generate an eightfold improve-

ment in binding affinity for anti-VLA1 antibody Fab

domain.26 Farady et al. designed a human serine

protease MT-SP1 inhibitor antibody (E2) to recog-

nize murine MT-SP1 using a molecular mechanics-

based binding energy evaluation with an implicit

solvation model. In that work, eight computationally

identified mutations were tested experimentally, and

one showed a 14-fold improvement in binding specif-

ically to the mouse antigen.27

Computational method development and evalua-

tion rely on experimental data for benchmarking. A

recent community collaboration project retrospec-

tively analyzed the ability of different computational

methods to predict the effects of 20 possible substi-

tutions at approximately 50 positions on two (non-

antibody) influenza hemagglutinin binders. High-

throughput yeast display enrichment data were

used as an experimental measure of binding; it is

not clear how closely these values reflect binding

394 PROTEINSCIENCE.ORG Antibody-Antigen Affinity Database and Computational Benchmarks



affinities.20 Independent research groups computed

protein stability and binding affinity using a range

of scoring functions that accounted for packing, elec-

trostatics, and/or solvation terms. The best methods

were able to identify about a third of the mutations

that improved binding. Successful methods consid-

ered the effects of mutations on both protein stabil-

ity and binding affinity and carried out side-chain

sampling and backbone relaxation during mutant

structure prediction. In a separate project, ensem-

bles of protein conformations generated using a vari-

ety of tools that sample backbone structures such as

molecular dynamics (MD), kinematic closure (KIC),

or backrub sampling were used to predict the effect

of mutations in Herceptin antibody–Her2 com-

plexes.28 This study showed that sampling backbone

space using KIC or the backrub approach was supe-

rior to using MD to identify amino acids that were

well tolerated at interface positions in a phage dis-

play study. Most recently, binding energy calcula-

tions that combined molecular mechanics with

Poisson–Boltzmann electrostatics and an evaluation

of solvent-accessible surface area (SASA) were

benchmarked against 173 mutations across 7 protein

complexes that included anti-VLA1, anti-lysozyme,

anti-EGFR, anti-HER2 antibodies, and the Barnase–

Barstar complex. The predictor successfully identi-

fied 89% of hot spot alanine mutations, where a hot

spot is a residue that results in at least 1 kcal/mol

loss in affinity.29

Several large experimental datasets have been

compiled that facilitate testing of modeling methods.

Kortemme and Baker compiled 773 protein interface

single-point mutations across 19 systems that were

subsequently used to evaluate an interaction model

for hotspot identification.30 The Kortemme and

Baker dataset was subsequently used to benchmark

the performance of several other computational mod-

els, including some based on a molecular mechanics

description of interactions.31–33 Similar to the Kor-

temme and Baker dataset, the Binding Interface

Database (BID) includes over 1300 mutational meas-

urements across 170 different proteins complexes.34

Most recently, the SKEMPI database compiled bind-

ing free energy data for more than 3000 mutant var-

iants of heterodimeric protein–protein interactions

involving 159 different complexes, along with some

data reporting Dkon, Dkoff, DDH, and DDS.35 These

databases contain primarily single-point alanine

substitutions at protein–protein interfaces, and

include a relatively small number of mutations in

antibodies. For example, the SKEMPI database

includes around 300 antibody–antigen mutants, of

which more than 75% are single-residue mutations

to alanine.

To increase the amount of relevant binding data

available for computational method validation—with

a specific emphasis on improving antibody engineer-

ing—we compiled mutational data from antibody–

antigen, antibody–effector, and antibody-like protein

complexes with known structures. Our AB-Bind

database complements existing data compilations by

including many nonalanine mutations. The database

enables computational benchmarking studies of

existing methods and can thereby be used to drive

improvements in modeling methodology. In this arti-

cle, we present the database and its characteristics

along with the results of different computational

methods tested on the task of predicting the effects

of mutations on binding.

Results

AB-Bind database

To construct the AB-Bind database, we curated a

diverse set of binding data for parent and mutant

antibody complexes. Antibody–antigen interfaces dif-

fer from other protein interfaces in that they are

mediated by 6 CDR loops, where 5 of the loops have

a definable set of canonical conformations.36,37 We

focused on antibody interactions with large globular

antigens and also included Fc-receptor, nanobody–

antigen, and antibody–antigen-like complexes to

increase the amount of data for analysis. Although

additional binding data are available for antibody

complexes with haptens and peptidic antigens, these

data were not included in this version of AB-Bind

due to the small contact areas of these complexes38

and the greater conformational flexibility of

unbound peptidic ligands, which increases the

uncertainty in molecular modeling.39–43 AB-Bind

includes 1101 mutational data points with experi-

mentally determined binding affinities. The protein

complexes and experimental assays used to generate

the data are summarized in Supporting Information,

Table S1. To minimize the uncertainty introduced

when experimental observations from various proj-

ects are aggregated, we prioritized inclusion of com-

plexes for which numerous mutations have been

made and measured by the same laboratory, with

the same techniques. Consequently, AB-Bind data

points are derived from studies of just 32 complexes;

between 7 and 246 variants are included for each

complex. The data come from complexes with crystal

structures either of the parent complex or of a

homologous complex with high sequence identity.

Thus, AB-Bind enables structure-based computa-

tional modeling of all mutants. More than 700 inter-

actions in the AB-Bind database are not included in

BID, SKEMPI, or the Kortemme et al. datasets men-

tioned above.

Figure 1 summarizes the content of AB-Bind

using violin plots, where the distribution of experi-

mentally measured changes in binding free energies

are illustrated using kernel estimated probability

density, and the minimum, median, and maximum
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values are indicated using red lines. Overall, the

data feature a large range of experimentally meas-

ured changes in binding energies (Supporting Infor-

mation, Fig. S1). Although most mutations weaken

binding, 26% of variant sequences show an improve-

ment in measured binding affinity relative to the

parent complex (DDG< 0 kcal/mol). In Figure 1(A),

mutations are divided into subgroups by the experi-

mental technique used to measure binding affinity.

AB-Bind includes binding affinities measured by

many methods: surface plasmon resonance (SPR),

AlphaScreen, enzyme-linked immunosorbent assay

(ELISA), kinetic exclusion assay (KinExA), phage

display ELISA (phage ELISA), yeast surface display

analyzed using flow cytometry (Yeast Display Flow

Cyt.), and enzymatic assays. Brief descriptions of all

experimental techniques used for affinity measure-

ments are provided as part of the Supporting Infor-

mation. Analysis of the database by experimental

technique is useful because not all methods are

equally accurate or precise.30 Biophysical techniques

such as SPR and isothermal titration calorimetry

(ITC) provide quantitative measurements, whereas

quantitative accuracy is sacrificed for throughput in

some studies, e.g., using ELISA or phage ELISA

assays to generate large datasets.

Mutations reported in the AB-Bind database

come from 27 protein complexes with experimentally

determined structures (Supporting Information,

Table S2) and 5 complexes for which it was possible

to build a homology model based on a template with

76–90% sequence identity, as described in Supporting

Information, Table S3 (see Methods for details).

Figure 1(B) divides the database into exclusive cate-

gories using the parent PDB resolution, which

ranges from 1.50 to 3.79 Å, and the homology mod-

eled structures. Not all structures were solved at

high resolution: 701 variants correspond to PDB

Figure 1. Analysis of the content of the AB-Bind Database. (A–D) Violin plots illustrating the median, range, and distribution of

experimentally observed changes in free energies of binding (DDG) in kcal/mol over subsets of the database, where the vertical

axis gives the observed DDG, the bottom horizontal axis describes a subset of the database, and the top horizontal axis lists

the number of variants found within the specified subset. The data are grouped based on (A) the experimental technique used,

(B) the X-ray structure resolution, (C) the mutation type, or (D) the location of the mutation site for single point mutations. Loca-

tion definitions are given in the Materials and Methods section.
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structures with good resolution (<3 Å), 313 corre-

spond to structures with resolution >3 Å, and for 87

variants the complex structures analyzed here were

derived from homology models. However, the quality

of most structures was high according to the MolPro-

bity server, when judged by an all-atom clash score

that is defined as the number of unfavorable all-

atom steric overlaps per 1000 atoms.44,45 Twenty-one

out of 27 crystal structures has clash scores <20,

and only two structures had a clash score in the mid-

40s. Statistics for the crystal structures, including

the templates used for homology modeling, are

reported in Supporting Information, Table S2 and

the homology models are listed in Supporting Infor-

mation, Table S3. Also, the accessible surface area

buried upon complex formation (bASA) for each par-

ent PDB structure is plotted in Supporting Informa-

tion, Figure S2. On average, 56% 6 5% (std dev) of

bASA in AB-Bind parent complexes is nonpolar.

Mutations can be classified by the type of sub-

stitution and by the surface exposure of the parent

residue at the mutated site. Figure 1(C) summarizes

the types of mutations in the database, with protein

variants grouped into those with only single-point

mutations (SPM) and non-SPM (multiple mutations

per variant) categories, made up of 645 and 466 var-

iants, respectively. Many published databases are

composed primarily of alanine SPMs.30,46 In the AB-

Bind data set, 403 variants are alanine SPMs and

an additional 242 variants include nonalanine

SPMs. There are 92 variants with multiple alanine

substitutions and 364 variants with multiple substi-

tutions that include nonalanine mutations. Many

database variants with multiple substitutions are

made up of SPMs characterized individually; 119

variants with multiple substitutions were exclu-

sively composed of SPMs with known DDGs and 25

variants with multiple substitutions had at least one

SPM with a known DDG. The binding affinity distri-

butions for alanine and nonalanine SPMs are simi-

lar. Within the AB-Bind dataset, multiple alanine

mutations tend to be associated with weakened

binding more than SPMs, but multiple nonalanine

mutations in this database are frequently associated

with improved binding affinities. This is because

many variants with multiple nonalanine mutations

resulted from combining individual mutations

already known to increase binding affinity. The SPM

mutation types were also grouped based on the sub-

stitution types into non-exclusive groups such as

alanine to nonalanine, polar to nonpolar, and so on.

These mutation types were further mapped into

exclusive subsets based on whether they came from

antibody–antigen, antibody–Fc receptor, nanobody

or antibody-like complexes (Supporting Information,

Figure S3). Although there are many nonalanine to

alanine (nA2A) mutations, other types of substitu-

tions involving polarity changes or charge changes

are also represented in the database.

SPM locations in relation to the protein–protein

interface were characterized as interface or nonin-

terface positions; see Methods for details. The nonin-

terface residues (DASA 5 0) were further grouped as

interior or surface, whereas interface residues

(DASA>0) were further grouped as support, rim, or

core; see Figure 1(D) for residue distributions across

sites and the binding energy changes associated

with each class. Out of the 160 SPMs designated as

noninterface, 59 positions were classified as interior

and the remaining 101 positions were grouped as

surface; surface mutants show the least variation in

binding affinity. Out of 492 protein–protein interface

positions, 95 were classified as support, 156 as rim,

and 241 as core. Most surface mutations show less

deleterious effect on binding than interface muta-

tions. Also, mutations in the rim region are slightly

more likely than surface or core mutations to

improve binding relative to the parent. Similar to

findings from other analyses of protein interface

mutations,47 free energies of binding associated with

interface mutations in the AB-Bind database are

highly variable.

Scoring potentials

We used the curated experimental binding data to

benchmark a variety of scoring potentials and evalu-

ate their ability to predict changes in binding free

energies (DDG) upon mutation. The general

structure-based workflow is described in the Meth-

ods and is summarized in Supporting Information,

Figure S4. In addition, complete protocols and com-

mand lines are given in Supporting information. We

only evaluated methods that can score mutants in a

timeframe appropriate for pharmaceutical discovery,

i.e., those fast enough to evaluate thousands of

mutations in less than a few days when using a

computing cluster of several hundred processors.

This ruled out approaches such as free-energy per-

turbation, which may become more commonly acces-

sible as the computational algorithms become more

robust and graphics processor units become widely

used.48–51

To evaluate different methods, binary classifica-

tions of variants as improved vs weakened binders

were calculated using each computational method

and reported as the area under the curve (AUC) of

receiver operator characteristic (ROC) curves such

as those shown in Figure 2 and Supporting Informa-

tion, Figure S5. The details of the binding energy

calculations are described in the section titled Meth-

ods. In most binding energy calculations, the protein

partners were assumed to interact as rigid bodies.

For most of the AB-Bind complexes, unbound struc-

tures are not available. Thus, to assess the validity

of this rigid body binding assumption, the average
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root-mean-square displacements of interface residue

Ca atoms between the bound and unbound confor-

mations (iRMSD)52 of 17 antibody–antigen com-

plexes not in AB-Bind were analyzed.53 The average

iRMSD for these antibody–antigen X-ray crystal

structures was 0.64 Å (range: 0.17–1.24 Å, median:

0.51 Å), indicating available antibody–antigen inter-

faces do not undergo large structural changes upon

complex formation. Nevertheless, assuming rigid-

body binding is clearly a severe approximation.

As a simple reference model for predicting

changes in binding energy, we used the buried acces-

sible surface area (bASA). NACCESS54 was used to

determine accessible surface area (ASA) for the com-

plex and unbound structures, and the buried inter-

face was computed for each variant and the parent

complex (see Methods for details). In this model,

greater buried surface predicted improved binding.

For comparison with this na€ıve approach, we eval-

uated the performance of various statistical poten-

tials for predicting changes in free energies of

binding, specifically benchmarking the DFIRE,55

dipolar DFIRE (dDFIRE),56 and STATIUM57,58

potentials. DFIRE is an all-atom, distance scaled,

pairwise potential derived using a database of about

1000 nonhomologous protein structures with resolu-

tion <2 Å. dDFIRE is a modified version of DFIRE

that accounts for dipole–dipole interactions. STA-

TIUM is a pairwise statistical potential that scores

how well a protein complex can accommodate differ-

ent pairs of residues in the parent complex geome-

try; our implementation considers only interface

Figure 2. Performance of interaction predictors. ROC curves illustrate performance in classifying mutations as improved vs

weakened binders, relative to a parent complex, for the whole data set (blue), or low confidence (|DDG|<0.5 kcal/mol—cyan),

medium confidence (|DDG|>0.5 kcal/mol—gray), and high confidence (|DDG|>1 kcal/mol—red) subsets.
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positions. STATIUM is the only computational

method that did not require generation of mutant

structures; only the structures of the parent com-

plexes and the identities of the mutated residues

were necessary for the calculation.

All-atom protein force fields from FoldX (FOL-

DEF),59,60 Discovery Studio (CHARMMPLR),61,62 and

Rosetta63–65 were also evaluated for their predictive

performance. In general, these force fields describe

van der Waals (VdW), hydrophobic packing, electro-

static, and desolvation forces using either semiphysi-

cal or statistical terms. The scoring functions are

parameterized using empirical/theoretical data to

reproduce experimentally observed structures, folding

stabilities, and/or binding hot spots. In FoldX, terms

representing interactions such as VdW, electrostatics,

solvation effects, hydrogen bonds, water bridges, and

entropy effects for the backbone and side-chain atoms

are weighted to reproduce experimentally measured

effects of single-point mutations on protein folding

stability. In Rosetta, terms representing physical

interactions are weighted and combined into a single

energy function to predict binding energy hot spots in

protein interfaces.30 VdW and solvation energies are

evaluated using approximate physical expressions,

whereas statistically derived terms describe pairwise

electrostatics and orientation-dependent hydrogen

bonds, as well as side-chain and backbone conforma-

tional preferences. In Discovery Studio, binding affin-

ities are calculated as a sum of physical terms

including VdW, generalized Born electrostatics, an

entropy term based upon side-chain mobility, and

structure-based SASA nonpolar terms. The method

uses the CHARMPLR force field. The relative weight-

ing of these four terms is optimized to reproduce

experimentally determined protein stability data.

Computational performance
Changes in binding free energies upon mutation

(DDG) were predicted using the bASA, Rosetta,

dDFIRE, DFIRE, STATIUM, FoldX, and Discovery

Studio scoring functions. The quantitative correla-

tions between experimental and computed free

energy changes were low (Supporting Information,

Table S4): Pearson correlation coefficients ranged

from 0.16 (Rosetta) to 0.45 (Discovery Studio). Fig-

ure 2 shows the ROC curves for correctly binning

variants into increased or decreased binding affinity

categories for statistical and force-field-based energy

potentials, while the ROC curve for the reference

bASA approach is shown in Supporting Information,

Figure S5. We looked at performance over the whole

dataset (blue), and for low-, medium-, and high-

confidence subsets (in, cyan, gray, and brown,

respectively). The medium- and high-confidence sub-

sets include only variants with |DDG|>0.5 or 1.0

kcal/mol, respectively, while the low-confidence sub-

set includes those variants with |DDG|< 0.5 kcal/

mol. Supporting Information, Table S5 lists the com-

puted AUC values and associated 95% confidence

intervals (CI) after bootstrap sampling for all scoring

potentials. All methods, including the simple surface

area-based method, showed some ability to distin-

guish mutations that increase binding affinity from

those that decrease binding affinity. However, per-

formance was close to random for the low-confidence

mutants, for which experimental DDG values are

subject to measurement errors close to the magni-

tude of the observed energy changes.

In accordance with the assumptions of our

bASA model, we found that burial of additional sur-

face area at the interface is correlated with an

increase in binding affinity. Using DbASA as predic-

tor of binding affinity gave an AUC of 0.63 (0.59–

0.66) for correctly binning variants as higher or

lower affinity than the parent (95% confidence inter-

vals are given in parentheses). When variants with

small changes in binding affinities were excluded,

average performance improved slightly; AUC values

were 0.67 (0.63–0.73) and 0.68 (0.63–0.75) for cor-

rectly binning medium- or high-confidence variants,

respectively. Rosetta and dDFIRE performance was

comparable to that of the simple bASA model.

DFIRE and STATIUM performed better, giving AUC

values of 0.78 (0.74–0.83) and 0.81 (0.76–0.85),

respectively, for high-confidence variants. FoldX and

Discovery Studio predictions gave the best AUC val-

ues of 0.87 (0.83–0.91) and 0.88 (0.85–0.92) for bin-

ning high-confidence variants, respectively. FoldX

and Discovery Studio predictive performance over

the whole dataset was significantly better than other

scoring functions studied in this work (Supporting

Information, Table S6).

The FoldX energy function was among the best

performing potentials studied in this project. In

addition to providing good AUC values for classify-

ing variants, FoldX also gave one of the best correla-

tions between predicted and observed DDG values,

although this correlation was very weak (r 5 0.34).

We analyzed individual FoldX components to deter-

mine if any were predictive when used alone. Inter-

estingly, the electrostatic, VdW, and hydrophobic

and polar components of the solvation terms all gave

very similar AUC values, although they did not per-

form as well as the complete scoring function (Sup-

porting Information, Fig. S6). Greater differences

were apparent when examining the correlation coef-

ficients between the observed DDG values and FoldX

electrostatics, VdW, polar, or nonpolar solvation

terms. Pearson r values were 0.52, 0.27, 20.33, and

0.23 for these energy terms, respectively, compared

to 0.34 for the complete FoldX scoring function. The

magnitude of experimental correlations with VdW,

polar, and nonpolar solvation terms are similar. The

sign for the polar solvation term is negative because
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burial of polar atoms disfavors, rather than favors

stability.

The AB-Bind dataset combines information from

multiple sources. Protein-binding affinities were

measured using a range of experimental techniques

in a number of research laboratories. In addition,

the crystal structures used in model generation dif-

fered in quality. Thus, we grouped the data into cat-

egories based on experimental technique, structure

quality, mutation type, and mutation location for

SPMs, and looked at the prediction performance for

subsets of mutations. Figure 3 shows the AUC val-

ues calculated for each category over all subsets of

the dataset, and Supporting Information, Tables S7–

S13 list p-values for comparing the ROC curves for

these subsets for bASA, Rosetta, dDFIRE, DFIRE,

STATIUM, FoldX, and Discovery Studio predictions.

When the predictions of different scoring functions

were compared across experimental approaches, we

found that performance predicting SPR data was

significantly better than performance predicting

ELISA-generated data (significance was defined as

a p-value of 0.05 or less). Predictive performance

over the homology-modeled subset of structures

was similar to the performance of methods run on

crystal structure subsets for FoldX and STATIUM

approaches.

Enrichment

In antibody engineering, a real-world challenge is to

minimize the number of experiments required to

identify mutations that lead to improved affinity. We

evaluated the ability of different methods—and com-

binations of methods—to prioritize candidate muta-

tions for experimental testing. To do this, all

variants or only the SPM variants were separately

ranked by each method. Then, the percentage of

mutants that improve binding affinity was calcu-

lated for a given top fraction of the ranked lists.

Figure 4(A) illustrates the percentage of variants

with DDG<21.0 kcal/mol that could be identified as

a function of the percentage of the database screened.

Over the whole dataset, the top-performing methods,

FoldX and Discovery Studio, provided slightly more

than 10-fold enrichment in the top 1% of the data-

base (enrichment 5 % of tight binders discovered/% of

dataset considered, see Table I for values). The na€ıve

bASA and DFIRE models provided around fivefold

and twofold enrichment, respectively, in this interval

while other methods did not result in any

Figure 3. Breakdown of predictor performance over database subsets. Each cell is colored according to AUC value, see heat-

map key at right, and lists 95% confidence intervals. Row labels on the left indicate database subgroup names, and labels on

the right give the percentage of the database within the named subgroup. The column headings indicate the computational

method used.
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enrichment. To illustrate the extent to which DFIRE,

FoldX, and Discovery Studio identified the same or

different mutations that enhance binding, Figure

4(B) shows the Venn diagram of the number of

improved-affinity variants (DDG<21.0 kcal/mol)

within the top 5, 10, or 15% of the computationally

ranked database. In the top 5% of the entire 1101-

variant database, DFIRE, FoldX, and Discovery Stu-

dio identified different stabilized variants; only 11

out of 89 total variants with DDG<21.0 kcal/mol

were found by all three methods. Combining the pre-

dictions of the different methods, it was possible to

identify 45 stabilized variants in the top 5% of the

three ranked lists (discovering these would require

testing 115 unique variants). The overlap of predic-

tions made by different methods increased as we

probed deeper into the list; 28 and 39 high-affinity

binders were identified by all three methods by sam-

pling the top 10 or 15% of each list, respectively, out

of a maximum of 56 or 57 that could be identified

using any method (discovering these would require

testing 200 or 298 variants, respectively, to evaluate

the top 10 or 15% of each list).

We also examined the ability of the computa-

tional methods to enrich SPMs for variants with

improved affinity. This is more difficult as the

observed range in affinity changes for SPMs is

smaller (Supporting Information, Fig. S1B), and

Figure 4. Enrichment of improved-affinity binders. (A) Plot illustrating the percentage of all variants with DDG<21.0 kcal/mol

found in the indicated top percentage of the computationally rank-ordered list. (B) Venn diagrams comparing the number of

variants with DDG<21.0 kcal/mol that were identified within the top 5%, 10%, or 15% of the computationally ranked data-

base. (C) Plot illustrating the percentage of SPM variants with DDG<20.5 kcal/mol found in the indicated top percentage of

the computationally rank-ordered SPM list. (D) Venn diagrams comparing the number of SPMs with DDG<20.5 kcal/mol that

were found within 10%, 20%, or 30% of the computationally ranked database.

Table I. Enrichment of Improved-Affinity Variants (DDG<21 kcal/mol) in the Rank-Ordered Dataset
(Enrichment 5 Percentage of Tight Binders Discovered/Percentage of Dataset Considered)

% Database bASA DFIRE dDFIRE STATIUM Rosetta FoldX Discovery Studio

1 6.8 2.2 0.0 0.0 0.0 12.7 11.4
5 3.4 4.4 2.6 4.8 2.5 8.9 6.5
10 2.6 2.7 2.0 5.3 2.2 6.0 5.1
15 2.5 2.6 1.7 3.8 2.3 4.3 4.2
20 2.0 2.5 1.7 3.1 2.1 3.4 3.4
30 1.6 2.1 1.6 2.1 1.7 2.4 2.5
40 1.3 1.9 1.5 1.6 1.5 2.1 2.1
50 1.3 1.6 1.3 1.8 1.3 1.7 1.8
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computational performance on small DDG variants

is generally poor (Fig 2 and Supporting Information

Fig. S5). However, enrichment of stabilizing SPMs is

an important test because in silico affinity matura-

tion approaches often rely on mutating residues

individually and then combining the favored substi-

tutions to generate variants with further improved

binding. Figure 4(C) plots the percentage of

improved-affinity SPMs with observed DDG<20.5

kcal/mol versus the fraction of all SPMs (645 in

total) that would have to be screened to discover

them; Table II reports the enrichment rates for all

scoring functions considered. For SPMs, the enrich-

ment performance is poor relative to enrichment

over the whole dataset. In the top 10% of the data-

base, Discovery Studio identified just 8 improved-

affinity SPMs, whereas DFIRE and FoldX identified

only 4 and 5 out of 27 total improved-affinity SPMs

[Figure 4(D)]. Only 1 variant was identified by all

three methods in the top 10% of the database. In the

top 30% of the SPM subset, DFIRE identified 13

improved-affinity SPMs, while FoldX identified 15

and Discovery Studio identified 14 examples. The

number of improved-affinity SPM variants predicted

in the top 30% by all methods considered here

remained small (5 variants), indicating that an

approach that only considers those mutations identi-

fied by all scoring schemes would miss many SPMs

that improve binding. In total, 23 out of 27

improved-affinity SPM variants were identified in

the top 30% of the database by any of the methods

considered; discovering these would require testing

of 344 SPM variants.

Next, we investigated whether a combination of

predictions made by different scoring methods could

improve the enrichment rates for the whole dataset

or the SPM subset. We used rank-by-number, rank-

by-rank, and rank-by-best consensus scoring

schemes (see Methods) to evaluate enrichment of

improved-affinity binders (DDG<21.0 kcal/mol for

all mutants and DDG<20.5 kcal/mol for SPM sub-

set only).66 Figure 5 plots the consensus enrichment

rates using FoldX and Discovery Studio predictions

only, where panels A and B illustrate performance

over the whole dataset and SPM subset, respectively.

Table III lists the enrichment values. The consensus

Table II. Enrichment of Improved-Affinity SPM Variants (DDG<20.5 kcal/mol) in Rank-Ordered SPM Subsets
(Enrichment 5 Percentage of Tight Binders Discovered/Percentage of Dataset Considered)

% Database bASA DFIRE dDFIRE STATIUM Rosetta FoldX Discovery Studio

1 3.4 0.0 0.0 0.0 0.0 0.0 0.0
5 1.5 1.2 1.2 0.7 0.0 2.2 2.2
10 1.1 1.2 1.2 1.5 0.4 1.8 2.9
15 1.5 1.4 0.8 1.2 0.5 2.0 2.2
20 1.3 1.2 0.8 0.9 1.3 2.0 2.0
30 1.0 1.3 0.9 1.0 1.1 1.8 1.8
40 0.8 1.1 0.9 0.7 0.9 1.7 1.8
50 1.2 1.2 1.0 0.7 1.0 1.6 1.7

Figure 5. Enrichment of improved-affinity binders with consensus scoring. Plot showing the percentage of (A) all variants with

observed DDG<21.0 kcal/mol or (B) SPM variants with observed DDG<20.5 kcal/mol found in the computationally rank-

ordered lists using rank-by-number, rank-by-rank, and rank-by-best consensus methods computed using FoldX and Discovery

Studio predictions.
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schemes provide very little improvement over the

performance using Discovery Studio or FoldX alone.

The rank-by-rank and rank-by-number schemes pro-

vide some early enrichment advantage for analyzing

the whole dataset. However, this advantage disap-

pears when sampling 15% or more of the database.

There are no detectable early improvements of a

consensus method over Discovery Studio when eval-

uating the more challenging SPM subset of the data-

base. The consensus approaches provide a slight

enrichment around 20–30% of the SPM dataset. To

further evaluate whether increasing the number of

computational predictions incorporated into the con-

sensus scheme could improve enrichment, we com-

puted consensus scores using DFIRE, STATIUM,

Rosetta, FoldX, and Discovery Studio predictions,

with the results reported in Supporting Information

Figure S7 and Table S14. Combining additional pre-

dictors in the consensus calculations did not provide

any additional enrichment advantage.

Discussion

In this article, we describe the AB-Bind mutational

database, which contains protein–protein interaction

affinity data with an emphasis on antibody–antigen

complexes. We report binding data compiled from the

literature for mutations made in complexes with

known structures, including data for mutations that

improve binding relative to a parent antibody com-

plex. AB-Bind consists of approximately 45% alanine-

only mutants, and 55% mutants with at least one

non-Ala substitution, thus providing a resource that

enables computational analysis of the effects of

chemically diverse mutations. Although these data

are useful for identifying and diagnosing limitations

in prediction and scoring protocols, the data are

biased toward mutations that reduce binding affinity.

Often, practical applications will require identifica-

tion of mutations that improve binding affinity by

more than a trivial amount and, because these are

hard to discover, such examples are rare in AB-Bind.

When compared to a parent, only 7% of all variants

improve affinity by more than 1 kcal/mol (DDG<21

kcal/mol); only 4% of SPM variants improve affinity

by more than 0.5 kcal/mol (DDG<20.5 kcal/mol).

However, an ability to identify mutations that are

deleterious for binding would also be beneficial in

narrowing the amino-acid search space and for reduc-

ing the risk of disrupting binding when making

mutations to optimize other physical–chemical prop-

erties of the antibody.

We used AB-Bind to benchmark a representative

subset of computational scoring functions for their

ability to predict binding affinity changes and to

enrich a set of candidate mutations in those that

improve binding. Performance distinguishing

improved-affinity from nonimproved mutations was

modest, particularly when predicting small binding

affinity changes. The higher experimental uncertainty

for such measurements may limit the maximum per-

formance that can be expected on this task.35,53 Com-

putational performance was better for correctly

classifying medium- and high-confidence variants

(those with |DDG|> 0.5 and 1.0 kcal/mol, respec-

tively) as improved or weakened binders. Modest suc-

cess on this task suggests that these types of

approaches, although not highly reliable, nevertheless

have potential to guide experimental studies. Per-

formance is limited by the numerous approximations

and assumptions made to reduce computation time

and render the modeling problem tractable. Here,

these included (1) the assumption that the crystal

structure is an appropriate representation of the pro-

tein complex structure in the binding experiments,

despite differences in experimental conditions such as

pH, (2) the assumption of minimal conformational

change upon complex dissociation, (3) the extremely

limited conformational sampling of the structures of

the bound and unbound states, (4) neglect of explicit

solvent and ion molecules, and (5) use of approximate

energy functions, including statistical potentials that

do not explicitly treat atomic interactions.

One strategy to improve computational binding

affinity predictions could be to decompose existing

Table III. Enrichment of Variants With Improved Binding Affinity (DDG<21.0 kcal/mol for All-Variant Analysis
or DDG<20.5 kcal/mol for SPM) Using Rank-by-Number, Rank-by-Rank, and Rank-by-Best Consensus Schemes
Computed Using FoldX and Discovery Studio Predictions Only

All SPM

% Database FoldX
Discovery

Studio
Rank-by-
number

Rank-by-
rank

Rank-by-
best FoldX

Discovery
Studio

Rank-by-
number

Rank-by-
rank

Rank-by-
best

1 12.7 11.4 14.3 14.3 9.5 0.0 0.0 0.0 0.0 0.0
5 8.9 6.5 9.8 9.8 6.4 2.2 2.2 1.5 0.7 3.6
10 6.0 5.1 6.4 6.4 4.7 1.8 2.9 2.2 2.6 4.4
15 4.3 4.2 4.4 4.4 3.7 2.0 2.2 2.9 2.5 3.4
20 3.4 3.4 3.5 3.5 3.3 2.0 2.0 3.1 2.4 3.5
30 2.4 2.5 2.8 2.6 2.6 1.8 1.8 2.3 2.1 2.7
40 2.1 2.1 2.1 2.2 2.2 1.7 1.8 2.1 1.9 2.3
50 1.7 1.8 1.9 1.9 1.9 1.6 1.7 1.8 1.8 1.8
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scoring function into their components, and reweight

these components to better predict experimental

data in AB-Bind. Although this could improve per-

formance on our benchmarks, the risk is that any

such energy function could be over-fit to a biased

dataset and consequently not be useful for new pre-

diction tasks.67 FoldX was developed by optimizing

the fit of predicted energies to stability data for

more than 1000 single-point protein mutants.

Despite the use of stability data for parameteriza-

tion, FoldX has been previously applied to predict

changes in binding affinity,59,68 and we observed

good performance relative to other scoring functions

in a large-scale test of this application. Kortemme

and Baker also used protein-binding data to parame-

terize Rosetta for predicting binding free energies.30

Our efforts to improve prediction by reweighting

FoldX terms using regression techniques to fit AB-

Bind data did not lead to significant improvements

in performance (data not shown). However, we did

not perform an exhaustive test of parameter

reweighting for multiple energy functions as part of

this work.

Another strategy that can potentially improve

prediction performance is to combine results from

multiple scoring functions. This approach, known as

consensus scoring, has seen widespread use in

small-molecule drug discovery over the past 15

years.69–71 The quality of the results can depend on

the chosen scoring functions and their specific weak-

nesses, as well as the specific method used to com-

bine individual functions’ scores into an overall

consensus score. Although there are many reports of

success, in other cases, individual functions outper-

form consensus methods.66,72,73 Our results do not

argue strongly for a consensus approach to discover-

ing mutations that improve affinity, but we did

observe slight improvement in enrichment both for

all mutations and for SPMs at certain cut-offs. It is

of course possible that consensus scoring methods

that incorporate functions beyond those considered

here may provide additional improvements.

Current practice in antibody optimization

involves not only designing small numbers of indi-

vidual point mutants but also screening large pro-

tein libraries using display technologies. Notably,

the complete sequence space of an antibody interface

is too large to sample comprehensively. A common

solution is to sample sequences randomly, but this

may be nonoptimal for identifying the best mutants.

Despite the limited capacity of current computa-

tional methods to predict specific binding energies,

these methods can enrich a set of protein variants in

those that improve binding, relative to random sam-

pling, and can also help identify destabilizing muta-

tions [Figs. 4(A,C) and 5]. Therefore, current

methods should be useful for focusing protein libra-

ries so that they sample more promising regions of

sequence space. A further application of binding

energy prediction methods is to identify CDR resi-

dues that are predicted not to make significant con-

tributions to binding. Such residues would become

available for mutation to optimize properties such as

stability, immunogenicity, aggregation, and post-

translational modification.74 The ability to accu-

rately determine which residues do or do not con-

tribute to differentiated behavior of closely related

sequences may also be relevant during analysis of

intellectual property claims.

In summary, we constructed AB-Bind, a data-

base of antibody-focused binding affinity measure-

ments with significant contribution of non-Ala

mutations, as well as mutations that increase bind-

ing affinity. We hope the limitations of this dataset

will motivate publication of additional antibody opti-

mization experiments that will expand the data

available for testing new modeling methods. We

used AB-Bind to identify differences in performance

among several published scoring protocols, and these

results can guide further improvement in scoring

function design. Finally, some of the methods tested

showed slight enrichment relative to random sam-

pling of an SPM dataset with diverse mutation types

(Table II), indicating their potential to improve the

efficiency of library screening experiments in a real-

world setting.

Materials and Methods

Datasets

The database entries were manually curated and

organized. Experimentally observed binding affinities

are reported as the change in free energy of binding

upon mutagenesis (DDG 5 DGmutant 2 DGparent) in

kcal/mol. Experimental DDG data are reported in an

Excel worksheet (see Supporting Information), where

related PDB IDs are also provided. The individual

datasets are summarized in Supporting Information,

Table S1.

Parent complex structures
The curated crystal structures of parent complexes

are summarized in Supporting Information, Table

S2. When more than one biological unit existed in

the crystal structure, the first unit was selected and

used in subsequent modeling. For antibody–antigen

systems where the heavy and light chains had dif-

ferent chain names in the PDB, the chain IDs were

changed to their canonical H and L naming repre-

sentation. For each crystal structure, quality metrics

such as the resolution, Rwork, Rfree, and MolProbity

scores, and experimental conditions such as pH and

temperature were included in the database.

For datasets without accompanying crystal

structures, template structures with high sequence

identity were used to generate homology models of
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the parent complex using default parameters in Bio-

Luminate.75,76 The homology model sequence was

aligned to the target using Clustal W.77 Loop models

were generated using an automated workflow in

BioLuminate. Briefly, loop models required as part

of this process were obtained by searching the PDB

for templates of the appropriate length-and-stem

geometry. Once a feasible template was identified,

the loop side chains were mutated and repacked

to give the desired sequence, and the resulting

structures were minimized. Supporting Information,

Table S3 summarizes the templates and the sequence

identity to the target for all homology models.

For each parent complex, the accessible surface

area (ASA) buried by complex formation (bASA) was

computed using Eq. (1), where ASAAB represents the

ASA of the protein–protein complex and ASAA,

ASAB represent the ASA of the individual protein

components of the complex. For ASA calculations,

the protein surface was scanned using a probe

radius of 1.4 Å using NACCESS and values were

compared to references values for each amino acid

that correspond to that residue in ALA–XXX–ALA

tripeptide, giving relative ASA values.54 Residue

locations were classified into exclusive interface and

noninterface groups. Interface residues were further

classified as rim, support, and core, and noninterface

residues were also further classified as surface or

interior, based on the classification approach

described by Levy.78 Briefly, interface residues had

DASA> 0 and were further grouped as support, rim,

and core depending on the computed ASA in the

unbound and bound states. Support residues had

<25% side-chain ASA in the unbound configuration,

indicating that these amino acids are mostly buried

prior to complex formation. The rim residues had

>25% side-chain ASA in the bound configuration,

indicating that they are partially solvent exposed

even after complex formation. Core residues had

ASA >25% in the unbound state, but <25% in the

bound state, indicating burial upon complex forma-

tion. Noninterface residues exhibited no change in

ASA between the bound and unbound configurations

(DASA 5 0) and were further grouped as interior or

surface depending on the computed ASA in the

unbound state. Interior residues had <25% of the

side-chain surface exposed, whereas surface residues

had >25% ASA in the unbound state.

bASA5DASAInterface5ðASAA1ASABÞ2ASAAB (1)

PyMOL scripts

A PyMOL79 function was developed to enable users to

better visualize mutated residue positions and inter-

acting residues in the parent complex, where hydrogen

bonds between the position and the rest of the protein

are also highlighted. We provide the PyMOL function

and an example script to generate a sample PyMOL

session as part of the Supporting Information. The

“show_ interactions” command requires the PDB name

and a mutant residue selection as STDIN, for exam-

ple $pymol show_interactions_example.pml –

1MPH.pdb “H:T50V” “H:K64E,L:S28Q” “reads in a PDB

file named 1MPH.pdb and illustrates two space separated

mutants specified within the quotation marks. Mutants are

formatted as following:<chain name>:<parent resi-

due name>< residue number>< mutant residue

name>.

Structure generation
Mutant structures for computational analysis were

generated using FoldX (release 3.0),59 Discovery Stu-

dio (release 4.0),61 or Rosetta (release 3.1).63 The

scripts used to generate structures are provided as

part of the Supporting Information. Briefly, the par-

ent and mutant complex models were generated

based on their corresponding crystal- or homology-

modeled parent structure. In FoldX, missing side

chains were filled, hydrogen atoms were added, side-

chain rotamers were optimized, and the structure

was relaxed to remove any VdW clashes in the par-

ent complex. In the mutant generation step, the

mutated side chains were built and repacked using

a rotamer library; this was followed by side-chain

minimization of mutant residues to relieve VdW

clashes. When using Rosetta, parent and mutant

structures were optimized using the following proto-

col: all residues within 8 Å of mutated positions in

the parent conformation were repacked using either

the mutant or the wild-type amino acid at the design

site. This was the only workflow that considered

conformational flexibility of bound and unbound

states, thus the only non-rigid-body calculation. This

was repeated 20 times for the bound and unbound

conformations and the minimum energy of each was

used in binding energy calculations. In Discovery

Studio, the parent structures were prepared by cor-

recting nonstandard atom names, selecting single

conformations for sites with alternative conforma-

tions by taking the position with highest occupancy,

and adding missing side-chain atoms. Subsequently,

side chains for residues with missing atoms were

optimized, waters removed, missing loops modeled,

and protonation states of titratable side chains were

predicted using a pH of 7.4. In mutant generation,

new side chains were built and optimized in the

unbound state. The computational models of the par-

ent and mutant complexes were used for the binding

energy calculation.

Scoring

For the bASA model, the accessible surface area

(ASA) buried upon complex formation for a parent

vs mutant structure was computed, using structures
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generated with FoldX. For each structure, the bur-

ied ASA (bASA) was computed using eq. (1) and

changes in bASA (DbASA) after in silico mutagene-

sis were calculated using eq. (2).

DbASA5DDASA5DASAMUT
Interface2DASAWT

Interface (2)

For Rosetta, DFIRE, dDFIRE, FoldX, and Dis-

covery Studio, the binding interaction energies for

mutant and wild-type protein complexes (DEInteraction)

were computed using eq. (3), where EAB is the energy

of the complex, and EA and EB are the energies of the

interaction units in the unbound states. The change

in interaction energy after mutagenesis was com-

puted using eq. (4), where DEMUT
Interactionand DEWT

Interaction

represent the binding energies computed for mutant

and parent complexes. For DFIRE and dDFIRE,

FoldX-generated structures were used in scoring. For

Rosetta, Discovery Studio, and FoldX, structures

were generated using the same method with which

they were evaluated.

DEInteraction5EAB2ðEA1EBÞ (3)

DDEInteraction5DEMUT
Interaction2DEWT

Interaction (4)

STATIUM estimates binding affinities using eq.

(5) and is the only scoring potential that did not

require input structures of the mutant complexes.

The STATIUM potential has been described by

DeBartolo et al.58 Briefly, STATIUM takes as input

the structure of a parent complex. The method then

identifies pairs of interacting residues at the com-

plex interface and calculates the effects of substitu-

tions on complex stability by examining the

statistics of pairwise residue–residue interactions

with the same geometry in a nonredundant PDB

database. After complex-specific residue pair fre-

quencies are tabulated, STATIUM can score millions

of sequences in a matter of seconds.

DE5EMUT2EWT (5)

Evaluation of predictive performance

The area under the curve (AUC) of the receiver oper-

ator characteristic (ROC) was used to assess the abil-

ity of each computational method to correctly group

variants as improved or weakened binders. A mutant

variant that was both computationally predicted and

experimentally shown to have improved binding rela-

tive to the parent scaffold was a true-positive (TP)

and a false-positive (FP) prediction corresponded to a

variant that was computationally predicted to have

improved binding but experimentally shown to have

weakened binding. Similarly, a true-negative (TN)

prediction was a mutant variant both computation-

ally predicted and experimentally shown to have

decreased binding relative to the parent scaffold, and

a false-negative (FN) prediction arose if a variant

was computationally predicted to have decreased

binding but was experimentally shown to have

improved binding. The true-positive rate (TPR) and

false-positive rate (FPR) are given as TPR 5 TP/

(TP 1 FN) and FPR 5 FP/(FP 1 TN). To generate

ROC curves, the TPR was plotted as a function of the

FPR, and the AUC was calculated as the integral

under the curve using Python 2.7 (Anaconda); see

Supporting Information for code snippets. Using this

evaluation scheme, a random predictor would result

in an AUC of 0.5 and a perfect predictive model

would give an AUC of 1. The AUCs were determined

over the whole dataset, the low-confidence subset

(|DDG|<0.5 kcal/mol), the medium-confidence sub-

set (|DDG|> 0.5 kcal/mol), and the high-confidence

subset (|DDG|> 1 kcal/mol). The 95% confidence

intervals for the AUCs were calculated using 100,000

bootstrap samples. Briefly, 100,000 data points were

chosen using sampling with replacement and the

AUCs associated with data subsets were calculated

as described above. List of AUCs were sorted and the

95% CI was determined. The bootstrap sampling sim-

ulation and AUC calculations were carried out using

Python. For the p-value calculation, the ROC curves

were compared using a two-sided test for difference

using R.80

Enrichment and consensus scoring
The ability of each scoring function to enrich a set of

predictions in improved binders was evaluated by

plotting the percentage of high-affinity binders found

versus depth in the ordered list of computational pre-

dictions going from the highest affinity binder to the

nonbinder(s). An improved-affinity binder was

defined as a variant with DDG<21 kcal/mol, when

determining enrichment over the whole dataset. For

the SPM subset, an improved-affinity SPM variant

was defined to have DDG<20.5 kcal/mol. Enrich-

ment was also calculated using consensus scoring

approaches, namely, rank-by-number, rank-by-rank,

and rank-by-best. The rank-by-number and rank-by-

rank approaches are adopted from the descriptions

by Verdonk et al.66 In the rank-by-number approach,

computational scores from different methods are nor-

malized by converting them to Z-scores (Z score func-

tion was used as implemented in Python.spicy.stats

library) and then averaged; proteins are subse-

quently reranked using this new averaged score. In

the rank-by-rank approach, proteins are first ranked

by the computational scores for each individual scor-

ing function, their ranks are then averaged, and this

averaged rank is used for the final ranking of the

protein variants. If variants had the same predicted

DDG, then they were given the same rank. In the
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rank-by-best approach, we progressively probed into

the top X% of each computational list and for each

value of X, we (1) counted the total number of posi-

tive predictions—allowing any prediction made by

any method to count as a positive, (2) converted the

total number of predictions considered to a percent-

age of the database (generating an x-axis value), and

(3) converted total number of positives found to a per-

centage of database positives (generating a y-axis

value). Enrichment for consensus scoring approaches

was determined as described above.
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