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A method for analysis of phenotypic change for phenotypes
described by high-dimensional data

ML Collyerl, DJ Sekora”? and DC Adams?

The analysis of phenotypic change is important for several evolutionary biology disciplines, including phenotypic plasticity,
evolutionary developmental biology, morphological evolution, physiological evolution, evolutionary ecology and behavioral
evolution. It is common for researchers in these disciplines to work with multivariate phenotypic data. When phenotypic
variables exceed the number of research subjects—data called ‘high-dimensional data’—researchers are confronted with
analytical challenges. Parametric tests that require high observation to variable ratios present a paradox for researchers, as
eliminating variables potentially reduces effect sizes for comparative analyses, yet test statistics require more observations than
variables. This problem is exacerbated with data that describe ‘multidimensional’ phenotypes, whereby a description of
phenotype requires high-dimensional data. For example, landmark-based geometric morphometric data use the Cartesian
coordinates of (potentially) many anatomical landmarks to describe organismal shape. Collectively such shape variables
describe organism shape, although the analysis of each variable, independently, offers little benefit for addressing biological
questions. Here we present a nonparametric method of evaluating effect size that is not constrained by the number of
phenotypic variables, and motivate its use with example analyses of phenotypic change using geometric morphometric data.
Our examples contrast different characterizations of body shape for a desert fish species, associated with measuring and
comparing sexual dimorphism between two populations. We demonstrate that using more phenotypic variables can increase

effect sizes, and allow for stronger inferences.
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INTRODUCTION
An interesting coevolution of two fields has transpired over the past
few decades. In evolutionary biology, conceptual challenges to
visualizing multivariate phenotypic change in response to natural
selection have received considerable attention (Lande, 1979, 1980,
1981; Lande and Arnold, 1983; Phillips and Arnold, 1989; Brodie
et al., 1995; Schluter, 2000; Blows, 2007). At the same time, the
‘Procrustes paradigm’ (Adams et al., 2013) evolved from its conceptual
beginnings (Rohlf and Slice, 1990; Rohlf and Marcus, 1993), revolu-
tionizing the way biologists describe and compare organismal shape,
using geometric morphometric (GM) methods. Consistent between
these two growing disciplines was the need for methods to analyze
multivariate phenotypic data. Hence, various multivariate analyses
were also developed, for example, to measure and test the association
between matrices of multivariate phenotypes and other variables
(Rohlf and Corti, 2000), to measure and compare multivariate vectors
(Adams and Collyer, 2007; Collyer and Adams, 2007) or trajectories
(Adams and Collyer, 2009; Collyer and Adams, 2013) and to assess
such patterns in a phylogenetic framework (Adams and Felice, 2014;
Adams, 2014a, b). Despite the convergence of different disciplines to
spur development of analytical methods for multivariate phenotypic
data, there is an interesting dichotomy between the disciplines.

In evolutionary biology, the ‘multivariate phenotype’ of an
individual can be defined as a vector of either known or assumed

to be related trait values. By this definition, there is no precise
indication that the traits, themselves, must be related in context, but
just potentially correlated. For example, one might describe a multi-
variate phenotype with both morphological and life history values,
rather than just multiple morphological values, as life history traits
and morphological traits are likely to be correlated (Huttegger and
Mitteroecker, 2011). This is the emphasis of phenotypic integration
(Arnold, 2005) that natural selection acts upon multiple, functionally
related traits, and adaptation is an inherently multivariate process
(Blows, 2007). Thus, the multivariate phenotype in evolutionary
biology is a set of phenotypic traits that are potentially correlated in
some way, and multivariate analyses are used to appropriately account
for such correlations, although, hypothetically, individual variables
could be analyzed separately.

In contrast, the data from GM methods are necessarily multivariate
and explicitly require multivariate analysis. The phenotypic trait,
organismal shape, is characterized by potentially many shape variables
(derived from Cartesian coordinates of anatomical landmarks).
None of these shape variables are interesting, individually, but
collectively they define organismal shape as a ‘multidimensional trait’
(Klingenberg and Gidaszewski, 2010; Adams, 2014b). Whereas the
previous definition of a multivariate phenotype emphasizes that
multiple phenotypic traits are potentially correlated, the multidimen-
sional trait is a single trait comprising multiple variables that are
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certainly correlated in some way. Analysis of the single variables of a
multidimensional trait, like shape, would be foolhardy, as they do not
independently describe organismal shape. Only collectively, are the
variables meaningful. In terms of the data, a multidimensional trait is
a multivariate phenotype—both are vectors of variable scores—but in
terms of biological questions, a multidimensional trait is more precise
definition of a trait that requires full complement of its multiple
variables to define it. Despite the precision in definitions that discern
between multivariate phenotypes or multidimensional traits, hypoth-
esis tests for both are concerned with assessing the amount of
phenotypic change in a multivariate data space, associated with a
gradient of ecological or evolutionary change. Linear models (or
generalized linear models) are required for estimating the coefficients
of phenotypic change for phenotypic variables. Hypothesis tests such
as multivariate analysis of variance (MANOVA) are used to evaluate
the significance of such coefficients.

Why then is the distinction between multivariate phenotype and
multidimensional trait worth making? The latter emphasizes an
analytical challenge, which is becoming increasingly common in the
field of GM (Adams et al., 2013), and other disciplines, when it might
be preferable or even necessary to define a multidimensional trait
with more variables than there are subjects to analyze. The current
efficiency of digitizing equipment and computing power of computers
permits collecting, for example, thousands of surface landmarks to
define organismal shape. It might seem intuitively reasonable that
using more anatomical information than less means having a greater
ability to discern among different shapes (Figure 1) but, paradoxically,
increasing the number of variables can decrease statistical power or
preclude hypothesis testing about shape differences, altogether, using
parametric multivariate tests (as parametric tests use probability
distributions based on error degrees of freedom). Removing variables
for multidimensional traits is not an option, and using, for example,
fewer landmarks in the case of GM approaches, compromises the
integrity of the morphological description used for comparative
studies (see Adams, 2014b).

‘High-dimensional’ data are multivariate phenotypic data that use
more variables to describe a phenotype than the number of
phenotypes to analyze. High-dimensional data present a roadblock
for analysis if typical (that is, parametric) statistical methods are used.
Comparative analysis of high-dimensional data, in general, has
received considerable recent attention. Especially in the field of
community ecology, nonparametric methods have been developed
based on test statistics derived from multivariate distances (Anderson,
2001a, b; McArdle and Anderson 2001). These methods have great
appeal, as they do not rely on data spaces where Euclidean distances
are the only appropriate metric of intersubject differences and can,
therefore, be generalized to many different data types. (However,
choice among different metrics or pseudometrics has consequences
for statistical power; see Warton et al., 2012.) Probability distributions
for test statistics of these methods are derived from resampling
experiments, using full randomization of raw phenotypic values,
randomization of raw phenotypic values within strata or residuals
from linear models (Anderson, 2001b; McArdle and Anderson, 2001).
An acknowledged challenge for nonparametric (np)-MANOVA is the
appropriate method for generating probability distributions for test
statistics for factorial models (Anderson, 2001b). As discussed below,
various independent studies have confirmed the benefit of using
resampling experiments with residuals from linear models for multi-
variate data, especially for multifactor models with factor interactions.
The purpose of this article is to synthesize different aspects of
methodological development, plus introduce some new perspectives
to establish a paradigm for analyzing high-dimensional phenotypic
data. Although the intent is to offer a paradigm of general interest
to several evolutionary biology disciplines, including phenotypic
plasticity, evolutionary developmental biology, morphological
evolution, evolutionary ecology and behavioral evolution, and should
have appeal for any phenotypic data, we present examples specifically
using data obtained from GM methods. We also demonstrate
that the paradigm presented is commensurate with other recent
methodological advances.

Figure 1 Landmark configurations used for data analysis. The top configurations comprise 10 ‘fixed’ anatomical landmarks, indicating fin insertions, the
dorsal tip of the premaxillary and the center of the eye. The bottom configurations are the same 10 landmarks plus two additional landmarks and
44 ‘sliding’ semi-landmarks that are used to estimate the curvature of the dorsal crest, caudal region and operculum, as well as the relative size and
position of the eye. Landmark configurations on the right are shown in the absence of the source photograph, indicating the more realistic characterization

of body shape with 56 landmarks.
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MATERIALS AND METHODS
Conceptual development
We provide here a general description of a method for analyzing phenotypic
change in high-dimensional data spaces, and also provide additional analytical
details in the Supplementary Information. The term ‘phenotypic change’ can
take on different meanings. For example, performing a hypothesis test to
determine whether two taxa have different phenotypes attempts to ascertain
whether the phenotypic change between means of the two taxa is significantly
> 0. However, we intend that analysis of phenotypic change requires a factorial
approach, where at least one factor indicates a categorical assignment of
subjects into distinct groups (for example, taxa, population, sex) and at least
one factor (or covariate) describes an interesting gradient for phenotypic
change (for example, environmental difference, ecological difference, growth).
Thus, analysis of phenotypic change refers to a statistical approach to
determine whether two or more groups have consistent or differing phenotypic
change along a gradient. Generally, this is a statistical assessment of a factor or
factor—covariate interaction.

Many users of statistical software for MANOVA might not be aware that
underlying the results is a methodological paradigm for calculating effects.
MANOVA starts with an initial linear model, such as,

Phenotype ~ Taxon 4 Environment 4 Taxon x Environment

which would be an appropriate model for determining whether different taxa
have consistent or different changes in phenotype across an environmental
gradient. Most users are probably aware that if the Taxon x Environment
interaction is significant, then it is less appropriate to concern oneself with the
main effects, Taxon and Environment, as taxa have varied responses to different
environments (that is, phenotypic change between environments is not the
same among taxa). However, many users might not be aware that the test
statistic and the P-value used to determine whether the Taxon x Environment
interaction is significant are calculated from a comparison of the ‘full” model
above and a ‘reduced’ model, namely, Phenotype~ Taxon + Environment. The
‘size’ of the Taxon x Environment effect, or any effect in the full model, is based
on the difference in error produced by two models: one that contains the effect
and one that lacks it. Thus, the methodological paradigm for multifactor
MANOVA is an a priori decision to either add model terms sequentially,
performing a comparison of initial and final models with each term addition,
or iteratively compare the marginal difference between the full model and ones
reduced by each term; processes known as calculating the sequential and
marginal sums of squares, respectively (Shaw and Mitchell-Olds, 1993). There
are also other methods, especially for models with three or more factors.

Although there are various multivariate coefficients for measuring effect size,
and the choice of model comparison paradigm can alter their values (as well as
P-value estimated from them), the default approach for most statistical
programs is to estimate the probability of a type I error from integration
of parametric probability density functions, like those that generate
F-distributions. A necessary step is to convert multivariate coefficients to
approximate F-values (Rencher and Christensen, 2012). The parameters of the
F-distribution are transformations based on both linear model parameters and
number of phenotypic variables, but rely on the former being larger than the
latter. When the number of phenotypic variables exceeds the number of error
degrees of freedom of the linear model (the number of observations minus the
number of model parameters), parametric MANOVA cannot be performed.
However, there is no such limitation in estimating coefficients for the linear
model.

Arnold (2005) posited that it behooves evolutionary biologists to become
skilled in linear algebra, as the conceptual development of the field is based on
linear models, and bypassing the portions of important formative articles that
contain matrix equations is tantamount to being ‘lost in translation’ Similarly,
relying on the results of MANOVA without understanding the paradigm of
linear model comparisons can cause problems with analyzing phenotypic
change, not the least of which is to throw away phenotypic variables for the
sake of attaining results. We, and others (Anderson and Legendre, 1999;
McArdle and Anderson, 2001; Anderson, 2001b; Wang et al., 2012), approach
MANOVA as a multifaceted approach for providing probability distributions
for test statistics based on the comparison of linear models. One does not need
to use default computer program statistics or parametric methods for
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probability distributions; rather, understanding the paradigm of linear model
comparison allows one to make better-informed choices about the appropriate
test statistics to use, and the method for generating probability distributions.
The following is our description of this general paradigm for np-MANOVA,
employing a probability distribution generation method that resamples linear
model residuals, known as the randomized residual permutation procedure
(Freedman and Lane, 1983; Collyer et al., 2007; Adams and Collyer, 2007, 2009;
Collyer and Adams, 2007, 2013).

Step 1: describe the null model. The phenotypic values of p variables, for n
observations comprise a n X p matrix, Y. If p is larger than n, Y is a matrix of
high-dimensional data. A linear model can be used to estimate the relationship
of values in Y with values from independent variables, such that, Y =XB +E,
where X is a n x k design matrix, B is an k x p matrix of for the k —1 model
coefficients plus an intercept (vector of 1s) and E is an n X p matrix of
residuals (Rencher and Christensen, 2012). In the case of the null model, X is
only a vector of 15, and the estimated 1 x p vector of coefficients, B, is solved
as B = (X"X) ! (X"Y), where the superscripts T and ~! indicate matrix
transposition and inversion, respectively, and the symbol, ", indicates estima-
tion. (Solving B using generalized least squares is discussed in the
Supplementary Information.) In the case of the null model, B is the centroid
(multivariate mean). A n x p matrix of ‘fitted’ values is found as XB, and the
residuals are found as E = Y — XB. The matrix of fitted values is a matrix of
the centroid repeated # times. The p X p matrix of sums of squares and cross-
products for the null model is found as § = ETE. This square-symmetric matrix
contains the sum of squares (SS) for each variable along the diagonal, and the
summed cross-products of each variable pair in the off-diagonal elements. The
total SS can be calculated as the trace of § that is also equal to the trace of the
n x n matrix, EET. The diagonal of EET represents the squared distances of
the n observations from the centroid; thus, SS is a measure of dispersion equal
to the sum of squared distances of observations, making this method
commensurate with nonparametric approaches based on distances (Goodall,
1991; McArdle and Anderson, 2001; Anderson, 2001a). Furthermore, the
number of phenotypic variables is inconsequential for this statistic, based on
this measure of SS.

Step 2: describe the first-factor model and compare it with the null model. The
choice of first factor or covariate is arbitrary, but should not be made without
consideration. We propose that if the analysis contains a continuous covariate
such as organism size, which is measured at the level of the subject (unlike, for
example, population, taxon), this variable should be added first. For simplicity,
we will ascribe the covariate or factor as A. The procedure is followed as in
step 1, except that the design matrix contains a vector of 1s for the intercept
and k4 additional columns. If A is a covariate, ks equals 1. If A is a factor (for
example, categorical grouping variable), k4 equals g—1 for the g levels of
groups. This design matrix is called Xg because it represents the ‘full’
complement of model parameters, whereas the null design matrix, X,, is
‘reduced’ by the parameters that model the effect, A. Both S and SS can be
galculaAtTecAl as AiTnA step 1 but, more imp(A)rtantlAy, éﬁ can beA calculated as
S4 = E, E. — E; Eg, which is the same as Sy = (E; —E¢)T(E, —Ef), and whose
trace is the SS of the effect of the parameters in A, SS4. In other words, the
effect of A is tantamount to the change in error between two models that
contain and lack the parameters for A. SS, is also a measure of dispersion that
is the sum of squared distances of predicted (fitted) values from the centroid
(the trace of E:l:if or Efﬁg is the sum of squared distances of observations from
their predicted values, the multivariate error of the full model).

Step 3: describe the second-factor model and compare it with the first-factor
model. The design matrix, Xg, in step 2 becomes X in step 3. All calculations
in step 2 are repeated in step 3 to produce Sy and SSp. The important caveat of
this sequential method of calculations is that SSp is the effect of B, after
accounting for the effect of A.

Step 4: describe the interaction model and compare it with the second-factor
model. The design matrix, Xy, in step 3 becomes X, in step 4. All calculations
in step 3 are repeated in step 4 to produce S, and SSy5. The important caveat
of this sequential method of calculations is that SS,p is the effect of
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the interaction between A and B, after accounting for the main effects of
A and B.

Step 5: develop statistics. The SS of each effect calculated in steps 2—4 are
sufficient to use as test statistics, based on a resampling experiment
(randomization test). However, it might be of interest to convert these values
to variances, coefficients of determination, or F-values (see Supplementary
Information). Any calculation of test statistics is a linear or nonlinear
transformation of SS, as model parameters and n are constants (Anderson
and Ter Braak, 2003). Therefore, the rank order of SS for the effects or test
statistics calculated from them will be exactly the same in a resampling
experiment, meaning P-values calculated as percentiles from empirical
probability distributions will also be exactly the same.

Randomized residual permutation procedure (RRPP). RRPP is a procedure
that uses a resampling experiment to randomize the residual (row) vectors of a
matrix of residuals from a reduced model to calculate pseudorandom values
for estimation of effects from a full model (Collyer et al., 2007; Adams and
Collyer, 2007, 2009; Collyer and Adams, 2007, 2013). The advantage of this
approach, compared with randomizing vectors of raw phenotypic values, is
that it holds constant the effects of the reduced model. For example,
randomizing residuals of the second-factor model to generate pseudorandom
values for estimation of parameters in the interaction model, many times,
allows generation of a probability distribution of the interaction effect, holding
constant the main effects. RRPP does not assume that alternative effects are
inconsequential.

One important criterion though is how to implement RRPP when not one
but three matrices of randomized residuals are required for evaluating the two
main effects and interaction effect of a factorial or factor—covariate model. One
might just choose to perform RRPP three separate times. However, this would
mean that the random permutations of the three resampling experiments
would be different, especially if the number of random permutations is small,
and this might lead to an increase in probability of a type I error (as this would
be the same as performing three separate tests). This problem can be alleviated
by simply concatenating the matrices of residuals from steps 1 to 3. In every
random permutation, matrices of this concentrated matrix are shuffled,
meaning the placement of the three residual vectors for each observation is
exactly the same. Pseudorandom values are calculated by partitioning the
randomized concatenated residuals into their original # x p dimensions and
adding residuals to fitted values of corresponding models. Steps 2-5 are
repeated for each random permutation, generating sampling distributions of
statistics for each model effect. These sampling distributions are also
probability distributions, as the percentile of observed statistics indicates the
probability of observing a larger value, by chance, from the random outcomes
of reduced (null) models.

Generalization. Perhaps the best indicator that a multivariate generalization is
appropriate is that using univariate data produces the same results expected
from univariate analyses. Using the paradigm above is exactly the same as
performing analysis of variance on a linear model for a univariate-dependent
variable, using sequential sums of squares. The only potential difference is that
probability distributions are empirically generated rather than using para-
metric F-distributions. As discussed elsewhere (Anderson and Ter Braak, 2003),
this is an appropriate method of probability distribution estimation, especially
because it relaxes assumptions required for parametric distributions (especially
concerning normally distributed error). Randomizing residuals produces type I
error rates closer to exact tests than other randomization procedures. This
paradigm will thus produce expected analysis of variance results. However, this
approach has two major benefits. First, RRPP allows one to estimate relative
effect sizes as standard deviations of sampling distributions (Collyer and
Adams, 2013). Therefore, one can compare the size of effects both within
and among different studies. Second, test statistics can be calculated with any
number of phenotypic variables. The Supplementary Information contains
some additional steps for calculating different types of statistics—which one
might wish to consider for high-dimensional data—but in any case, the
number of variables is not a limiting criterion. The following examples
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illustrate why using more variables might be preferable than using fewer, in
addition to demonstrating how this np-MANOVA paradigm works.

Example 1: sexual dimorphisms in body shape for different
populations of a desert fish

For this example, landmark data were collected from 54 museum specimens of
Pecos pupfish (Cyprinodon pecosensis). These fish are inhabitants of the Pecos
River and associated aquatic habitats in eastern New Mexico, USA. The
54 specimens comprise fish collected from a large marsh system (16 females
and 13 males) and a small sinkhole (12 females and 13 males). In the former,
C. pecosensis is part of a larger fish community (with four other species), in
which at least one other species can be considered a predator of C. pecosensis.
In the latter, C. pecosensis cooccurs with two other fish species that can be
considered competitors. Sexual dimorphism has been noted in other species of
Cyrpinodon (Collyer et al., 2005, 2007, 2011). Predators could hypothetically
mitigate sexual dimorphism in Cyrpinodon body shape. In the presence of
predators, males are likely to exhibit streamlined body shapes with deep,
compressed caudal regions associated with active predator avoidance
(Langerhans et al., 2004). Such a body shape would be more similar to the
generally more streamlined body shapes of females. In contrast, males in
predator-free environments might exhibit deeper, laterally compressed body
shapes, associated with defense of breeding territories. Previous research on a
congener using a common garden experiment has shown that body shape is
heritable, but phenotypic plasticity in body shape can be associated with
environmental gradients, such as salinity (Collyer et al, 2011). We hypothe-
sized that phenotypic plasticity in male body shape might be mediated by
predation that would have consequences for the amount of sexual dimorphism
in different C. pecosensis populations. This example represents one comparison
of one predator (marsh) population and one antipredator (sinkhole) popula-
tion, using one sample from each. It is not intended to be a comprehensive
examination of sexual dimorphism, but rather illustrate the utility of the
analytical paradigm, especially for small sample sizes.

Body shape was characterized in two different ways. A landmark configura-
tion of 12 ‘fixed’” anatomical landmarks and 44 sliding semi-landmarks (that is,
112 variables from the Cartesian coordinates of the points) was digitized on the
left lateral surface of photographs of fish specimens (Figure 1). A simpler
configuration of 10 of the 12 fixed landmarks was also defined. The Cartesian
coordinates of these landmarks were used to generate ‘Procrustes residuals’ via
generalized Procrustes analysis (Rohlf and Slice, 1990). The generalized
Procrustes analysis centers, scales to unit size and rotates configurations using
a generalized least squares criterion, until they are optimally invariant in
location, size and orientation, respectively. The aligned coordinates are the
Procrustes residuals that can be used as shape variables themselves, or projected
into a space tangent to the shape space, where shape variables are often
described as the eigenvectors for these projections (Adams et al., 2013). Our
analyses used Procrustes residuals, but we visualized shape variation from
projection of shapes onto principal components (PC) of shape variation.

For analysis of phenotypic change, we were interested in the model, Body
Shape ~ Population + Sex + Population x Sex. We performed np-MANOVA
using RRPP with 10000 permutations on both types of landmark configura-
tions to compare results between the two configuration types. (Additional
analyses were also performed to compare the np-MANOVA to parametric
MANOVA, and to compare RRPP with a randomization test using raw
phenotypic values. The details of these analyses plus results are provided in the
Supplementary Information.) The post hoc pairwise comparisons of group
means were also performed, using the exact same random permutations of
RRPP.

Example 2: sexual dimorphisms in body shape allometry for
different populations of a desert fish

In this example, the same data were used as in the previous example, but the
intent was to consider the influence of phenotypic change associated with body
size (static body shape allometry) among the Population x Sex groups. Body
size was calculated from landmark configurations as centroid size (CS),
the square root of summed squared distances of landmarks from the
configuration centroid (Bookstein, 1991). The linear model used was Body



Shape ~ log(CS) + (Population x Sex) 4 1og(CS) x (Population x Sex). As in the
previous example, np-MANOVA analyses, using RRPP with 10000 permuta-
tions, were performed on both the 10- and 56-landmark configurations. A post
hoc test of pairwise differences between least squares means was also
performed, as in example 1, as np-MANOVA revealed that population by
sex groups had common shape-size allometries (see Results).

All analyses in both examples were performed in R, version 3.0.2 (R Core
Team, 2014). Generalized Procrustes analysis and thin-plate spline analysis (to
generate transformation grids) were performed using the package geomorph,
version 2.1, within R (Adams and Otarola-Castillo, 2013; Adams et al., 2014).
Any np-MANOVA effects or pairwise differences were considered significant if
their P-values were less than a type I error rate of o= 0.05. Because the RRPP
method introduced here performs the exact same random placement of
residuals for every test statistic calculated, we do not consider the inferences to
be separate tests, but rather separate inferences from the same test (see
Supplementary Information for details). For simplicity, we report coefficients
of determination, effects sizes (Z-scores) and P-values here, but additional
statistics plus parametric statistics (where appropriate) are provided in the
Supplementary Information.

RESULTS
Example 1
The np-MANOVA analyses performed with RRPP indicated that
main effects were significant for both 10- and 56-landmark

Table 1 Nonparametric multivariate analysis of variance
(np-MANOVA) statistics based on a randomized residual permutation
procedure (RRPP) with 10 000 random permutations

Source a.f. 10 Landmarks 56 Landmarks

R2 z P R? YA P
Population 1 0.1378 11.2771 0.0001 0.1625 12.2766 0.0001
Sex 1 0.2140 14.4609 0.0001 0.2798 16.4307 0.0001

Population xsex 1 0.0250 2.2338 0.8697 0.0613 6.2732 0.0098

The error degrees of freedom were 50. Effect sizes (2) are standard deviations of observed
SS-values from sampling distributions of random values found via RRPP. Each P-value are the
probability of finding a random value larger than the observed value. See Supplementary
Information for additional statistics.
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configurations, but the interaction between population and sex was
only significant for the 56-landmark configuration (Table 1). Effect
sizes were all larger using the 56-landmark configurations. These
results were consistent with PC plots of shape variation (Figure 2). In
the 56-landmark case, means were more distinct, as evidenced by the
comparatively smaller dispersion of individual shapes relative to
the distances between means. Unexpectedly, sexual dimorphism was
larger in the case of the marsh pupfish, and marsh females were most
divergent, based on 56-landmark configurations. The post hoc test of
pairwise distances indicated that sexual dimorphism for marsh fish
was the only significant pairwise shape difference, after accounting for
general shape differences between populations and between males and
females (Table 2). No pairwise differences in shape were significant for
the 10-landmark configurations. Thus, post hoc tests performed as
expected, based on the results of np-MANOVA.

Transformation grids (Figure 2) indicated that the divergent body
shapes of marsh females revealed in the 56-landmark configurations
were strongly the result of opercular curvature (landmarks defining
the ventral curvature of the head). Although both configurations
indicated that females had more streamlined body shapes than males,
and that sinkhole fish had relatively shorter caudal regions (indicated
by divergence along the second PC), only the analysis on the
56-landmark configuration was able to detect subtle differences in
head shape. Hence, it revealed greater sexual dimorphism in body
shape for Marsh pupfish, and a larger effect size for the population by
sex interaction. In essence, more variables increased effect size, in this
case (we found that np-MANOVA with RRPP also provided more
‘honest’ results than parametric MANOVA or np-MANOVA with
randomization of raw data, as explained in the Supplementary
Information).

Example 2

In the second example, results of the np-MANOVA were rather
consistent between the 10- and 56-landmark configurations, and the
effect sizes for each model effect were comparable, except for
the noticeably larger effect for the population by sex effect for the
56-landmark configuration (Table 3). In both cases, an interaction
between log(CS) and the population by sex groups was not

10 landmarks

PC 2(19.3%)

Females, Sinkhole
—&— Males, Marsh
Males, Sinkhole

56 landmarks

PC 2 (22.9%)

—e— Females, Marsh
Females, Sinkhole
—&— Males, Marsh

=0 Males, Sinkhole

PC 1 (42.3%)

PC 1 (44.0%)

Figure 2 PC plots of shape variation. PCs are the first two eigenvectors of Procrustes residuals projected into a space tangent to shape space. The relative
amount of shape variation explained by PC is shown. Individual shapes are shown as well as convex hulls. Transformation grids (scaled x 2) are shown to
facilitate and understand shape change among groups. These shapes correspond to mean values, shown as bolder symbols.
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Table 2 Pairwise Procrustes distances and P-values based on a randomized residual permutation procedure (RRPP) with 10 000 random
permutations associated with nonparametric multivariate analysis of variance (np-MANOVA) in Table 1

10 Landmarks

56 Landmarks

M, F M, M S, F S, M M, F M, M S, F S, M
Marsh, female 0.1329 0.5428 0.6862 0.0056 0.0560 0.6891
Marsh, male 0.0430 0.5862 0.3623 0.0458 0.5826 0.4272
Sinkhole, female 0.0309 0.0554 0.9042 0.0328 0.0454 0.9885
Sinkhole, male 0.0344 0.0334 0.0307 0.0385 0.0280 0.0245

Abbreviations: M, F, Marsh, female; M, M, Marsh, male; S, F, Sinkhole, female; S, M, Sinkhole, male.
Values below diagonal are distances; above diagonal are P-values. Bolded values are significant at o= 0.05.

Table 3 Nonparametric multivariate analysis of variance (np-MANOVA) statistics based on a randomized residual permutation procedure

(RRPP) with 10000 random permutations

Source d.f. 10 Landmarks 56 Landmarks

R? z P R? z P
log(CS) 1 0.2257 18.4582 0.0001 0.2480 18.4387 0.0001
Pop. x sex 3 0.2238 13.9847 0.0001 0.3251 18.7852 0.0001
log(CS) x (Pop. x sex) 3 0.0508 3.4257 0.9499 0.0351 3.0552 0.9872

Abbreviations: CS, centroid size; Pop., population.
The error degrees of freedom were 46. Effect sizes (2) are standard deviations of observed.

F-values from sampling distributions of random values found via RRPP. P-values are the probability of finding a random value larger than the observed value. See Supplementary Information for

additional statistics.

Table 4 Pairwise Procrustes distances and P-values based on a randomized residual permutation procedure (RRPP) with 10 000 random
permutations associated with nonparametric multivariate analysis of variance (np-MANOVA) in Table 3

10 Landmarks

56 Landmarks

M, F M, M S, F S, M M, F M, M S, F S, M
Marsh, female 0.0005 0.0002 0.0001 0.0001 0.0001 0.0001
Marsh, male 0.0333 0.0001 0.0001 0.0356 0.0002 0.0006
Sinkhole, female 0.0348 0.0506 0.0162 0.0363 0.0365 0.0404
Sinkhole, male 0.0333 0.0357 0.0244 0.0378 0.0268 0.0182

Abbreviations: M, F, Marsh, female; M, M, Marsh, male; S, F, Sinkhole, female; S, M, Sinkhole, male.
The reduced model for RRPP was log(centroid size (CS)) and the full model was log(CS) + (population x sex). Values below diagonal are distances and above diagonal are P-values. All values are

significant at =0.05.

significant, indicating a common shape-size allometry among groups.
For both the 10- and 56-landmark configurations, all pairwise
distances between least squares means (assuming a common
allometry) were significant (Table 4). Results from the post hoc test
and PC plots (Figure 3) confirmed that greater sexual dimorphism
was found in marsh pupfish because of the divergent head shapes of
female fish. This result was also consistent with the analysis in
example 1. However, accounting for shape allometry increased the
ability to detect shape differences among any groups, for both 10- and
56-landmark configurations.

DISCUSSION

The examples above, plus the additional analyses in the
Supplementary Information, highlight three important attributes of
a paradigm for analysis of phenotypic change using np-MANOVA
and RRPP. First, the effect sizes and P-values of np-MANOVA
statistics are reasonable and intuitive based on PC plots of multi-
dimensional trait variation. In the case where parametric MANOVA
could be applied (10-landmark configurations), np-MANOVA
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provided more conservative results (less likely to reveal significant
effects; see Supplementary Information). One could see np-MANOVA
as a safeguard against inferential errors that are likely caused by
parametric MANOVA when assumptions are not met, or see para-
metric MANOVA as having greater statistical power. However, the
latter is unlikely. First, statistical research on various univariate and
multivariate linear model designs indicates that RRPP provides
asymptotically appropriate P-values that are closest to an exact test
(Anderson, 2001b). Second, just by the nature of converting multi-
variate test statistics like Pillai’s trace to F-values, as p approaches the
n —k degrees of freedom in model error, the denominator degrees of
freedom for the F-distribution decrease (Rencher and Christensen,
2012) that is effectively a decrease in statistical power without an
increase in effect size. Third, based on our results, effect sizes
increased by using more variables, suggesting an increase in statistical
power, although parametric MANOVA could not be used. Indeed,
estimation of statistical power curves for known effects and type I
error rates using np-MANOVA and RRPP will be an exciting next
phase of research.
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-0 Females, Sinkhole
—&— Males, Marsh

-0 Males, Sinkhole

PC 1(32.3%)

PC 1(33.3%)

Figure 3 PC plots of allometry-free shape variation. All descriptions are the same as in Figure 2, but PCs were derived from Procrustes residuals after

regression of shape on log centroid size.

The second attribute worth noting is that np-MANOVA with RRPP
found larger effect sizes for important effects when high-dimensional
data were used. It seems that np-MANOVA performed with RRPP
might be one solution to the ‘curse of dimensionality], analogous to
other distance-based approaches that, irrespective of the number of
variables used, one can produce n x n analogs of sums of squares and
cross products matrices, namely (B, —E¢)(E, —Ep)T, whose diagonal
elements are the n squared distances of predictions between full and
reduced models. These squared distances indicate which observations
correspond to a larger effect. Inclusion of more phenotypic variables
rather than less is more likely to increase the sensitivity to detect
subtle but perhaps important phenotypic differences, much like the
opercular curvature noted in our examples, that would be missed
with the 10-landmark configuration. The trace of (E, —E¢)(E, —Ep)T
is the effect SS that can only increase by including more phenotypic
variables. Therefore, adding more variables should have no negative
consequence on the effect size. For example, using more than 56
landmarks to characterize the same aspects of curvature in our
examples should not reduce effect sizes, but could increase them. In a
theoretical sense, there should be no paradox because of an inverse
relationship between variable number and statistical power. However,
in an applied sense, adding more variables might increase the
propensity for measurement error that could have an adverse effect.

Therefore, the third important attribute is that the sampling
distributions empirically produced by RRPP allow one to estimate
the effect size of observed effects from the distributions of random
results. In our examples, even when effects were consistently
important (significant) between different landmark configurations,
the 56-landmark configurations led to larger effect sizes. In one case,
we found a significant and larger effect with the 56-landmark
configurations that was not detectable with the 10-landmark config-
urations. If statistical assessments of effects are not constrained by
variable number, such as with np-MANOVA, an increase in effect size
should be tantamount to an increase in statistical power (although
simulation studies are needed to confirm this).

The merits of different resampling methods have been debated, but
not in the context of trait dimensionality, especially for characterizing
similar multidimensional traits, as we have done here. Anderson and

Ter Braak (2003) provide both a nice summary of different
resampling methods and a demonstration that randomization of
residuals from reduced models (Freedman and Lane, 1983) has
greater statistical power than alternative methods. Their simulations
applied to specific nested effects. To date, analyses of type I error rates
and statistical power have not been considered for RRPP applied to
multifactor or factorial models of multidimensional traits, and
examples presented here are the first to specifically target a compar-
ison of different trait dimensionalities for the same general pheno-
typic trait (body shape). In addition, the present study introduces a
method for considering not only a statistical test of interaction terms
but also all possible effects in a factorial model by replicating random
placement of residuals for multiple reduced—full model comparisons.
This development should maintain the same type I error rate across
model effects and post hoc pairwise comparisons. Further statistical
research on type I error rates and statistical power is needed, but the
np-MANOVA with RRPP paradigm should generalize the goals of
MANOVA to any linear model design, including linear models with
mixed effects and generalized least squares estimation of model
coefficients (see Supplementary Information).

RRPP using concatenated residual matrices, to test multiple model
effects, is a development that solves a substantial problem with
current implementations of np-MANOVA procedures. In essence,
nonparametric methods should be no different as a paradigm than
parametric methods. Whether sequential or marginal sums of squares
and cross-products are used in parametric approAac}llesA, multivariate
test statistics are derived from the matrix, S; (Sr - Sf), that
expresses the effect of parameters that differ between full and reduced
models, relative to the error produced by the full model (Rencher and
Christensen, 2012). Because Er is held constant during RRPP, the trace
of S{ (S, - Sf) is merely a transformation of the trace of (ér —éf),
meaning SS as described above is a statistic commensurate with
evaluating S¢ (Sr —Sf). Except for the special case that E, is the
matrix of residuals from the null model (X, contains only an
intercept), randomizing ‘raw’ phenotypic values (full randomization)
does not provide the appropriate null model for calculating test
statistics (Anderson and Ter Braak, 2003). In other words, randomiz-
ing raw values produces random versions of both ér and S not
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accounting for the established coefficients in B,. Thus, randomizing
raw phenotypic values does not preserve reduced model effects and is,
therefore, not commensurate with the paradigm used by parametric
MANOVA methods. As shown in the Supplementary Information,
this can have devastating consequences for inferences made. Unaware
acceptance of default probability distribution generation by np-
MANOVA software is a likely reason for analytical malfeasance. At
the time of this analysis, for example, the default setting for the adonis
function in the vegan package (version 2.0.10) for R is a full
randomization of raw data, advocated as having better ‘small sample
characteristics’ (Oksanen et al., 2013). However, stratified resampling
is possible in this program, which means randomizing vectors of
values within strata. For example, male and female phenotypes can be
randomized within populations. Stratified resampling is an obvious
solution to multifactor models without interactions. Performing
np-MANOVA with RRPP on sequential models extends the concept
of stratified resampling to factor or factor—covariate interactions, and
alleviates the concern of inflated type I error rates because of
improper sampling distributions based on suboptimal null models
(Anderson and Legendre, 1999; Anderson, 2001b).

The important work of Anderson (2001a) introduced a method of
np-MANOVA based on distance-based metrics and pseudometrics to
accommodate multivariate data in which Euclidean distances among
observations might not be appropriate (that is, when response data
are not necessarily continuous). A link between distance-based
approaches and MANOVA was established using linear models
applied to scores of principal coordinates analysis (Gower, 1966)
based on appropriate principal coordinates (McArdle and Anderson,
2001). Therefore, np-MANOVA using RRPP is possible with non-
Euclidean distance-based characterization of disparity among obser-
vations, by using either principal coordinates analysis or nonmetric
multidimensional scaling as a method of data transformation. In
addition, np-MANOVA with RRPP should be adaptable to linear
models with mixed effects and generalized least squares coefficient
estimation (see Supplementary Information). Provided one can assign
logical reduced and full models, RRPP produces ‘correct exchangeable
units’ under a null hypothesis (Anderson and Ter Braak, 2003). The
examples in this article illustrate a paradigm for evaluating all model
effects, but the methodology could be applied to specific effects only
or suites of effects. Understanding the paradigm enables researchers to
choose any nested models they wish to compare.

Although np-MANOVA with RRPP is a methodological approach
that should be commensurate with pairwise non-Euclidean distances
estimated from, for example, count data or presence/absence data (for
example, via using principal coordinate scores as data; see McArdle
and Anderson, 2001), we do not wish to advocate that this approach
should supersede other methodological approaches that offer poten-
tially better statistical properties. For example, Warton et al. (2012)
demonstrated that multivariate analyses based on pairwise distances
ignores important mean—variance associations for count data, leading
to erroneous analytical results. In these cases, generalized linear
models should be used. Methods for employing generalized linear
models for high-dimensional data, especially ecological ‘abundance’
data, have been developed (Warton, 2011). Currently, the R package,
mvabund (Wang et al., 2012), offers options to use generalized linear
models on high-dimensional data, plus choose from among several
resampling methods, including bootstrap resampling of residuals, for
hypothesis tests (based on methods described by Davison and
Hinkley, 1997; chapters 6 and 7). Similarly, hypothesis tests using
generalized linear models offer some similar challenges to those
presented in this article, namely, selecting an appropriate resampling
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algorithm for factor interactions (Warton, 2011). Although
np-MANOVA with RRPP might seem intuitively adaptable to
generalized linear models, two constraints limit its feasibility. First,
several definitions of ‘generalized’ residuals are possible under
generalized linear models (Pierce and Schafer, 1986; Davison and
Hinkley, 1997). Second, the pseudovalues generated by RRPP might
preclude parameter estimation in random permutations (for example,
if they are not binary or integers). Research to explore the feasibility
and statistical power of using generalized residuals from reduced
models to generate sampling distributions of test statistics of full
models—which produce appropriate pseudovalues—would be an
interesting future direction. Nonetheless, np-MANOVA with RRPP
and the ‘model-based’ approach to multivariate analysis of abundance
data (Warton, 2011) are rather commensurate in their approaches to
general linear models and generalized linear models, respectively, in
that both (1) offer solutions for statistical analysis of high-
dimensional data by (2) using resampling algorithms with residuals.

We also do not wish to inadvertently suggest that because
np-MANOVA with RRPP in not constrained by an n>> p expectation,
that it is a salvo for estimation error because of small sample sizes,
non-multivariate normality or heteroscedasticity. One should not
confuse statistical issues with proper parameter estimation. The
paradigm presented here targets the former issue and not the latter.
Warton et al. (2012) demonstrated that hapless use of pairwise
distance-based MANOVA (Anderson, 2001a, b) can lead to inferential
errors if linear model assumptions (evaluation of normality and
homoscedasticity) are ignored. Diagnostic analyses performed on the
examples that we presented here (see Supplementary Information)
suggest that the inferences should be made with caution.

The greater point we intended to make is that it is important to
remember in quantifying and comparing phenotypic change among
different groups that taking a simpler approach to accommodate
statistical limitations could mean compromising the description of
phenotype. Parametric degrees of freedom do not constrain natural
selection, so why should describing the phenotypic response to
natural selection be constrained? The evolutionary biologist who is
willing to allow a high-dimensional definition of phenotype is capable
of making additional discoveries. In the examples we used, we
expected to find reduced sexual dimorphism in the marsh habitat,
as predators would mediate body shape by causing similar ecological
roles between males and females, namely, streamlined body shape
associated with predator avoidance swimming behavior. Based on a
simpler definition of body shape, we did not find this to be the case,
although we did observe consistent sexual dimorphisms and
differences between habitats. However, in our higher-dimensional
definition of body shape, we found the counterintuitive result of
greater sexual dimorphism in the marsh habitat, associated with
females having different head shapes based on opercular curvature.
This finding did not obscure inferences we could make about the
relative lengths of caudal regions between habitats or the tendency for
deeper-bodied shapes of males, but it reveals morphologically
fascinating results we had not considered.

Having an analytical paradigm that is not constrained by variable
number equips researchers studying phenotypic evolution with the
capacity to simultaneously consider both subtle and general aspects of
phenotypic change, and should have positive influence on the types
of questions that can be asked in evolutionary biology research.
We presented examples using morphometric data that define multi-
dimensional traits. These examples have obvious appeal to researchers
in the various fields of evolutionary biology concerned with pheno-
typic evolution. These examples should also highlight the use of



factorial models that are common in quantitative genetics research
(that is, to address genotype by environment interactions). Extending
np-MANOVA and RRPP to models with generalized least squares
estimation of parameters (see Supplementary Information) permits
analysis of high-dimensional phenotypic data using genetic covariance
matrices, as is typical with ecological genetics and evolutionary
genetics research. However, we also expect that the fields of
comparative genomics, functional genomics and proteomics will also
continue to benefit from development of analytical tools for
comparative analyses for high-dimensional data. Recent methodolo-
gical developments have improved the ability to extend the
generalized linear model to high-dimensional data (Warton, 2011;
Warton et al., 2012), allowing for collective analysis of multiple
noncontinuous variables (for example, discrete of categorical
variables). The methods introduced here enable collective analysis
of multiple continuous variables, plus allow multiple effects in
factorial models or factor—covariate interactions to be evaluated with
proper null models. These commensurate research directions will
hopefully spur a synthesis for the analysis of high-dimensional data,
irrespective of variable type. In this synthesis, the inclusion of the
most biological information possible for an organism might be
embraced rather than discouraged because of statistical limitations,
for as we have shown, inferential ability can be positively associated
with the amount of biological information used.
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