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Whole-genome re-sequencing of non-model organisms:
lessons from unmapped reads

A Gouin1,2, F Legeai1,2, P Nouhaud1, A Whibley3, J-C Simon1 and C Lemaitre2

Unmapped reads are often discarded from the analysis of whole-genome re-sequencing, but new biological information and
insights can be uncovered through their analysis. In this paper, we investigate unmapped reads from the re-sequencing data of
33 pea aphid genomes from individuals specialized on different host plants. The unmapped reads for each individual were
retrieved following mapping to the Acyrthosiphon pisum reference genome and its mitochondrial and symbiont genomes. These
sets of unmapped reads were then cross-compared, revealing that a significant number of these unmapped sequences were
conserved across individuals. Interestingly, sequences were most commonly shared between individuals adapted to the same
host plant, suggesting that these sequences may contribute to the divergence between host plant specialized biotypes. Analysis
of the contigs obtained from assembling the unmapped reads pooled by biotype allowed us to recover some divergent genomic
regions previously excluded from analysis and to discover putative novel sequences of A. pisum and its symbionts. In conclusion,
this study emphasizes the interest of the unmapped component of re-sequencing data sets and the potential loss of important
information. We here propose strategies to aid the capture and interpretation of this information.
Heredity (2015) 114, 494–501; doi:10.1038/hdy.2014.85; published online 1 October 2014

INTRODUCTION

Next-generation sequencing and whole-genome re-sequencing is
nowadays commonly used to identify genomic variants that underlie
phenotypic variations, genetic diseases, adaptation or speciation in
natural populations. Typically, the reads are mapped against a
reference genome, and the genotypes (that is, single-nucleotide
polymorphism (SNP) and structural variant calls) are based on these
mapped reads (Altshuler et al., 2010; Nielsen et al., 2011). In addition
to universal caveats regarding unknown insertions and/or genomic
contamination, which can be overlooked in pure mapping approaches,
non-model organisms may suffer from the poor quality of the nuclear
reference genome and incomplete symbiont or organellar genomes.
Moreover, mapping is constrained by the level of divergence between
the reads and the available reference sequence (Sousa and Hey, 2013).
The resulting ascertainment bias could be problematic, especially when
studying adaptation or speciation processes, as genomic regions of
interest are expected to display important levels of divergence. These
different issues produce a non-negligible fraction of unmapped reads,
whose sequences are generally disregarded in favor of the mapped
reads in the subsequent steps of the analysis, despite potentially
containing useful information. This study offers one strategy for
mining the unmapped reads in order to extract the relevant biological
knowledge, leading to advice and recommendations for other
re-sequencing projects.
We investigated this question in the context of a large-scale re-

sequencing project on the pea aphid species complex. The pea aphid

Acyrthosiphon pisum is a phytophagous insect that feeds on host plants
of 420 Fabaceae genera. This species forms a complex of sympatric
populations, or biotypes, each specialized on one or a few legume
species (Simon et al., 2003; Via, 1991). Peccoud et al. (2009a) showed
that these biotypes include at least eight partially reproductively
isolated host races and three cryptic species, forming a gradient
of specialization and differentiation potentially through ecological
speciation. This complex of biotypes started to diverge between 8000
and 16 000 years ago, with a burst of diversification at an estimated
3600–9500 years (Peccoud et al., 2009b). In addition, the pea aphid is
associated with an obligatory endosymbiont, Buchnera aphidicola,
which is found in specialized cells called bacteriocytes and provides
its host with essential amino acids. The pea aphid also harbors several
facultative symbionts whose distribution is strongly correlated with
plant specialization of their hosts (Simon et al., 2003; Ferrari et al.,
2012; Henry et al., 2013), and it has been posited that some of these
symbionts could have a role in plant adaptation, although clear
evidence is still lacking (Tsuchida et al., 2004; McLean et al., 2011).
This study was carried out on 33 aphid re-sequenced genomes from

11 different plant-adapted biotypes. The reads were mapped against
the A. pisum reference genome, its mitochondrial genome and its
known obligate (B. aphidicola) and facultative symbiont genomes. The
A. pisum genome (530Mb) was assembled using a combination of
sequencing technologies (International Aphid Genomics Consortium,
2010; www.aphidbase.com). Although a second version of the
A. pisum reference genome has since been released (International
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Aphid Genomics Consortium, 2010), the genome assembly remains
highly fragmented (23 924 scaffolds), and it has not been subjected to
the same level of scrutiny and finishing as the genomes of model
organisms, such as Drosophila. Moreover, symbiont genome sequences
may not be well characterized for this species, and genomic divergence
is expected to be important within the whole complex. As a result, a
sizeable portion of the reads was not mapped.
In this paper, we scrutinized these unmapped reads by performing

cross-comparisons between the sets, assembling the reads by biotype
and analyzing the resulting contigs. We used tools developed for next-
generation sequencing, such as ABySS (Simpson et al., 2009) and
Compareads (Maillet et al., 2012), and more classical ones, such as the
BLAST suite of tools (Altschul et al., 1990). This analysis revealed that
meaningful biological information is contained in the unmapped reads
and could help to recover some divergent genomic regions previously
excluded from analyses and to discover putative novel sequences of
A. pisum and its symbionts.

MATERIALS AND METHODS

Next-generation sequencing data
Thirty-three pea aphid genomes were paired-end re-sequenced using the
Illumina HiSeq 2000 instrument (Illumina inc., San Diego, CA, USA) with
around 15× coverage for each genome. The individuals belonged to different
populations each referred to as a biotype due to their adaptation to a specific
host plant. In this study, 11 biotypes were each represented by 3 individuals
(Supplementary Table S1 in Supplementary Material). Reads were 100 bp long,
sequenced in pairs with a mean insert size of 250 bp and between 32.5 and 59.2
million read pairs (42.5 million on average) were obtained for each individual
(see Supplementary Material). The fastq files of the paired reads from the 33
genomes were stored at the Sequence Read Archive of the National Center for
Biotechnology Information database, of the BioProject ID PRJNA255937.
Reads were mapped using Bowtie2 (Langmead and Salzberg, 2012) with

default parameters (up to 10 mismatches per read, or fewer if indels are

present—command-line in Supplementary Material) to a set of reference

genomes. We also tested another popular mapper, BWA (Li and Durbin, 2009),

but the percentage of unmapped reads was higher than for Bowtie2 (on average

over the 33 individuals, 6.1% vs 3.7% for BWA and Bowtie2, respectively). The

reference set comprised the published pea aphid A. pisum reference genome

(International Aphid Genomics Consortium, 2010) and its mitochondrial

genome along with the genome of its primary bacterial symbiont and several

secondary symbiont genomes reported for the pea aphid (Hamiltonella defensa,

PAXS or X-type, Regiella insecticola, Rickettsia sp., Rickettsiella sp., Serratia

symbiotica, Spiroplasma sp., Wolbachia sp., Oliver et al., 2010; Russell et al.,

2013). When available, we took the reference genome sequence of the symbiont

associated with the pea aphid (that is, Hamiltonella defensa 5AT (CP001277.1),

Regiella insecticola R5.15 (AGCA00000000.1), Serratia symbiotica str. Tucson

(AENX00000000.1)), otherwise genomes of the closest symbionts were used

as reference (that is, Rickettsia sp. endosymbiont of Ixodes scapularis

(NZ_CM000770.1), Rickettsiella grylli (AAQJ00000000.2), Spiroplasma melli-

ferum KC3 (AGBZ00000000.1) and Wolbachia sp. strain wRi (CP001391.1)).

Note that we could not map reads to PAXS sequences, because no genome is

currently available for this symbiont either for A. pisum or other host

organisms. Various statistics about the quality of the mapping were recorded,

and we calculated for each individual the average coverage for each reference

genome used.

Extraction of unmapped reads
Fragments for which both reads of the pair did not map to the reference

genomes were extracted from the BAM file (mapping result file) using Samtools

features (Handsaker et al., 2011). In order to check the quality of the unmapped

reads, Prinseq (Schmieder and Edwards, 2011) was used. Sequences were

trimmed if, working from the 3′ end of the read, base quality dropped below 20

within a window of 10 nucleotides. Read pair information was not preserved,

and only sequences of at least 66 nucleotides in length were retained for the

analysis. Quality-trimmed single-end unmapped read sets were used as the

input to the pipeline.

Figure 1 Global overview of the pipeline followed for the analysis of unmapped reads.
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Pipeline for the analysis of unmapped reads
The analysis pipeline, shown in Figure 1, was composed of three major stages:
(i) pairwise comparisons between unmapped read sets, (ii) de novo assembly of
pooled sets of reads, and (iii) analysis of the assembled contigs. Pairwise
comparisons between the read sets were computed in order to identify
biologically relevant signals and to define groups of individuals based on the
quantity of similar reads. The second part consisted of the assembly of the
common reads within previously defined groups. The contigs 41 kb were then
analyzed in terms of size, read coverage and similarity to reference genomes.

Comparison of unmapped reads. Compareads (Maillet et al., 2012) was used to
compare the read content of the trimmed unmapped read set in each individual
in a pairwise manner: this software can find similar reads between two sets of
reads in an assembly-free manner. To be considered a match, a read of set A
needs to share at least two non-overlapping k-mers of size 33 with at least one
read of set B. This comparison thus gives two percentages of similarity between
sets A and B: the percentage of reads of A similar to reads of B and vice versa.
For all pairwise comparisons, a symmetric similarity score was also provided,
computed as follows: AinterBþBinterA

NAþNB
, with AinterB the number of reads in set A

similar to reads in set B, BinterA the number of reads in set B similar to reads in
set A, and NA and NB the total number of reads in sets A and B, respectively.

The 33 samples were classified based on this similarity measure, using the R
(version 2.15) software with the maximum distance for the distance matrix and
the complete linkage method for hierarchical clustering (function heatmap.2
from gplots package).

Assembly. We pooled common unmapped reads from the three individuals
that belonged to the same biotype, that is, reads present in at least one pairwise
comparison between individuals of a biotype were all concatenated in one fastq
file. The de novo assembler ABySS (Simpson et al., 2009) was used to assemble
these common unmapped reads for each biotype. The size of the k-mer for the
De Bruijn graph was set to 31.

To calculate the contig coverage statistics, the sets of unmapped reads were
re-mapped to the obtained contig sequences using Bowtie2 (default para-
meters), and the number of mapped reads was obtained using Samtools. In
accordance with the mean coverage observed in the main data set (that is,
where the pea aphid nuclear genome had an average coverage of 15× in each
individual), and as reads from two to three individuals were pooled at this step,
we considered those contigs with coverage ranging from 20× to 60× likely
issued from the pea aphid (nuclear-like coverage), whereas contigs with higher
coverage were considered more likely to derive from the symbionts (symbiont-
like coverage) or repetitive sequences.

Comparison and analyses of contigs. BLASTClust was used to assess whether
large homologous contigs (longer that 1 kb) could be found in different
biotypes. A match was retained between two sequences if they were 80%
identical over at least 90% of each sequence length. The contigs were then
assayed by BLASTn search against the pea aphid reference genomes (nuclear,
mitochondrion and symbionts) in order to ascertain their origin. Contigs with
hits with an e-value o1e-50 were considered to represent highly divergent
region of the A. pisum or its known symbiont genomes, that is, assumed to
contain reads that could not be mapped during the first mapping step.

De novo assembly and characterization of an aphid symbiont
genome
We performed the following analyses to assemble the genome of a bacterial
symbiont detected in the unmapped read set of the individual Vc3. First,
starting from the full read set of Vc3 (40.3 million read pairs), reads were
filtered according to their k-mer coverage to obtain only the reads originating
from the targeted genome and thus avoid simultaneously assembling the whole
nuclear pea aphid genome. Given that the targeted genome had an average read
depth in Vc3 of around 600× , only reads for which 68% of the length was
covered by 31-mers present at least 100 times in the data set were retained,
using readFilter (P Peterlongo et al., unpublished) a custom software based on
k-mer counts performed by the DSK software (Rizk et al., 2013). Reads that
could be mapped to the B. aphidicola or mitochondrial genomes were removed
as their coverage levels would otherwise lead them to be retained in this read

set. Only read pairs that remained intact following these filtering steps were

included, and these pairs (which totaled 8.8 million read pairs) were assembled

using SPAdes (Bankevich et al., 2012), which has been reported to perform well

with bacterial genomes (Magoc et al., 2013). Several k-mer sizes were combined

in SPAdes (31, 41, 63, 81, 89), with default values employed for the other

parameters. We kept contigs 4500 bp and removed those aligning with the

non-Spiroplasma reference genomes. Alignments were performed with the

global aligner Mummer (Kurtz et al., 2004). We used GeneMarkS+ (Besemer

et al., 2001) to predict proteins in the remaining contigs. These proteins were

then compared with the NR database (version 22/01/2014) using BLASTp.

Identification and analysis of potentially divergent regions of the
reference genome
To delineate potentially divergent regions of the reference genome that were

present in the most divergent biotype (Lathyrus pratensis), contigs obtained

from the unmapped reads of this biotype were aligned against the nuclear pea

aphid genome with Mummer. The regions matching the reference genome with

480% identity and 4500 bp were retained for further analyses.
In these regions, several metrics were computed, including the read depth at

multiple mapping stringencies and SNP calling statistics. Read depth was

computed first from the initial mapping obtained with Bowtie2 and also

following mapping with Stampy (Lunter and Goodson, 2011), an aligner which

is reported to perform well when mapping to a divergent reference. SNP calling

statistics were collated from the results of the GATK (DePristo et al., 2011)

pipeline applied to the complete data set of 33 genomes. This pipeline consisted

of PCR duplicate removal, indel realignment, base quality recalibration and

genotyping with the UnifiedGenotyper. We used the number of ‘undefined’

calls, that is, polymorphic positions in the genome for which the genotype

could not be determined by UnifiedGenotyper, as a proxy for alignment

success. Finally, the gene content of these regions has been established using the

version 2.1 of the official gene set of the pea aphid provided by AphidBase

(Legeai et al., 2010).

RESULTS

Mapping to reference genomes confirms variation in symbiotic
composition between individual host genomes
The coverage of the A. pisum nuclear genome was 14.3× on average
(min= 10.6× and max= 19.96× ), whereas its mitochondrial
genome was covered 946.0 × on average (min= 257.09× and max=
3245.60 × ) and its obligate symbiont genome, 748.8× on average
(min= 138.08× and max= 1509.03 × ). The coverage of the faculta-
tive symbiont genomes depended strongly on the individual host and
varied from 0× to 117.7 × . Observed variation for symbiont genome
coverage among pea aphids was strongly linked to the infection status
of the hosts. Indeed, when we compared the expected symbiotic
composition based on PCR detection tests and results of mapping, we
obtained a good match in most cases: the presence of a given symbiont
as detected by a diagnostic PCR was confirmed by 42× coverage of
reads that mapped against the reference genome (Supplementary
Table S2 in Supplementary Material). There were, however, several
exceptions to this pattern, namely Ricketssia, Rickettsiella and
Spiroplasma symbionts for which genomes from a pea aphid host
are currently not available. It should be noted that positive individuals
for each of these three symbionts showed a weak but detectable
number of reads that mapped against the closest reference genome
found in databases (that is, Ps1, Ml1 and Ml3 individuals infected by
Rickettsia, Tp3, Vc1 and Vc3 individuals infected by Spiroplasma and
Ms1 individual infected by Rickettsiella in Supplementary Table S2).
Note also that no reads mapped to the Wolbachia genome, confirming
the absence of this symbiont in our selection of A. pisum genotypes.
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A non-negligible fraction of reads does not map
For a given individual, there were between 0.6 and 7 million pairs of
reads (mean= 1.3 million) where both reads did not map to any of
the reference genomes (nuclear genome, mitochondrion or known
symbionts). This constituted an average of 3.7% of the initial read sets.
Moreover, most of these reads were of good quality, as shown in
Figure 2, as few reads were removed (about 17%) by quality trimming
(see Methods).
A direct analysis of these read data sets did not allow to characterize

the unmapped reads in comparison to the mapped ones, in terms of
sequence complexity (Shannon entropy) or signal for repeats (no
enrichment of sequence matches with small RNAs targeting pea aphid
transposable elements). However, the small size of the reads makes
such direct analyses difficult and limits the sensitivity of such a
characterization.
We can also see in Figure 2 that the fraction of unmapped reads

varied between individuals. In particular, the individual Vc3 showed
an atypically large amount of unmapped reads with414 million reads
representing 18.5% of the initial read set for this individual. For some
biotypes, the fraction of unmapped reads was very similar across all
individuals, perhaps implying a common cause of mapping failure.
However, the fraction of reads did not seem to be correlated with the
divergence of the individuals (or biotypes) with respect to the
reference genome. The absence of this correlation suggests that the
failure to map is not a simple consequence of inappropriate mapping
parameters, as if mapping were too stringent we would expect to
obtain a correlation between the unmapped fraction and biotype
divergence from the reference.

Unmapped reads contain biologically meaningful information
Each set of unmapped reads was compared with all other sets using
Compareads. Across the 1056 (33× 32) pairwise comparisons, the
percentage of common reads between two individuals varied greatly,
from 6% to 95% with an average value of 50% (see Supplementary
Figure S3 of Supplementary Material). For all but one individual,
there was at least one other individual with which it shared 50% of
its reads.
Interestingly, there was a significant difference when comparing

individuals of the same biotype, where on average 70% of reads were

shared between individuals, versus comparisons between individuals
of different biotypes, which on average shared 48% of reads
(P-value o10− 16 for the Welch two-sample test). This trend was
confirmed by the hierarchical classification of individuals based on the
pairwise similarity scores computed from the read set intersections
(see Methods). Indeed, we can see in Figure 3 that individuals
belonging to the same biotype were largely clustered together.
One extreme case is the L. pratensis biotype, which is known to be

the most divergent biotype and is considered a cryptic species
(Peccoud et al., 2009a). It showed a very specific profile on the
heatmap with strong similarity within this biotype (yellow group on
Figure 3): a L. pratensis individual shared on average 72% of its
unmapped reads with another L. pratensis individual, whereas only
23% were shared with an individual of another biotype.
These results show that the sets of unmapped reads contain

sequence information specific to biotype or group of individuals and
therefore may contain valuable sequences for biological analyses.

Where do these sequences come from?
In order to get longer and more readily interpretable sequences, we
assembled them conjointly by biotype, using the assembler ABySS. Pools
of unmapped read sets were used as inputs to obtain sufficient coverage
for good quality assemblies. As the individual classification accorded with
the biotype composition and because individuals from the same biotype
are genetically closer than those from other biotypes (Peccoud et al.,
2009a), we pooled unmapped reads that were shared between at least two
of the three individuals that belonged to the same biotype. By removing
reads uniquely present in a single individual, putatively low coverage
sequences were excluded, limiting one potential source of noise to the
assembly process. Overall, 94Mb of contig sequences, each ranging from
100 bp (shorter contigs were filtered) to 35.6 kb, were assembled. On
average, 45% of the unmapped reads could be remapped to the
assembled contigs. The average N50 was low (around 428 bp), but we
obtained 411 800 contigs 41 kb (see Table 1).
The subsequent analysis considered contigs 41 kb in more detail.

Coverage of the contigs varied considerably, with 57% of them having
a nuclear-like coverage, that is, between 20× and 60× (see Material
and Methods), consistent with an origin from the pea aphid nuclear
genome. On the other hand, 14% of contigs had coverage 460× ,

Figure 2 Percentage of unmapped reads (unmapped by pair) for each individual, after and before cleaning for quality. Individuals are grouped by biotype and
sorted according to their known divergence with respect to the reference genome, the most divergent ones being at the right side of the figure.
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which would be consistent with an origin from bacterial symbionts,
the mitochondrion or repeated sequences. Contigs with coverage
o20× (29%) could correspond to sequences from other microbes
(including unreported symbionts) that are in low abundance in the
aphid host.
Alignment of the contigs to the set of reference sequences can also

suggest a potential genomic source. Overall, 63% of the contigs had a
significant blast hit to one of the reference genomes, with the large
majority matching with the nuclear pea aphid genome (89%).
As was found in the coverage analysis, the BLAST analysis revealed

biotype-specific trends (Figure 4). Both approaches can thus be
applied to classify the contigs into one of the two main origins: either
symbiotic or nuclear. Moreover, the attributions by coverage and
BLAST are largely consistent, with a concordant origin for 93% of the
contigs with an origin assigned by both methods.

Sequences of symbiotic origin. Three biotypes contained a sizeable
proportion of sequences with a putative symbiotic origin: Pisum
sativum, Vicia cracca and Medicago lupulina. Both the P. sativum and
M. lupulina biotype contig sequences predominantly showed signifi-
cant similarity to reference symbiont genomes (see Figure 4). In line
with this symbiont status, these contigs had a high coverage (4140×
on average). The detected similarity was due to one particular
symbiont genome: Rickettsia sp. endosymbiont of Ixodes scapularis
(and included in the reference genome set). However, very few reads

had mapped initially to this genome, which had an overall coverage of
only 3× for the P. sativum and M. lupulina biotypes, and was absent
from all other biotypes. This suggested that the chosen reference
genome for Rickettsia was too distant from the actual pea aphid
symbiont. By comparing these contigs to other Rickettsia species, we
identified R. bellii as a more closely related species. This closer
relationship was also confirmed by a phylogenetic analysis of 16S
ribosomal RNA genes from all available Rickettsia species having
their complete genome sequenced (Supplementary Figure S1 in
Supplementary Material). Substituting this genome as a reference
resulted in an improved coverage for both P. sativum and M. lupulina
biotypes and confirmed the presence of this facultative symbiont in
individuals that showed negligible coverage when their reads were
mapped to R. ixodes (Supplementary Table S2 in Supplementary
Material). However, the discrepancy between this coverage level and
that observed in the assembled contigs, which was over twofold
higher, suggests that Rickettsia from A. pisum may diverge significantly
from R. bellii, which requires to characterize its genome.
Unlike the P. sativum and M. lupulina biotypes, the V. cracca

biotype contigs showed almost no similarity to the reference sym-
bionts despite a coverage signal that averaged 602× and was thus
consistent with symbiont origin. When aligning these contigs to the
NR nucleic acid database, we found few matches and typically only
low similarity scores but noted that these hits were enriched in

Figure 3 Hierarchical classification of the sets of unmapped reads. Each color below the tree corresponds to a biotype. Colors in the heatmap are function of
the similarity score between two samples, from low similarity in red to high similarity in yellow.
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sequences from the Mollicute group and, more precisely, the
Spiroplasma genus. This implied that some individual genomes of
the pea aphid contained a Spiroplasma symbiont whose genome is
distant from available Spiroplasma genomes in the public databases.
This hypothesis was confirmed by the fact that three genotypes (of
which two V. cracca) of the pea aphid were positive for Spiroplasma
infection based on PCR-specific detection (Supplementary Table S2 in
supplementary material). Therefore Spiroplasma was likely present in
at least three individuals but in high abundance in only one: Vc3.
Indeed, most of the V. cracca unmapped reads came from this single
V. cracca individual, which had five times more unmapped reads than
the average (414 million reads, see Figure 2). Based on the
hierarchical classification in Figure 3, Vc3 was grouped with the
individuals Vc1 and Tp3 (in agreement with PCR results), with 90.5
and 95% of its unmapped reads being similar to these two individuals,
respectively. The high abundance of reads from this uncharacterized
source in Vc3 led us to attempt the de novo assembly of this
Spiroplasma genome. The assembly was performed with SPAdes, after
having extracted only putative ‘Spiroplasma’ reads from the full Vc3
read set (see Material and Methods). The final assembly contained 509
contigs 4500 bp (2442 bp on average), totaling 1.2Mb of sequence.
Although at the nucleotide level, these contigs showed weak similarity
to available Spiroplasma genomes, at the protein level their relationship
with Mollicute (and mainly Spiroplasma) proteins was confirmed for

546 annotated genes (on contigs summing to 780 kb). Moreover, the
assembly size, low GC content (24%) and the fragmented assembly
were consistent with known Spiroplasma genome features: the genome
size varies from 1.4 to 1.9Mb, GC content is around 26%, and the
genomes contain lots of repeated sequences and viral elements that
make the assembly task harder (Carle et al., 2010; Lo et al., 2013).
Additionally, a phylogenetic analysis of its 16S RNA gene confirmed
its membership to the Spiroplasma genus and the absence of any
close relative with a complete genome available in the databases
(Supplementary Figure S2 in Supplementary Material).
Finally, when unmapped reads were re-mapped to the partially

assembled genome of Spiroplasma isolated from A. pisum, individuals
which had been found to be positive for Spiroplasma by a PCR-based
diagnostic assay but which had a negligible coverage when their reads
were mapped to S. melliferum registered a high coverage on contigs
from the A. pisum-derived Spiroplasma (up to 1185× for some
individuals, Supplementary Table S2,Supplementary Material). In one
case, the sensitivity of the sequence analysis may have exceeded that of
the PCR test as individual Lc3 was PCR-negative for Spiroplasma but
recorded on re-mapping, suggesting a possible infection under the
threshold of PCR detection.

Sequences of nuclear origin. All biotypes possessed contigs with a
putative nuclear origin, as shown on Figure 4. Some of these contigs

Table 1 Contig statistics

Biotype n reads (M) Contigs 4100 bp Contigs 41 kb

nb assbl. Mb % reads N50 nb assbl. Mb % reads

M. sativa 3.68 21 110 5.98 41.29 380 669 1.09 18.61

T. pratense 7.07 29 298 8.75 40.25 415 1107 2.09 19.04

V. cracca 18.29 21 907 7.41 39.00 520 1135 2.25 26.00

P. sativum 6.26 21 123 7.13 49.34 510 1055 2.12 39.1

M. lupulina 7.56 20 932 7.01 48.66 508 1075 2.11 37.14

L. corniculatus 3.34 25 772 7.43 47.95 403 869 1.43 21.99

Melilotus spp. 3.68 23 792 6.9 44.21 408 879 1.41 18.83

S. varia 2.96 23 340 6.75 50.18 402 839 1.33 24.35

C. scoparius 5.01 27 081 7.84 33.55 410 1026 1.65 13.55

O. spinosa 3.67 25 170 7.4 45.84 418 977 1.56 20.46

L. pratensis 8.98 83 344 21.41 53.2 331 2211 3.42 22.67

For each biotype, the number of unmapped reads in million (n reads) used for the assembly is indicated along with several statistics describing the properties for two contig length cutoffs (100 bp
and 1 kb), namely, the number of obtained contigs (nb), their cumulative length (assbl. Mb), the percentage of reads (% reads) that could be mapped to the contigs and the N50 value.

M. sativa
 P. sativum
 M. lupulina
 T. pratense
 V. cracca
 S. varia
 L. corniculatus
 Melilotus spp.
 O. spinosa
 C. scoparius
 L. pratensis

Figure 4 Analysis of contigs 41 kb in terms of blast matches and read coverage.
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were similar between several biotypes or even between all biotypes. We
clustered the contigs together using BlastClust and obtained overall
10.1Mb of distinct sequences having a nuclear-like coverage, of which
4.2Mb had no similarity to the reference genome of A. pisum. Some of
these are likely to be insertion polymorphisms, whereas the 8.6 kb that
are shared in at least eight biotypes could represent pea aphid
sequences missing from the current reference assembly either due to
error or to deletions in the individual genome that was used to build
the reference genome.
Aside from these common sequences, the L. pratensis biotype was

particularly enriched in sequences with a putative nuclear origin
(Figure 4). Most of its contig sequences had a significant blast hit to
the nuclear reference genome (2.4Mb (69.8%) of total contig length)
and a nuclear-like coverage (86% of total length), suggesting that these
contigs were assembled from reads that were too divergent to map in
the first place.
One thousand one hudred and thirty-seven regions (covering

1001 kb) that exhibit similarity to a L. pratensis contig over at least
500 bp were then delimited on the reference genome, using the global
aligner Mummer. The analysis of read coverage in these regions
uncovered two types of region: ‘low-coverage’ regions in which very
few reads had mapped (coverage o30× for the three L. pratensis
individuals combined, 377 regions summing to 337 kb), and ‘normal-
to-high-coverage’ regions (760 regions, 663 kb). Although the latter
could be explained by one or several divergent copies not present in
the reference genome, the former are likely to be regions that are too
divergent in all the L. pratensis genomes, in which we may miss
important biological information. Indeed, we observed a high
proportion of undefined SNP calls for L. pratensis samples in these
‘low-coverage’ regions. On average, each L. pratensis individual had
61% of undefined calls, whereas this percentage never exceeded 20%
in these same regions for other biotypes (with an average of 13%).
These are high values compared with the proportion of undefined calls
over the whole genome (on average, 9% for L. pratensis samples and
3.7% for other biotypes). Moreover, half of the regions showed450%
of undefined calls for all three L. pratensis individuals. This supports
the assertion that SNP information is lost because of unmapped reads.
When using a more sensitive mapping approach with Stampy, some

of these missed SNPs could be recovered. For the three L. pratensis
genomes, overall 64% of the initially unmapped reads were re-mapped
onto the set of reference genomes. Among these rescued reads, 0.66%
mapped to the ‘low-coverage’ regions, which was more than expected
knowing that these regions of interest represent only 0.06% of the
whole genome. This sensitive mapping enabled recovery of, on
average, 60% of undefined SNP calls, with 12.5% of regions
completely resolved (that is, with no undefined SNPs). However, for
54% of the regions, the total coverage (Bowtie2+Stampy) still did not
reach normal levels and remained o30× .

DISCUSSION AND CONCLUSION

Although approaches for mining unmapped read sets for specific
purposes have been described, for example, for pathogen discovery
(for example, Kostic et al., 2011), this portion of reads is typically
disregarded in re-sequencing projects. The sources of unmapped reads
are various: they may derive from characterized or uncharacterized
symbionts, bacterial, viral or eukaryotic pathogens, highly divergent
genomic regions, genomic insertion sequences or library contami-
nants. The relative proportions of these contributions can vary, and
factors such as reference genome quality and the genetic distance
between reference and target can have a major role. Therefore, in non-
model systems, both the contribution of unmapped reads to the data

set and the likelihood that these reads are a reservoir of useful
biological information are increased. However, identifying the
unmapped reads and ascribing them to specific sources is not trivial.
We have here proposed a novel approach to rescue some of this
potentially lost information and have explored the unmapped read sets
in the context of 33 re-sequenced genomes from biotypes of the pea
aphid species complex.
The direct pairwise comparisons of read sets, before assembly,

enabled the rapid identification of similar read sets and highlighted
atypical samples and biotypes. Moreover, as the coverage of each
individual alone was too low to expect a good quality assembly,
merging samples in order to achieve sufficient coverage was necessary
for de novo assembly quality. However, selecting and merging only
reads common to a single biotype or population would preclude the
identification of other interesting sequences specific to one genotype
or to a combination of individuals of different biotypes. Therefore a
more in-depth analysis of the pairwise comparisons followed by the
assembly of particular combinations of read sets could be interesting
to conduct and may help to uncover unexpected links between
individuals.
The assembly phase generated longer sequences than the prepro-

cessed read sets, and these can be more efficiently analyzed and
compared with sequence databases. However, although bacterial
sequences, such as the ones obtained from Rickettsia and Spiroplasma,
could be relatively easily assembled and led to large contigs, we
observed that the remaining contigs were usually very short (N50
around 400 bp), and probably one of the consequence is that a large
fraction of the unmapped read sets could not be remapped on the
shortest contigs. The recovery of short contigs may be influenced by
our methods: extracting and assembling only unmapped read pairs
would mean that we assemble only regions of high divergence, which
may be interspersed in the genome with less divergent regions that are
well served by the mapping. In this case, we would predict that
samples from the more divergent populations would have, on average,
larger contigs of nuclear origin. This is supported in our case by the
most distant biotype from the reference, L. pratensis, which shows the
greatest proportion of large contigs with similarity with the nuclear
genome and de facto the highest number of remapped reads (53.2%).
The final step of our approach was to align the contigs against the

reference genomes (nuclear and symbionts) with less stringent
similarity criteria than those used during the first mapping step of
our process. This, together with the average read coverage of contigs,
allowed us to ascribe a putative origin (nuclear or symbiont) of most
of the larger contigs. For contigs of symbiont origin, this revealed
notably the mis-specification of a reference genome and identified a
closer representative species. Without this analysis, we would have
concluded from the first mapping that this symbiont was absent (or at
very low abundance) from all individuals. Moreover, this revealed the
presence in three individuals of a symbiotic bacterium of the genus
Spiroplasma, which has been previously reported for the pea aphid
(Fukatsu et al., 2001) but never sequenced and for which we produced
a first draft assembly of its genome. Again, the presence of this
symbiont would have been completely missed with the first mapping.
In addition, this analysis allowed us to highlight specific parts of the

nuclear genome that are enriched in the unmapped read set. These are
large regions which are either absent from the reference genome or
show high divergence to the corresponding reference sequence such
that each of the read pairs originating from it cannot be mapped. The
latter explanation seems to be the most frequent in our data set. This
highlights the major drawback of classical comparative genomics
approaches relying on a reference genome. The regions of the
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reference genome with important genomic divergence for some
individuals will contain fewer mapped reads from these individuals
and ultimately little divergence will be detected, leading to an
erroneous interpretation. We confirmed this consequence of
unmapped reads by observing an increased level of unassigned
genotypes in these particular parts of the reference genome for the
most divergent biotype.
This mapping issue could lead to the loss of valuable biological

information or biases in the analysis of genomic variation. Careful
calibration of mapping parameters to better handle sequence mis-
matches between reads and the reference genome can reduce the
fraction of reads that cannot be mapped. We explored this by using
the Stampy aligner to reprocess the unmapped reads and could
recover 64%. Although this offers an improvement on the original
Bowtie mapping, most of the observed regions with missing genotype
information remained unresolved, and it is important to note that
relaxing these settings will increase false positive mapping and also
increases the time and computing resources required to process the
data sets.
Here, our approach helped to recover those divergent regions, and

having applied this strategy, the biological signals and functions of
these regions can then be interrogated. In the case of the pea aphid
data set, the genic content of the regions will be investigated with a
view to determining whether they are enriched in genes involved in
host-plant adaptation (for example, receptors and enzymes). More
generally, recovery of these regions enabled them to be subjected to
further study, for example, to identify signatures of positive selection.
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