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ABSTRACT
Numerous studies have identified prognostic genes in individual cancers, but a
thorough pan-cancer analysis has not been performed. In addition, previous studies
have mostly used microarray data instead of RNA-SEQ, and have not published com-
prehensive lists of associations with survival. Using recently available RNA-SEQ and
clinical data from The Cancer Genome Atlas for 6,495 patients, we have investigated
every annotated and expressed gene’s association with survival across 16 cancer types.
The most statistically significant harmful and protective genes were not shared across
cancers, but were enriched in distinct gene sets which were shared across certain
groups of cancers. These groups of cancers were independently recapitulated by both
unsupervised clustering of Cox coefficients (a measure of association with survival)
for individual genes, and for gene programs. This analysis has revealed unappreciated
commonalities among cancers which may provide insights into cancer pathogenesis
and rationales for co-opting treatments between cancers.
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INTRODUCTION
Led by The Cancer Genome Atlas, unprecedented efforts have been made to understand

the molecular basis of cancer (http://cancergenome.nih.gov). Using standardized

procedures, the TCGA Research Network has used whole genome sequencing, exome

sequencing, RNA-SEQ, small RNA-SEQ, bisulfite-SEQ, and reverse phase arrays to identify

the pathways commonly altered in different cancers (Brennan et al., 2013; Cancer Genome

Atlas N, 2012a; Cancer Genome Atlas, 2012b; Cancer Genome Atlas Research, 2011; Cancer

Genome Atlas Research, 2012; Cancer Genome Atlas Research, 2013a; Cancer Genome Atlas

Research, 2013b; Cancer Genome Atlas Research, 2014a; Cancer Genome Atlas Research,

2014b; Cancer Genome Atlas Research, 2014c; Cancer Genome Atlas Research, 2014d; Cancer

Genome Atlas Research et al., 2013a). As a result, we now know the most commonly

mutated genes in dozens of cancers and can use this information to give patients targeted

therapeutics.

Whereas well established statistical techniques exist for identifying mutations which are

drivers instead of simply passengers (mut-drivers), identifying copy number aberrations,
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methylation changes, or non-coding mutations that alter expression of a gene and result

in a growth advantage (epi-drivers) are more difficult to identify and represent a “dark

matter” of cancer (Vogelstein et al., 2013). Although it currently is challenging to identify

epi-drivers which lead to development of a cancer (tumorigenesis), by correlating these

changes to survival it is possible to detect their role in disease progression (pathogenesis),

which is one of main goals of cancer research.

Of the possible genomic measures that can be correlated with survival, gene expression

has been shown to be the strongest predictor of survival (Zhao et al., 2015), which

is intuitive given that gene levels together with protein levels and posttranslational

modifications are the final readout of the different possible alterations in a cell and are

the final effectors of phenotype. To date many attempts have been made to identify genes

whose expression is associated with survival to either identify markers that can predict

patient survival or to identify mechanisms of pathogenesis (Chen et al., 2007; Valk et

al., 2004; Van de Vijver et al., 2002). One of the success stories of this approach is the

identification of HER2 in breast cancer patients and the development of herceptin (Bange,

Zwick & Ullrich, 2001). This story also highlights the complications treatment regimens

can have on interpreting survival data. Whereas HER2 overexpression used to predict

poor survival for breast cancer patients, because of the progress of personalized medicine

these patients now do well and HER2 would not show up as a prognostic marker in a

data set with HER2 positive patients on herceptin. While treatments may introduce a

confounding variable in understanding a disease, the ultimate goal of cancer studies is to

improve patient outcome, and adding treatment to the equation adds more information

and provides an opportunity to study genes in the context of the current standard of care.

The vast majority of studies to identify prognostic genes have focused on a single

disease and have utilized microarrays instead of RNA-SEQ. In addition, these studies

often only publish a small set of genes that together most significantly stratify patients.

Even the TCGA Research Network publications do not provide lists of genes associated

with survival. cBioPortal does allow users to make Kaplan-Meier plots for most of the

cancers which contain survival information, but users still have to input one gene at a time,

leaving one to wonder where researchers should go to find the genes which are most highly

correlated with survival for their disease of interest.

Through the TCGA Network, RNA-SEQ has only very recently become available for

thousands of human cancer samples. RNA-SEQ has multiple advantages over microarray

data, including having a higher dynamic range, no probe affinity effects, ability to identify

novel transcripts, and lower and consistently falling cost. We took advantage of the

availability of this data to (1) investigate the ability of RNA-SEQ to associate expression

with clinical outcome in a range of cancers, (2) perform the largest analysis of prognostic

genes to date, and (3) provide every gene’s correlation with survival for hypothesis testing

and further investigations by the scientific community. In addition, attempts are now

being made to identify commonalities between cancers with the hope that this type of

analysis may be able to identify treatments that can be co-opted for a molecularly similar

cancer. Given that only survival correlations integrate treatment with the genomic data,
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prognostic genes represent an exclusive window for understanding how different cancers

in the context of their individualized treatments relate to one another. By performing the

largest pan-cancer analysis of prognostic genes, we identified groupings of cancers which

were robustly replicated through several methods. This study serves as a starting point for

better understanding how survival data can be used to understand the commonalities and

differences of cancers.

MATERIALS AND METHODS
Code and files
All of the Python and R code used to generate the figures and tables in this study,

including intermediate and final files, tables, and figures, is available at https://github.

com/OmnesRes/pan cancer. All scripts were run on a HP dv7t laptop with an i7-3820QM

processor and 16GB of RAM running Windows 7, Python 2.7.5, and R 3.0.1.

Construction of multivariate Cox models
RNA-SEQ and clinical data were downloaded from the TCGA data portal, https://

tcga-data.nci.nih.gov/tcga/, in February 2015. For each cancer, survival information

was parsed from the “clinical follow up” files and “clinical patient” file, and for each

patient the most recent follow up information found in the multiple files was kept. Sex,

age, and histological grade data were extracted from the “clinical patient” file. For each

cancer, only patients that had a follow up time greater than 0 days and had complete

clinical information were included in the model. TCGA has used two different methods of

reporting expression values, RSEM and RPKM. RPKM is simply the reads per kilobase per

million mapped reads, while RSEM is a normalized value outputted by the RSEM software

(Li & Dewey, 2011). For each cancer, only genes which had a median RSEM value greater

than 1 (for RNASeqV2), or median RPKM value greater than .1 (for RNASeq), and had 0

expression in less than one fourth of patients were included in the analysis. RNASeq uses

a different gene annotation file from RNASeqV2, and because RNASeqV2 represents the

most recent analysis, for RNASeq analyses only those genes present in the RNASeqV2 gene

annotation file were included. Multivariate Cox models were run with the coxph function

from the R survival library, and the equation for each model is shown in Table S1. Grade

information was included in the model by separate terms, which were either 1 or 0, and

model input gene expression values were inverse normal transformed. If a patient had

replicates for their primary tumor, those expression values were averaged prior to inverse

normal transformation. The scripts for performing Cox regression for each cancer are

named “cox regression.py.”

Gene set analysis
For each cancer, the 250 most significant protective genes and 250 harmful genes

were inputted separately into MSigDB with the “positional genes sets,” “chemical and

genetic perturbations,” “canonical pathways,” “KEGG gene sets,” “microRNA targets,”

“transcription factor targets,” “cancer modules,” “GO biological process,” and “oncogenic

signatures” sets selected: http://www.broadinstitute.org/gsea/msigdb. The FDR q-value
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threshold was set at .05 and the top 100 enriched gene sets were saved, except for the 250

protective genes in BLCA, which only contained 27 overlaps below .05.

Normalization of Cox coefficients
In order to compare the Cox coefficients between cancers we robustly scaled the negative

and positive coefficients, x, to their 5th and 95th percentile values, respectively, using the

following sigmoidal normalization function:

z± =
2

1 + e
−

2x
|u±|

− 1

where u− and u+ are the 5th and 95th percentile values of the negative and positive Cox

coefficients, respectively. The implementation of this code is present in the files named

“normalizing coeffs.py,” and all the normalized coefficients are listed in Table S1.

Construction of gene programs
Gene programs from Table S4 of Hoadley et al. (2014) were used. In general, a nonredun-

dant set of genes from gene sets which had a Pearson correlation of at least .9 (Hoadley et

al., 2014) was generated for each program. The exact gene sets used are listed in Table S3.

Lists of genes for the gene sets were obtained from http://www.broadinstitute.org/gsea/

msigdb and Fan et al. (2011).

Determination of cancer subtypes
For Fig. 1B the subtype information was obtained from Brat et al. (2015) for LGG, and

from Cancer Genome Atlas Research (2014a) for STAD. If subtype information for a patient

was not available, the subtype was listed as “NA” in Fig. 1B.

RESULTS
Cancers vary in number of prognostic genes
In order to perform the most comprehensive cancer analysis possible, we selected TCGA

cancers that had sufficient numbers of patients with RNA-SEQ data and mature clinical

follow up information, and did not contain any publication restrictions. This resulted in us

studying a total of 16 cancers, 10 of which were present in the original pan-cancer initiative

(Cancer Genome Atlas Research et al., 2013b): acute myeloid leukemia (LAML), bladder

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma

(COAD), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma

(HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD),

lung squamous cell carcinoma (LUSC), and ovarian serous cystadenocarcinoma (OV),

and 6 cancers which have been the focus of limited individual or pan-cancer studies:

cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), brain lower

grade glioma (LGG), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular

carcinoma (LIHC), skin cutaneous melanoma (SKCM), and stomach adenocarcinoma

(STAD).
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We were interested in the effect a gene has on prognosis independent of factors such as

tumor grade and age of a patient. To achieve this we used a multivariate Cox proportions

hazards model (Cox, 1972), which is a standard regression method for studying survival

data (Claus et al., 2015; Gyorffy et al., 2013; Wu & Stein, 2012; Zhang et al., 2013). For every

cancer, a model was generated separately for each gene, with the number of covariates

depending on the cancer. Unlike microarray data, RNA-SEQ data has extreme values which

may affect regression. To account for this we inverse normal transformed the expression

values of each gene, which has been shown to increase the sensitivity and specificity for

multivariate regression with RNA-SEQ data (Zwiener, Frisch & Binder, 2014). Age and sex

are also included in every model, and when a cancer contained strong histological grade

information, grade was also included. If a patient was missing any of this information

they were excluded from the analysis, and only primary tumors were considered, with the

exception of SKCM, where metastatic tumors make up a large proportion of the patients.

A Cox model provides a p-value for each term in the model, indicating the significance

of its association with the clinical outcome, and we recorded the p-values for every

gene analyzed for the 16 different cancers. As can be seen in Table 1, there is a wide

distribution among cancers in the number of genes that reached a Benjamini–Hochberg

False Discovery Rate (FDR) adjusted p-value of less than or equal to .05. This can also

be seen by looking at a distribution of the raw p-values for the different cancers (Fig.

1A and Fig. S1). This has important implications for understanding the significance of a

gene being associated with survival in a specific cancer. For example, selecting a gene at

random a researcher studying LGG has a 50% chance of being able to claim the gene is

associated with survival, while a researcher studying STAD only has an 8% chance (using

raw p-values).

Two factors that are known to be associated with power of a Cox model are sample

size and number of events (deaths); however, looking through Table 1 it is difficult to

find a pattern that can explain why certain cancers have more significant genes than other

cancers. For example, BRCA has around twice the number of patients of any other cancer,

but only has 30 genes that meet a FDR cutoff, which can be considered expressionally

prognostic genes (EPGs). In contrast, KIRP has a fourth the number of patients of BRCA

but has 2,415 EPGs. In addition, LUAD and LUSC have similar numbers of patients,

median survivals, and events, yet have a large difference in EPGs. Interestingly, it has been

shown that the number of prognostic genes for a cancer can be significantly different

depending on whether microarray data or RNA-SEQ data is used (Yang et al., 2014). It

is possible that the different numbers of EPGs between cancers are due to intra-disease

heterogeneity and/or treatment differences that are not accounted for in the Cox model

and are acting as confounding variables, or differences in the amount of transcriptional

dysregulation between cancers.

Protective and harmful genes display opposite expression
patterns
The Cox model also provides a coefficient for each term, which is related to its contribution

to the hazard ratio. A positive coefficient indicates that the gene increases the hazard ratio,
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Figure 1 Distinct expression patterns of protective and harmful prognostic genes. (A) Raw gene
p-value distributions from multivariate Cox models for a cancer with high number of expressionally
prognostic genes (EPGs; LGG), and a cancer with low number of EPGs (STAD). Distributions for the
other 14 cancers are displayed in Fig. S1. (B) Unsupervised hierarchical clustering (Pearson correlation
distance metric) of patients using the inverse normal transformed expression values from the 100 most
significant protective genes and 100 most significant harmful gene for LGG and STAD. (C) Kaplan-Meier
plots comparing survival times for the two broad clusters of patients identified in (B) and logrank
p-values for LGG and STAD.
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Table 1 Characteristics of datasets and patients included in this study. Events are the number of deaths in the data set. Age is the average age and
is in years. Median survival is in days. The median survival for KIRP could not be calculated.

Cancer Patients Median
survival

Events Age at
diagnosis

Male/female RNASeqV2 Genes
in study

FDR ≤ .05

BLCA 347 1,064 139 67.9 254/93 YES 16,385 532

BRCA 981 3,669 116 58.4 10/971 YES 16,649 30

CESC 259 3,097 60 48.1 0/259 YES 16,358 146

COAD 434 2,475 89 66.6 232/202 YES 16,414 0

GBM 152 406 119 59.8 98/54 YES 16,833 0

HNSC 484 1,671 190 61.2 353/131 YES 16,652 45

KIRC 516 2,386 167 60.7 335/181 YES 16,677 5,785

KIRP 247 NA 32 60.8 181/66 YES 16,430 2,415

LAML 149 577 92 54.7 80/69 YES 15,255 4

LGG 457 2,875 91 43.1 255/202 YES 16,818 7,186

LIHC 324 2,116 105 60.1 217/107 YES 15,855 2

LUAD 486 1,379 146 65.3 224/262 YES 16,784 1,179

LUSC 471 1,655 180 67.4 352/119 YES 16,979 0

SKCM 427 2,889 195 57.5 264/163 YES 16,067 1,548

OV 401 1,321 224 59.6 0/401 NO 15,748 0

STAD 361 874 130 65.2 238/123 NO 15,560 0

i.e., high expression of the gene correlates with earlier patient death, while a negative coef-

ficient indicates that expression of the gene is protective. Using the cancer with the highest

number of EPGs (LGG), we clustered patients with the 100 most significant genes which

were harmful and the 100 most significant genes which were protective, and this revealed

two broad clusters of patients: (1) those with high expression of harmful genes and low

expression of protective genes, and (2) those with high expression of protective genes and

low expression of harmful genes (Fig. 1B). Not surprisingly, performing a Kaplan-Meier

analysis with these two groups revealed that cluster 2 has a much higher survival than

cluster 1 (Fig. 1C). This result has important implications for trying to find gene sets which

can most accurately predict patient survival. The similar expression patterns indicate that

there are numerous combinations of genes that would only differ slightly in their ability to

predict survival, making the identification of a ‘best’ set of genes somewhat meaningless. In

addition, given that each gene individually had a p-value less than or equal to 1.4E−8, it is

unlikely these patterns are due to chance but rather are the result of some underlying gene

regulation and these genes may be members of known pathways.

Unlike LGG, some of the other cancers in our analysis yielded a much lower number of

EPGs. While it might be tempting to disregard the results in these cancers, we decided to

check if we could observe patterns of expression in the most significant good and bad genes

like we had observed for cancers with a high number of EPGs. Clustering of the patients

of STAD, which has one of the lowest numbers of EPGs, with the 100 most significant

harmful genes, and the 100 most significant protective genes, again divided patients into

two broad clusters. Surprisingly, a Kaplan-Meier analysis on these two groups showed a
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very significant difference with a p-value of 2.73E-6 (Fig. 1C). This indicates that despite

the fact that none of the genes in STAD meet a 5% FDR cutoff, they still contain important

biological information. As a result, we decided to include all cancers in further analyses

regardless of their numbers of EPGs.

Cancers do not share prognostic genes, but do share gene sets
We were interested in seeing if the most significantly prognostic genes were shared across

cancers. However, looking at the overlap of the 100 most significant genes across the 16

cancers revealed that there is very little overlap among the 16 cancers, consistent with

previous results obtained from an analysis of four cancers (Yang et al., 2014) (Fig. 2A).

Given the apparent co-regulation of the most significant genes in each cancer, we reasoned

that although individual genes were not shared, maybe the genes were a part of gene sets

which were shared between cancers. In addition, given that the harmful genes had an

opposite pattern of expression from the protective genes, we hypothesized that they are

regulated differently and would be enriched in different gene sets. To investigate this, we

took the 250 most significant harmful genes and 250 most significant protective genes

in each cancer, and separately found the 100 most enriched gene sets through MSigDB

(Subramanian et al., 2005). Consistent with our idea that harmful and protective genes are

regulated differently, there was very little overlap within a cancer between the 100 gene sets

found with 250 harmful genes and the 100 gene sets found with 250 protective genes (Fig.

2B). In addition, the fact that even the protective and harmful gene sets from cancers with

a low number of EPGs show almost no overlap reinforces the idea that prognostic genes in

these cancers still contain biologically significant information.

Next we assessed the extent to which these protective and harmful gene sets overlapped

between the different cancers. We investigated the overlaps separately for the 100 harmful

gene sets and 100 protective gene sets (Figs. 2C and 2D). Overall there was more overlap

between the harmful gene sets, and there were three cancers which clearly shared a high

number of harmful gene sets, LUAD, LIHC, and KIRP. Investigating these overlaps further

showed that the three cancers shared 58 gene sets, and LUAD and KIRP shared 85 gene

sets (Fig. 2E). Looking at the overlaps of the protective gene sets, the largest overlap was

between COAD and LUSC, and these cancers also shared gene sets with GBM (Fig. 2F).

We next asked what are the most common harmful and protective gene sets across

cancers. Table S2 shows frequency of every gene set, with gene sets that were shared

between harmful and protective sets within a single cancer marked in bold as they may

be nonspecific. As might be expected, the most common gene sets observed for harmful

genes were associated with poor differentiation and metastasis. In contrast, the protective

gene sets were enriched for apoptosis and good differentiation. Although when possible

the grade of the tumor was included in the Cox model, and therefore should not be a con-

founding variable, it is possible that histological grade does not completely account for the

differentiation of a tumor, indicating the importance of genomics for accurate profiling.
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Figure 2 Overlaps of prognostic genes and gene sets. (A) Heatmap displaying the overlaps between
cancers of the 100 most significant genes of each cancer. (B) Overlaps within cancers of the 100 most
significantly enriched gene sets for protective genes, and the 100 most significantly enriched gene sets
for harmful genes. (C, D) Overlaps between cancers of the 100 most significantly enriched gene sets for
harmful genes (C) and protective genes (D). (E) Venn diagram showing the overlaps of the 100 harmful
gene sets for LIHC, LUAD, and KIRP. (F) Venn diagram showing the overlaps of the 100 protective gene
sets for COAD, GBM, and LUSC.
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Cancers can be clustered by gene and gene program Cox
coefficients
To date, different cancers have been compared to each other through mRNA levels, miRNA

levels, protein levels, networks, copy number alterations, DNA methylation, somatic

mutations or some combination of these (Akbani et al., 2014; Ciriello et al., 2013; Hamilton

et al., 2013; Hoadley et al., 2014; Kandoth et al., 2013; Knaack, Siahpirani & Roy, 2014). The

Cox coefficients in our analysis contain a level of information not present in any of these

data types, and consequently can potentially reveal similarities or differences between

cancers that were not appreciated before. Therefore we sought to attempt to cluster cancers

using Cox coefficients of genes instead of expression levels. Because the Cox models for

the different cancers contain different numbers of covariates, and different strengths of

gene expression correlation to survival, the range of values of the Cox coefficients vary

between cancers. To correct for this, we normalized the coefficients for each cancer using

a sigmoidal function which robustly scaled both negative and positive coefficients to their

95th percentile values (see methods). In addition, whereas every gene has an expression

value, only significant prognostic genes have Cox coefficients appreciably above or below

0. Performing clustering with large numbers of nonsignificant genes which all have very

similar values for every cancer will only add noise to the clustering. As a result, we limited

our clustering to genes which had a FDR less than or equal to .05 in at least four of the

sixteen cancers.

Hierarchical clustering of the 16 cancers was performed with the sigmoidal normalized

Cox coefficients of this set of genes (Fig. 3). The clustering grouped LIHC, LUAD, and

KIRP together, which were the same cancers that shared the highest number of harmful

gene sets. In addition, GBM, COAD and LUSC clustered together, which were the cancers

that had the highest number of protective gene sets overlap. The fact that two separate

methods, using different sets of genes, were able to find these groupings of cancers gives us

confidence that this finding is robust and biologically significant.

We next wanted to know if there were established pathways that distinguished our

groupings of cancers from each other. Using a list of nonredundant gene programs that

have been shown to distinguish cancers from one another on the basis of expression levels

(Hoadley et al., 2014), we sought to distinguish cancers using Cox coefficients of pathways.

For each pathway the average sigmoidal normalized Cox coefficient was calculated in each

cancer. Because a Cox coefficient can be positive or negative, if a pathway has some genes

which are protective and some genes which are harmful, the average Cox score will be

near zero. In addition, if a pathway only contains genes which are not prognostic, all of

those Cox scores will be near zero and the pathway score will be near 0. The only way for a

pathway to have a positive or negative score is for it to contain prognostic genes which are

either consistently protective or consistently harmful.

Using the Cox scores for these 22 gene programs, we again performed hierarchical

clustering (Fig. 4). We column scaled the values to highlight which gene programs are most

important for each cancer. Overall the same groupings we had seen with gene sets and

individual genes were recapitulated, with LUAD, KIRP, and LIHC again forming a cluster
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Figure 3 Clustering of cancers using gene Cox coefficients. Clustering of genes and cancers using the
sigmoidal normalized Cox coefficients of a list of genes that had an FDR less than or equal to .05 for at
least four cancers. Pearson correlation distance metric was used for both row and column clustering, and
Cox coefficients were row scaled (z-score).

and COAD, LUSC, and GBM grouped together. In the LUAD/KIRP/LIHC group poor

prognosis is associated with high proliferation rates and glycolysis, while good prognosis is

associated with apoptosis and a dependency on oxidative phosphorylation. In contrast, for

GBM/LUSC/COAD, proliferation is protective while EGF response predicts poor survival.

We also found cancer specific protective/harmful pathway enrichments that are

consistent with known cancer biology. For example, in KIRC the highest intensity gene

program is “fatty acid oxidation,” and KIRC is a cancer that is known to depend on

dysregulation of metabolism and is a classic example of the “Warburg effect” (Linehan,

Srinivasan & Schmidt, 2010). Our results show that patients with high expression of

genes utilizing oxygen survive longer, which underscores the importance of a metabolic

shift in this cancer. As another example, EGFR is the most commonly mutated gene in

GBM (Brennan et al., 2013), and we observed that increased EGFR activity is associated

with poorer outcomes. And BLCA and SKCM, which are known for being responsive to

immunotherapy, both benefit from increased interferon response and an immune cell

signature which is likely a proxy for immune cell infiltration.

DISCUSSION
Cancer researchers are increasingly looking to focus on factors which have clinical

significance, and many different resources now allow researchers to identify if a protein
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Figure 4 Clustering of cancers using gene programs. Using an established list of gene programs (see
methods and Table S3), cancers and gene programs were clustered using the means of sigmoidal normal-
ized Cox coefficients of the genes present in each program. Pearson correlation distance metric was used
for both row and column clustering, and the average Cox coefficients were column scaled (z-score).

of interest has clinical implications, including OMIM, dbSNP, ClinVar, cBioPortal,

FINDbase, and others (Hamosh et al., 2005; Landrum et al., 2014; Papadopoulos et al.,

2014; Smigielski et al., 2000). Despite this, it currently is not possible to find comprehensive

lists of genes which are associated with survival in different cancers. Using recently

available RNA-SEQ and clinical data from the TCGA for 6,495 patients, we correlated

every expressed annotated gene to survival in 16 different cancers, providing the scientific

community with thousands of highly significant genes for further study.

There is an unexpectedly large variation between cancers in the number of statistically

significant prognostic genes, which should be used to inform our evaluation of prognostic

genes from different cancers. For example, a significant p-value for a gene from a cancer

such as LGG or KIRC should not be surprising, given the thousands of genes that survive

a stringent p-value cutoff in these tumors (Table 1, Fig. 1A and Fig. S1). In contrast,

weaker p-values for predicting prognosis in cancers such as STAD or COAD are still

biologically important although they have no genes that pass a stringent p-value threshold

for biological significance (Table 1, Figs. 1A and 1C).

RNA-SEQ is a relatively new technology, and its ability to identify prognostic genes in

many cancers has not been explored. Although the number of expressionally prognostic

genes (EPGs) varied among cancers, regardless of the cancer we identified expression

profiles which significantly separated patients into high risk and low risk groups. One of

the main advantages of RNA-SEQ over microarrays is the ability to identify unannotated

transcripts. In fact, recent studies have investigated the expressions of pseudogenes and
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long noncoding RNAs in large numbers of TCGA RNA-SEQ data sets (Han et al., 2014;

Iyer et al., 2015). It would be interesting to see if these transcripts show the same trends as

protein coding genes across these cancers.

This comprehensive analysis of prognostic genes allowed us to explore the ability of

the prognostic genes themselves, enriched gene sets, and Cox coefficients (a measure of

strength of correlation to better or worse survival) to identify similarities and differences

among cancers. We found that the most prognostically significant genes were not shared

between cancers. However, we found that protective genes and harmful genes are enriched

in very different gene sets, and there were large overlaps of these gene sets for LUAD, LIHC,

and KIRP, and for COAD, LUSC, and GBM. We were able to recapitulate these findings by

clustering with both Cox coefficients of individual genes, and average Cox coefficients of

gene programs, suggesting that these findings are biologically significant and that we have

identified a paradigm for incorporating genomic and clinical data to compare cancers.

Although it is important not to mistake a correlation for causation, our analysis suggests

intriguing insights into the pathogenesis of different cancers. For example, currently

EGFR inhibitors are recommended for LUAD patients with EGFR mutations, but EGFR

mutations are rare in LUSC and patients with mutations do not respond well to tyrosine

kinase inhibitors (Chiu et al., 2014). Despite this, response rates to EGFR inhibitors for

LUSC studies are threefold higher than expected (Chiu et al., 2014), suggesting that

although EGFR itself may not be mutated, responders may still have a cancer which is

dependent on EGFR signaling. This is consistent with our gene program analysis, where

EGFR response was most strongly associated with poor survival in LUSC, and LUSC was

consistently associated with GBM, which is a cancer known for EGFR dysreguation. This

suggests that using a measure of EGFR activity other than mutational status could be used

to find LUSC patients that would benefit from a tyrosine kinase inhibitor. In addition,

our analysis may be used to suggest treatments for cancers which are not well studied. For

example, KIRP does not have successful treatments and there is a current search for drugs

which may be of benefit (Schuller et al., 2015). Our analysis suggests that the pathogenesis

of KIRP is very similar to LIHC and LUAD, indicating that treatments currently used for

those cancers may be able to be co-opted for KIRP.

This analysis is among the first attempts at using clinical correlations to compare can-

cers. Although we utilized the most up to date information possible, well established statis-

tical techniques, and obtained robust findings, there are many ways this type of analysis can

be improved. For example, it is now being recognized that cancer is not a single disease, but

rather a group of molecularly and clinically distinct diseases which share a tissue of origin.

Through a combination of genomic measurements, the TCGA Research Network has di-

vided individual cancers into four or five subtypes, for example GBM has been divided into

proneural, neural, classical, and mesenchymal subtypes (Brennan et al., 2013). Currently,

clear subtypes have not been found for all 16 of the cancers in this study, and for many

cancers dividing the cancers into the subtypes would result in a loss of power due to the

limited number of patients. However, as these classifications are refined and the number

of patient samples continues to grow, a natural extension of this study would be to repeat
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it for individual subtypes, which would potentially decrease the heterogeneity of the data.

In addition, treatment is one the largest confounding variables in survival analyses, but the

TCGA pharmacological data is currently incomplete making it impossible to incorporate

this information into the model. Despite these current limitations, this study has shown

that incorporating clinical information into pan-cancer analyses is capable of yielding

insights into cancer pathogenesis that have thus far been unappreciated by other methods.
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