Skip to main content
. 2016 Mar 31;10:128. doi: 10.3389/fnhum.2016.00128

Table 1.

Summary of classifiers compared.

Legend Figure 2 PCA components Nearest-Neighbor (NN) Nearest-Mean (NM) Distance metric Distance metric D(y, x, Σ) =
NNC NN Correlation distance 1-yTx||y||||x||
NNE NN Euclidean distance ||y-x||
NMC NM Correlation distance
NME NM Euclidean distance n(yn-μn)2
GNB NM norm. Euclidean distance n(yn-μn)2Σnn
NMC 8, 16, 32,… 8, 16, 32,… NM Correlation distance
NME 8, 16, 32,… 8, 16, 32,… NM Euclidean distance
GNB 8, 16, 32,… 8, 16, 32,… NM norm. Euclidean distance
LDA 8, 16, 32,… 8, 16, 32,… NM Mahalanobis distance (y-μ)TΣ-1(y-μ)

y, x: sample vectors of test and training data; yn, xn: components of y, x, μ: class mean (centroid) vector from training data; Σnn: diagonal elements of the covariance matrix Σ of the (pooled) training-data residuals (x−μ).