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Evaluation of multi-locus models for genome-wide
association studies: a case study in sugar beet

T Würschum1 and T Kraft2

Association mapping has become a widely applied genomic approach to dissect the genetic architecture of complex traits.
A major issue for association mapping is the need to control for the confounding effects of population structure, which is
commonly done by mixed models incorporating kinship information. In this case study, we employed experimental data from a
large sugar beet population to evaluate multi-locus models for association mapping. As in linkage mapping, markers are selected
as cofactors to control for population structure and genetic background variation. We compared different biometric models with
regard to important quantitative trait locus (QTL) mapping parameters like the false-positive rate, the QTL detection power and
the predictive power for the proportion of explained genotypic variance. Employing different approaches we show that the multi-
locus model, that is, incorporating cofactors, outperforms the other models, including the mixed model used as a reference
model. Thus, multi-locus models are an attractive alternative for association mapping to efficiently detect QTL for knowledge-
based breeding.
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INTRODUCTION

Association mapping has been developed by human geneticists but in
recent years has been adopted by plant geneticists and become an
increasingly popular genomic tool to dissect the genetic architecture of
complex traits in plants (Nordborg and Weigel, 2008; Hamblin et al.,
2011; Würschum, 2012). It has successfully been used to detect
quantitative trait loci (QTL) for agronomically important traits in
many crop species including maize (for example, Harjes et al., 2008),
wheat (for example, Breseghello and Sorrells, 2006; Reif et al., 2011a,
b), barley (for example, Wang et al., 2012; Berger et al., 2013) and rice
(for example, Huang et al., 2010). Traditional approaches for QTL
detection in plants are based on linkage mapping in bi-parental
populations. By contrast, association mapping is based on a diverse
panel of plants with varying degrees of relatedness.
An assumption underlying the concept of association mapping

studies is that the individuals are mutually independent, that is,
unrelated or equally related to each other (Sillanpää, 2011). This
assumption is, however, usually not met and diversity panels as
employed for association mapping are characterized by population
stratification and cryptic relatedness (Lander and Schork, 1994; Astle
and Balding, 2009; Sillanpää, 2011). Population stratification refers to
the origin of individuals from two or more source populations
whereas cryptic relatedness describes the different covariances between
individuals due to their relatedness. The presence of such population
structure must be regarded as confounding factor in association
mapping as it can result in the detection of false-positive QTL. To
control the false-positive rate, it is thus important to correct for these
confounding effects by an appropriate biometric approach (Price et al.,
2010; Lippert et al., 2011; Sillanpää, 2011; Tucker et al., 2014; Yang
et al., 2014). Association mapping in plants is nowadays commonly

done by mixed model analysis that allows to account for cryptic
relatedness by a random polygenic term modeled with a covariance
structure that is defined by a kinship matrix (Yu et al., 2006). In
addition, population stratification can be accounted for by structured
association, that is, incorporating cluster membership information as
covariate or by approaches that incorporate principal components as
covariates (Price et al., 2006; Stich et al., 2008). It must be noted that a
stringent correction for population structure will also reduce the QTL
detection power (Würschum et al., 2011). Consequently, an appro-
priate biometric model should provide a balance between an adequate
control of the false-positive rate and a high QTL detection power (that
is, low false-negative rate).
The control of the genetic background by a kinship matrix

incorporates information from all chromosomal regions covered by
markers, which with high-density genotyping means the entire
genome. Crucial for an adequate control are, however, the QTL
positions. As depicted schematically in Figure 1, the kinship estimates
based on genome-wide marker data will generally provide good
estimates for the similarity at the QTL positions. Nevertheless,
Figure 1 also illustrates that, albeit exaggerated to emphasize this
point, individuals may be highly similar based on genome-wide marker
data but possess different alleles at QTL loci (Ind 1–Ind 6) or vice versa
(Ind 1–Ind 7). In this example, the phenotypic covariance between
individuals cannot be predicted based on their genetic relatedness
estimated by genotypic information across the entire genome. In such
cases, considering the QTL positions might provide a better control of
the genetic background than a genome-wide kinship estimate.
A milestone in the development of linkage mapping methodology

was the use of cofactors (Jansen and Stam, 1994; Zeng, 1994). These
cofactors represent selected markers that are included in the analysis to

1University of Hohenheim, State Plant Breeding Institute, Stuttgart, Germany and 2Syngenta Seeds AB, Landskrona, Sweden
Correspondence: Dr T Würschum, State Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany.
E-mail: tobias.wuerschum@uni-hohenheim.de
Received 15 April 2014; revised 1 July 2014; accepted 26 August 2014; published online 29 October 2014

Heredity (2015) 114, 281–290
& 2015 Macmillan Publishers Limited All rights reserved 0018-067X/15
www.nature.com/hdy

http://dx.doi.org/10.1038/hdy.2014.98
mailto:tobias.wuerschum@uni-hohenheim.de
http://www.nature.com/hdy


increase the efficiency of QTL mapping as they control the genetic
background variation of QTL outside the chromosomal region under
consideration. In the context of association mapping, the incorpora-
tion of a single marker that is informative about ancestry (that is, the
source populations) as cofactor in the model has also been shown to
provide a certain control for population stratification (Wang et al.,
2005). Setakis et al. (2006) suggested the use of a much larger number
of null markers as regression covariates to eliminate most of the
variation due to population structure. In addition, multilocus models
have been shown to possess the potential to account for population
stratification, potentially as the variable selection process selects also
those markers that explain a part of the confounding variation (Iwata
et al., 2007; Pikkuhookana and Sillanpää, 2009; Kärkkäinen and
Sillanpää, 2012). Another benefit of simultaneously taking multiple

QTL into account in the model is that the QTL detection power may
also be enhanced (Iwata et al., 2007). Conceptually, the above-
mentioned approaches aimed at incorporating one or several markers
as covariates to control for the presence of population structure.
Segura et al. (2012) have recently applied the concept of cofactors to
association mapping. Their results suggested that multi-locus mixed
models, that is, models incorporating a kinship matrix and selected
cofactors, performed better with regard to the false-discovery rate and
the QTL detection power than a model incorporating only a kinship
matrix or only cofactors. A related approach has been proposed by
Rakitsch et al. (2013), however, using Lasso instead of stepwise
forward selection.
The aim of this study was to further evaluate the potential of multi-

locus models to control the genetic background variation in
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association mapping, especially with regard to important QTL para-
meters. In particular our objectives were to employ a large sugar beet
panel consisting of 924 lines to compare different models incorporat-
ing cofactors and standard approaches with regard to (1) the potential
to control the false-positive rate, (2) the QTL detection power, (3) the
predictive power for the proportion of explained genotypic variance
and (4) the bias in the estimation of genotypic variance explained by
detected QTL assessed by cross-validation.

MATERIALS AND METHODS

Plant materials, field experiments and molecular markers
The present study was based on a total of 924 diploid sugar beet (Beta vulgaris
L.) inbred lines from the breeding program of Syngenta Seeds AB (Sweden)
that have been described by Würschum et al. (2011). For all genotypes testcross
progenies were produced through crosses to a single-cross hybrid as tester. The
924 testcross progenies were evaluated in multi-location field trials for the
following traits: white sugar yield (t ha− 1), sugar content (%), root yield (RY, t
ha− 1), potassium (K, mM), sodium (Na, mM) and α-amino nitrogen (N, mM).
All lines were genotyped with 677 single-nucleotide polymorphism markers,

which provide a high coverage of the entire sugar beet genome (total map
length of 698 cM).

Phenotypic data analyses
Adjusted entry means (BLUEs) were calculated for each location as described
by Würschum et al. (2011). Principal coordinate analysis (Gower, 1966) based
on the modified Rogers’ distances of the individuals (Wright, 1978) was applied
to analyze associations among the 924 genotypes, employing the software
package Plabsoft (Maurer et al., 2008).

Association mapping
The mixed model for the association mapping approach was yijp=μ+ap+gi+lj
+eijp, where yijp is the adjusted entry mean of the ith sugar beet line at the jth
location carrying allele p, μ the intercept term, ap the allele substitution effect of
allele p, gi the genetic effect of the ith sugar beet line, lj the effect of the jth
location, and eijp the residual. The genotypic and the location effects, gi and lj,
were treated as random effects while the allele substitution effect ap was a fixed
effect. To control for potentially confounding effects of population structure,
different approaches were tested: models that included only principal coordi-
nates (PReml and PCor), a model with a kinship matrix, a model incorporating
cofactors, and models that in addition to the cofactors included the principal
coordinates or the kinship matrix.
The models PReml and PCor included different numbers of principal

coordinates, as described in Würschum et al. (2011). For the PReml model,
the Wald F statistic was used to identify the first principal coordinate that was
not significant any more as fixed effect at Po0.01. By contrast, the PCor model
included all principal coordinates that were found to be significantly associated
(Po0.01) with the adjusted entry means of the six traits.
For models including the kinship matrix K, the variance of the random

genetic effect was assumed to be Var gð Þ ¼ Ks2G, where s
2
G refers to the additive

genetic variance estimated by REML and K was a 924×924 matrix of kinship
coefficients that define the degree of genetic covariance between all pairs of
entries. This kinship matrix was not based on pedigree data as this would not
have allowed to differentiate genotypes derived from the same cross. Rather, it is
the realized relationship matrix estimated based on the genome-wide distributed
molecular markers. Following the suggestion of Bernardo (1993), we calculated
the kinship coefficient Kij between inbred lines i and j on the basis of marker data
as Kij=1+(Sij− 1)/(1−Tij), where Sij refers to the proportion of marker loci with
shared variants between entries i and j, and Tij is the average probability that a
variant from one parent of inbred i and a variant from one parent of inbred j are
alike in state, even if they are not identical by descent. The coefficient Tij was
separately estimated for each trait and model by REML, and resulting negative
kinship values between inbred lines were set to zero (Stich et al., 2008). The
kinship matrices obtained by this approach were invertible and consequently no
further modifications to make them positive definite were required.

For the models incorporating cofactors, the mixed model described above
was used for stepwise selection of the cofactors as described by Sillanpää and
Corander (2002) which has been applied for example by Bauer et al. (2009).
The first round of cofactor selection corresponds to the single-marker analysis.
The marker which is most significantly associated with the trait, based on the
P value from the Wald F statistic, is selected as first cofactor. In the next round,
this marker is included in the model as a fixed effect before the marker to be
tested, and all markers except the cofactor are tested again. This procedure is
repeated until a full marker scan yields no further markers that are significantly
associated with the trait. The final QTL scan includes all selected cofactors as
fixed effects, and all markers (including those selected as cofactors) are
sequentially tested for their association with the trait.
A genome-wide scan for marker–trait associations was done to detect main

effect QTL, correcting for multiple testing by a false-discovery rate of 0.20
(Benjamini and Hochberg, 1995; Kraakman et al., 2004). The total proportion
of genotypic variance (pG) explained by the detected QTL was obtained by a
simultaneous fit of the QTL in a linear model to obtain R2

adj. The ratio
pG ¼ R2

adj=h
2, where h2 refers to the heritability of the trait, then yielded pG

(Utz et al., 2000). For the Venn diagrams, marker–trait associations were
declared as identifying the same QTL if they fell within an arbitrarily defined
± 5 cM interval. All mixed model calculations were performed using the
software ASReml 3.0 (Gilmour et al., 2009).

Cross-validation
To obtain asymptotically unbiased estimates of the proportion of genotypic
variance that could be explained by the detected QTL, a cross-validation
approach was applied (Würschum and Kraft, 2014). We used fivefold cross-
validation which means that 80% of the genotypes were used as estimation set
(ES) for QTL detection employing the models described above. The remaining
20% of the genotypes constituted the test set (TS), which was used for
validation of the estimated QTL effects. Notably, validation was not done based
on the models used for QTL detection but based on a linear model: the
detected QTL were simultaneously fitted in a linear model to estimate their
effects in the ES that were subsequently used to predict the genotypic values of
the lines in the TS. Thus, for validation, the QTL effect estimates obtained from
the ES were used to predict the genotypic value of line j in TS QTS.ESj according
to QTS.ESj=XTSj βES, where XTSj is the vector of marker data of line j at the
identified QTL positions, and βES is the vector of genetic effects of these QTL
estimated as partial regression coefficients from a simultaneous fit in the ES
(Utz et al., 2000). Subsequently, the proportion of genotypic variance explained
by the QTL in the TS (pG-TS) was calculated as follows: for the lines in the TS,
the adjusted squared correlation coefficient R2

adj

� �
between their observed

phenotypic values and the predicted genotypic values QTS.ESj was obtained and
divided by the heritability of the trait. The results presented here are averaged
across 300 cross-validation runs. The difference in pG between the ES (pG-ES)
and the TS (pG-TS) was used to estimate the bias in the proportion of explained
genotypic variance and the relative bias was derived as 1− (pG-TS/pG-ES). The
QTL frequency distributions were obtained from the cross-validation runs.

Simulation study
The simulation study was done based on the genotypic data of the experimental
population. Ten markers were randomly sampled and defined as QTL. Each
QTL was assigned a QTL effect, which in a population with equal allele
frequencies would explain 10% of the variance. QTL mapping was then done
with the kinship matrix model and the cofactors model in 100 simulation runs.

RESULTS

A simple simulation study showed that the average probability of a
detected QTL being a true positive QTL was comparable for the
kinship matrix model and a model incorporating cofactors, thus
corroborating previous results from Segura et al. (2012) on the
competitiveness of multi-locus models. To further evaluate the
performance of models with cofactors in experimental data sets, we
employed a large panel of sugar beet lines that have been evaluated in
multi-location field trials for three yield-related traits (white sugar
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yield, WSY; sugar content, SC; root yield, RY) and three quality-
related traits (sodium content, Na; potassium content, K; α-amino
nitrogen content, N) (Würschum et al., 2011). For this data set, the
model incorporating a kinship matrix has been shown to perform well
with regard to the false-positive rate and generally provided a higher
QTL detection power as compared with models that in addition
included principal coordinates to control for population structure. In
this study, we compared eight biometric models: a simple model
without any correction for population structure, two models incor-
porating different numbers of principal coordinates (PReml and PCor),
the model with a kinship matrix (K matrix), a multi-locus model with
selected cofactors, models that in addition to the cofactors incorpo-
rated the principal coordinates (PReml or PCor) and a model
incorporating cofactors and the kinship matrix. For the latter models,
the cofactors were selected in the presence of the principal coordinates
or the kinship matrix, respectively. We first assessed the potential of
these models to control the false-positive rate. The plots of observed
versus expected − log10(P-values) indicated that with the exception of
the simple model and the models incorporating only principal
coordinates, the distributions closely followed the diagonal indicating
a good control of the population structure (Figure 1b). The model
with cofactors or cofactors in combination with principal coordinates
or kinship matrix showed a similar distribution as the reference model
incorporating the kinship matrix.
The models incorporating cofactors as well as cofactors and

principal coordinates generally detected a substantially higher number
of QTL as compared with the K matrix model while the model with
cofactors in addition to the K matrix identified approximately the
same number of QTL as the K matrix model (Table 1). The
proportion of genotypic variance (pG) explained by the detected
QTL followed this trend and was also higher for the model with
cofactors and cofactors with principal coordinates as compared with
the K matrix model. The distributions of the pG of the single QTL
indicated that the models with cofactors appeared to capture also QTL
with smaller effects as compared with the K matrix model (Figure 2).
We next assessed the association of the detected QTL with population
structure, which revealed no difference between the K matrix model
and the models incorporating cofactors (Figure 3, Supplementary
Figures S1 and S2). The QTL detected with the models incorporating
cofactors were generally equally associated with population structure
as the QTL from the K matrix model.
A comparison of the Manhattan plots as well as the Venn diagrams

revealed model-specific QTL but also few QTL that were detected across
all models, for example, the sodium content QTL on chromosome 5
(Figure 4). As visualized in the Manhattan plots, the associations
between QTL and the trait were generally weaker for the models
incorporating the kinship matrix as compared with the other models,
while the average − log10(P-values) were comparable between them. For
the model incorporating cofactors and the K matrix, only few cofactors
were selected and the Manhattan plots more closely resembled those of
the K matrix model as compared with the model with cofactors.
The QTL frequency distributions derived from fivefold cross-

validation revealed that for all models some QTL were identified in
a high number of runs, whereas other QTL were only identified with
low frequency (Figure 5). The fivefold cross-validation confirmed the
higher number of QTL detected by the models with cofactors and
cofactors with principal coordinates as compared with the models with
kinship matrix (Figure 6a). With regard to the cross-validated
proportion of genotypic variance explained by detected QTL (pG-TS),
the model incorporating cofactors outperformed the other models for
all traits. A substantially lower pG-TS was observed for the K matrix

model and the model with cofactors in combination with the K
matrix. The relative bias in the estimation of pG, that is, the difference
between pG-TS and pG-ES was, however, comparable for all models
across all traits.
As the cofactors model identified a substantially higher number of

QTL as compared with the K matrix model, we assessed the effect of
the number of QTL on the proportion of explained genotypic
variance. To this end, we randomly selected different numbers of
markers and estimated the pG-TS that can be explained by them
(Figure 6b). For all traits, we observed that the pG-TS increased with
increasing numbers of markers until it reached a maximum at
approximately 40 markers after which it slowly declined. This analysis
showed that for the markers identified as QTL in the ESs of the cross-
validation (QTLES) (Figure 6a), the pG-TS was substantially higher than
expected based on the same number of randomly sampled markers.
The difference in pG between the cofactors model and the K matrix
model was substantial (Figure 6c) but the above analysis indicated that
this cannot simply be attributed to the higher number of markers
selected as QTL with the cofactors model. We used the QTL identified
by the K matrix model and complemented them with randomly
selected markers to yield the same total number of QTL as identified
by the cofactors model. Nevertheless, the pG of the cofactors model

Table 1 Comparison of the number of detected main effect QTL and

the genotypic variance explained by these QTL (pG in %) for the

different models

Model WSY SC RY Na K N

Simple
QTL 523 503 549 468 441 200

pG NA NA NA NA NA NA

PReml

QTL 372 312 275 244 419 —

pG NA NA NA NA NA —

PCor

QTL 208 218 236 163 283 174

pG NA NA NA NA NA NA

K matrix
QTL 8 4 10 15 4 9

pG 73.4 38.1 63.1 58.7 12.8 10.4

Cofactors
QTL 31 24 15 25 26 6

pG 100 74.9 85.7 88.7 77.2 42.6

Cofactors+PReml

QTL 37 21 27 18 28 —

pG 100 75.3 75.2 66.4 63.9 —

Cofactors+PCor
QTL 26 25 25 16 15 20

pG 85.2 58.3 73.6 58.4 58.7 49.4

Cofactors+K matrix
QTL 7 6 16 6 4 1

pG 70.8 45.5 60.2 33.2 6.7 2.6

Abbreviations: K, potassium content; N, α-amino nitrogen content; Na, sodium content; RY, root
yield; SC, sugar content; WSY, white sugar yield.
Results are shown for six traits.
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was still considerably higher than that of the K matrix model QTL
supplemented with random markers (Figure 6c).
The cross-validated proportion of explained genotypic variance by

randomly sampled markers was surprisingly high which prompted us
to perform the same analysis but instead of with random markers with
subsets of markers that were chosen based on their association with the
traits in the simple model (Figure 6b,c). This revealed that the pG-TS
strongly depended on the association of the markers with the traits.
Only the subsets of markers with a certain association with the traits
(Po0.1) did show a pG-TS larger than zero and pG-TS increased with the

strength of the association of the markers with the traits as well as with
the number of markers in each subset. In addition, we assessed how
well these subsets of markers are still representative for the entire
genome by correlating the kinship matrix calculated with them to the
kinship matrix based on all markers (Figure 6b). This revealed that the
higher the number of sampled markers, the higher the correlation with
the reference kinship matrix. Apart from that there were only slight
differences between the subsets of markers and the subsets with a
higher number of markers to sample from yielded higher correlations,
probably due to the coverage of a higher proportion of the genome.
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DISCUSSION

The presence of population stratification and cryptic relatedness is a
major issue for association mapping approaches and must be
accounted for in the analysis, which is commonly achieved by the

incorporation of a kinship matrix in the biometric model. However, as
exemplified in Figure 1a this approach may have shortcomings under
certain scenarios. A major step in the development of QTL linkage
mapping methodology was the incorporation of cofactors to control
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the genetic background variation. Although association mapping
and QTL linkage mapping are different approaches, they share the
basic problem of controlling the genetic background, and thus may
profit from each others methodological achievements. While the
incorporation of a kinship matrix has been tested in QTL linkage
mapping and shown to provide good results (Bernardo, 2013),
the use of cofactors to control for population structure in association
mapping has been proposed (Segura et al., 2012) but not yet
intensively validated. In this study, we used a large sugar beet
population to evaluate the performance of the kinship matrix model
as a reference model for association mapping and models incorporat-
ing cofactors, in particular with regard to the estimation of important
QTL parameters.

Control of the false-positive rate
The plots of observed versus expected − log10(P-values) can be
employed to assess the overall control of the false-positive rate
(Figure 1b). In the absence of QTL, the P-values are expected to
follow a uniform distribution and thus the diagonal in the plot.
Deviations from the diagonal in the region of large expected − log10
(P-values) indicate the presence of QTL while stronger deviations
from the diagonal are characteristic for an inflated false-positive rate.
Taking the commonly used K matrix model as a reference, the models
employing cofactors alone as well as in combination with principal
coordinates or the K matrix provided an equally good control of
the population structure and thus the false-positive rate for all six
traits. It must be noted that these plots of observed versus expected
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− log10(P-values) do not rule out the presence of false-positive QTL
and the higher number of QTL detected by the cofactors model as
compared with the K matrix model might still be due to some false-
positive QTL. There are, however, no approaches to prove that an
identified QTL is a true-positive QTL. A marker associated with
population structure can be identified as QTL, albeit a false-positive
QTL, if it escapes the control for population structure by the biometric
model. Such a QTL can explain a proportion of the genotypic variance
and might even be confirmed by cross-validation if the population
structure it is associated with is maintained in the cross-validation
subsets. This, however, applies to all models and also QTL identified
by the K matrix model may be false-positive QTL. In general, we
should be aware that the results from a QTL mapping are statistical
results and any identified QTL should be thoroughly validated before
it is implemented in a marker-assisted selection program. Never-
theless, a number of approaches can be applied to substantiate the true
nature of identified QTL.
While it is not possible to unambiguously determine whether a QTL

is a true QTL, a strong association of the detected QTL with
population structure can be interpreted as an increased risk of them
being false positives and only identified due to their association with
population structure not accounted for by the biometric model. These
analyses revealed, however, no substantial difference between the
reference K matrix model and the model incorporating cofactors
(Figure 3, Supplementary Figures S1 and S2) indicating that the
cofactors model QTL are no more likely to be false-positive QTL than
the K matrix model QTL. Another measure for the quality of the
detected QTL is the bias in the proportion of explained genotypic
variance assessed by cross-validation. A high number of false-positive
QTL may result in a large bias as their estimated effects can negatively
affect the prediction in the independent validation set. The results
from the cross-validation revealed no difference in the relative bias
among the models for all traits (Figure 6a). Taken together, our results
illustrate that the models incorporating cofactors are equally well
suited to control for the presence of population structure and thus the
false-positive rate as the standard model incorporating a kinship
matrix. The different approaches employed here indicate that the QTL
identified by the cofactors model are no more likely to be false
positives as the QTL from the K matrix model serving as a reference
and consequently are as likely to be true-positive QTL.

QTL detection power
While the control of the false-positive rate is essential in association
mapping, appropriate biometric models should also maintain a high
QTL detection power, that is, provide a low false-negative rate. With
the exception of α-amino nitrogen for which fewer QTL were
detected, the cofactors model identified on average four times more
QTL than the K matrix model (Table 1). This trend was also
confirmed by the substantially higher number of QTL detected in
the ESs of the cross-validation approach (Figure 6a). Furthermore, the
QTL frequency distributions can be employed to assess how consis-
tently QTL are detected across ESs in cross-validation which revealed
no difference between the K matrix model and the cofactors model
(Figure 5). Interestingly, the K matrix model appeared to detect
mainly large effect QTL as opposed to the cofactors model, which also
detected QTL with smaller effects (Figure 2). The comparison of the
identified QTL showed some QTL overlapping between both models
(Figure 4), which were mainly major QTL explaining a high
proportion of genotypic variance. These QTL were also identified in
a high number of cross-validation runs for both models. The QTL
specific for the cofactors model mainly had a low pG and were detected

in fewer cross-validation runs. This however does not mean that they
are not true-positive QTL as it must be noted here that the QTL
detection power, especially for small effect QTL, strongly depends on
population size and they would probably be detected more consis-
tently in cross-validation given a larger mapping population. This
corroborates previous findings from association mapping in multiple
families, which also observed a lower QTL detection power of the K
matrix model as compared with models incorporating cofactors
(Würschum et al., 2012). In addition, the Manhattan plots showed
that the associations of the identified QTL with the trait were weaker
for the K matrix model than they were for the cofactors model while
the average P-values of all markers were comparable for both models
(Figure 4). This indicates that for a given significance threshold the K
matrix model appears to be more stringent toward QTL detection as
compared with the cofactors model. Thus, while both the K matrix
model and the cofactors model provide a similar control of the false-
positive rate, their mode of control appears to be different as reflected
by the differences in the QTL detection power. This may indicate an
overcorrection of the K matrix model resulting in the observed
reduction of the QTL detection power.

Predictive power for the proportion of explained genotypic variance
An important parameter for QTL mapping approaches is the
proportion of genotypic variance that can be explained by the detected
QTL. The cofactors model had a substantially higher predictive power
with regard to this parameter than the K matrix model which was
confirmed by cross-validation (Table 1, Figure 6a). For all six traits,
the model incorporating cofactors performed best with regard to the
cross-validated proportion of explained genotypic variance. The two
models which in addition included principal coordinates were slightly
inferior to the cofactors model while the model with cofactors and K
matrix performed comparable to the K matrix model. The superiority
of the cofactors model over the K matrix model is likely due to the
higher number of detected QTL which as described above are unlikely
to all be false-positives. Consistently, we found that complementing
the K matrix model QTL with random markers to total a similar
number of QTL as identified by the cofactors model did not increase
the proportion of explained genotypic variance to the same level as
that obtained with the cofactors model QTL (Figure 6c).
We observed a rather high proportion of explained genotypic

variance by randomly sampled markers (Figure 6b). This can be
explained by the small size of the sugar beet genome and the
quantitative nature of the studied traits. Consequently, most regions
of the genome will harbor QTL which increase the probability that a
marker in a QTL region is randomly selected. This was substantiated
by randomly sampling the same numbers from subsets of markers that
were made based on the association of the markers with the traits in
the simple model. Markers which with the simple model showed no
association with the trait are likely residing in chromosomal regions
without QTL and consequently we observed no substantial pG-TS with
these subsets even for 50 sampled markers. However, markers used in
a statistical model to estimate marker effects for prediction can also
capture additive genetic relationships between individuals and it has
been shown through simulation studies that even if markers are used
for prediction that are not in LD with QTL, the prediction accuracies
are non-zero (Habier et al., 2007). We used the correlation with the
reference kinship matrix calculated based on all markers to illustrate
that all marker subsets appear to represent the genome equally well
(Figure 6b). The observation that the markers from the non-associated
subsets did not enable prediction suggests that the exploitation of
additive genetic relationships has no or only a minor role for the
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observed prediction accuracies. The obtained cross-validated predic-
tion accuracies rather appear to rely on the identification of QTL and
precise estimation of their effects.
In summary, the cofactors model outperformed all other models,

including the K matrix model, with regard to the predictive power for
the proportion of explained genotypic variance, an essential parameter
for marker-assisted selection.

CONCLUSIONS

Segura et al. (2012) have recently shown that a mixed model that in
addition to a kinship matrix also included cofactors performed better
with regard to the false-discovery rate and the QTL detection power
than models incorporating either the kinship matrix or cofactors. By
contrast, our results suggest that a model incorporating cofactors alone
is equally well suited to control for population structure and
consequently the false-positive rate as the K matrix model, but
outperforms this reference model with regard to the QTL detection
power and the predictive power for the proportion of explained
genotypic variance. The model with cofactors in addition to the K
matrix was similar to the K matrix model and thus the additional
inclusion of cofactors offered no advantage. Our results suggest that
the lower QTL detection power and predictive power of the models
incorporating the K matrix may result from an overcorrection by this
model. While the kinship matrix provides a genome-wide control of
genetic kinship, cofactors control population structure but also the
genetic background variation, that is, the genetic noise produced by
other QTL, thus enabling a better evaluation of the marker under
consideration. This may be particularly powerful for traits with a
genetic architecture that in addition to small effect QTL also contains
several medium or large effect QTL. It must be noted, however, that
for traits for which the genetic architecture approaches a polygenic
model of many loci with small effects, the cofactors model will suffer
as no or only few cofactors can be selected and consequently no
adequate correction is provided. For such highly polygenic traits, a
model incorporating a kinship matrix might perform better. Thus, in
addition to population structure, the genetic architecture of the trait is
another important parameter affecting the performance of association
mapping models. This is also a possible reason for the different
performance of the models in our data set and that of Segura et al.
(2012), which illustrates that the optimum model for association
mapping strongly depends on the data set (for example, Kärkkäinen
and Sillanpää, 2012).
In combination with missing marker imputation, the cofactors

model as presented here could also be implemented as a linear model,
taking advantage of the regression framework, as used for QTL linkage
mapping, that is robust and computationally fast. In conclusion, our
results demonstrate that multi-locus models, that is, selection and
incorporation of cofactors, can be used in association mapping to
control for the presence of population structure as well as genetic
background variation. The multi-locus model provided a sufficient
control of the false-positive rate while maintaining a high QTL
detection power and consequently outperformed the kinship matrix
model, used as ‘gold standard’, with regard to the predictive power for
the proportion of explained genotypic variance. Thus, depending on
the population structure and the genetic architecture of the trait, the
use of multi-locus models for association mapping represents an
interesting and powerful alternative to the commonly used mixed
model approach with kinship information.
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