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Potential and limits to unravel the genetic architecture
and predict the variation of Fusarium head blight resistance
in European winter wheat (Triticum aestivum L.)

Y Jiang1, Y Zhao1, B Rodemann2, J Plieske3, S Kollers4, V Korzun4, E Ebmeyer4, O Argillier5, M Hinze6,
J Ling1, MS Röder1, MW Ganal3, MF Mette1 and JC Reif1

Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits.
The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the
factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat
(Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped
in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k
single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-
validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected
quantitative trait loci (QTLs). Using a random sample of markers not selected for marker–trait associations revealed only a slight
decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was
confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted
selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three
marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed.
Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be
implemented most cost-efficiently based on low- to medium-density SNP arrays.
Heredity (2015) 114, 318–326; doi:10.1038/hdy.2014.104; published online 12 November 2014

INTRODUCTION

Fusarium head blight (FHB) severely impacts wheat production
worldwide (Buerstmayr et al., 2009). FHB disease is mainly caused
by the fungal pathogens Fusarium graminearum and Fusarium
culmorum, which attack the spikes of wheat, leading to shriveled
and discolored kernels containing mycotoxins (Pestka and Smolinski,
2005). The European Union and other international legislative bodies
rigorously limit the tolerated mycotoxin content in wheat to be used as
food or feed, making infected wheat often unmarketable (Verstraete,
2008).
Breeding for FHB resistance can reduce the detrimental effects on

wheat grain yield and quality. However, reliable phenotypic selection
requires labor intensive and thus costly artificial inoculation to
guarantee homogeneous disease pressure in field trials (Miedaner
et al., 2002). As an alternative approach, marker-assisted selection has
been promoted in breeding for decreased FHB susceptibility in wheat
varieties (Miedaner et al., 2009). Large effect quantitative trait locus
(QTL) such as Fhb1 and Fhb5 were identified in crosses with the exotic
Sumai 3 and CM82036 donor lines (Becher et al., 2013). However,
despite worldwide efforts, the frequency of favorable Fhb1 and Fhb5

alleles is still low in European and US elite wheat germplasm (Sneller
et al., 2010; Bernardo et al., 2012; Miedaner and Korzun, 2012). One
reason is the long time need to reduce linkage drag associated with
marker-based introgression of Fhb1 or Fhb5 (Miedaner and Korzun,
2012). In contrast to Fhb1 and Fhb5, the effects of FHB resistance QTL
that were identified in adapted European or US wheat germplasm and
thus are not associated with linkage drag are only rather small
(Buerstmayr et al., 2008; Löffler et al., 2009; Sneller et al., 2010). This
so far hinders an efficient application of marker-assisted selection for
FHB resistance for QTL alleles identified in adapted elite germplasm.
Genomic selection has been suggested as an attractive alternative to

marker-assisted selection to predict phenotypes for traits that are
controlled by multiple genes with small effects (Meuwissen et al.,
2001). In contrast to marker-assisted selection, which predicts
genotypic values based only on the markers associated with significant
QTL detected in the genome-wide association mapping, genomic
selection simultaneously utilizes large numbers of markers distributed
across the genome to train a prediction model. The potential of
genomic selection for predicting FHB resistance has been studied
previously using 170 lines, which were phenotyped at the US
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cooperative FHB wheat nursery and genotyped with genome-wide
diversity array technology as well as with functional markers for FHB
resistance (Rutkoski et al., 2012). Despite the small number of
genotypes, these findings suggested that US cooperative FHB nursery
data can be useful for genomic selection.
Investigating the accuracy of prediction of genomic versus marker-

assisted selection in wheat revealed that genomic selection usually
increases accuracy, with some dependence on the trait under
consideration and the related linkage disequilibrium structure (Guo
et al., 2012; Rutkoski et al., 2012; Miedaner et al., 2013; Zhao et al.,
2013, 2014). One interesting finding was that for FHB resistance, as
for some other complex traits, the differences between the mean
accuracies of marker-assisted and genomic selection were surprisingly
small (Rutkoski et al., 2012). A genome-wide mapping study in a large
hybrid wheat population revealed that the accuracy of marker-assisted
selection is not only depending on functional knowledge of the genetic
architecture, but also profits from genetic relationships between
individuals in the training and the validation population (Gowda
et al., 2014). This could provide an explanation for the surprisingly
low differences in mean accuracy of genomic and marker-assisted
selection. Studies on the influence of relatedness versus functional
QTL information as driving forces of the accuracy of prediction of
marker-assisted selection, however, are lacking to the best of our
knowledge.
Marker systems that have been used for genome-wide fingerprinting

in wheat include restriction fragment length polymorphism (Chao
et al., 1989), amplified fragment length polymorphism (Barrett and
Kidwell, 1998), simple sequence repeat (SSR) markers (Röder et al.,
1998), diversity array technology (Akbari et al., 2006), single-
nucleotide polymorphism (SNP) markers (Cavanagh et al., 2013),
and most recently genotyping-by-sequencing approaches (Poland
et al., 2012). When Heslot et al. (2013) compared the accuracy of
prediction of genomic selection based on genotyping-by-sequencing
versus diversity array technology markers, they found advantages of
genomic selection based on genotyping-by-sequencing data, which
they interpreted to be mainly because of the higher number of
markers. The same study also unraveled a sampling bias for the used
diversity array technology markers. Würschum et al. (2013) compared
SNP and SSR markers in wheat and found only low congruency
among the genetic relatedness matrices estimated with the two marker
types. As genetic relatedness is one of the major forces exploited in
genomic selection, substantial differences are expected for the predic-
tion models trained with SNP or SSR markers in wheat.
In this study, we draw on published data derived from a diversity

panel consisting of 358 recent European winter wheat varieties plus 14
spring varieties, which had been phenotyped for FHB resistance and
genotyped with 732 SSR markers (Kollers et al., 2013a, b). The 372
varieties were additionally genotyped with 9k (Cavanagh et al., 2013)
and 90k SNP arrays (Wang et al., 2014a). Aiming to determine the
genetic architecture of FHB resistance in the European wheat panel,
we applied genome-wide association mapping, which detected the
highest number of QTL when the analysis was based on the high-
density 90k SNP data. However, when tested in fivefold cross-
validation, marker-assisted selection using the detected QTL allowed
only marginally higher accuracies of prediction than calculation based
on random samples of markers not selected for marker–trait associa-
tions. Consistent with a simulation approach, this suggested related-
ness as a main driver of the accuracy of prediction. We then set out to
test the accuracy of prediction of FHB resistance by genomic selection
and to identify the factors that determine accuracy. When three
genomic selection models were contrasted for the three marker data

sets, no significant differences in accuracies among marker platforms
and genomic selection models were observed. Marker density
impacted the accuracy of prediction only marginally, indicating that
genomic selection of FHB resistance can be implemented most cost-
efficiently based on low- to medium-density SNP arrays.

MATERIALS AND METHODS

Plant material and phenotypic data analyses
A total of 358 European winter wheat varieties plus 14 spring wheat varieties
were used in this study (Kollers et al., 2013a, b). The 372 wheat varieties were
evaluated for FHB resistance over 2 years in four environments in Germany in
trials with three replications. In all environments, lines were artificially spray
inoculated as described in detail by Kollers et al. (2013a). To compensate for
different flowering times of the wheat lines, inoculation was carried out at three
time points in order to inoculate each genotype at least once at full flowering.
As a measure of FHB resistance, the FHB score with a possible range from 0%
(most resistant) to 100% (most susceptible) was calculated as FHB score= FHB
incidence× FHB severity/100%, with FHB incidence representing the percen-
tage of infected spikes in a test plot and FHB severity representing the mean
percentage of infected area on infected spikes.
We performed a one-step phenotypic analysis using a linear mixed-model

with effects for genotype, environment, interaction of genotype by environ-
ment, and replication. To estimate variance components all effects were
assumed to be random. Broad-sense heritability (h2) was estimated on an
entry-mean basis as h2=σ2G/(σ2G+σ2GxE/E+σ2e/R*E), where E refers to the
number of environments, R is the number of replications, σ2GxE refers to
the variance of the genotype by environment interactions and σ2e refers to the
error variance. A second linear mixed model, in which genotypic effects were
assumed to be fixed and all other effects remained random, was used to get the
best linear unbiased estimates of FHB scores for each variety.

Genotypic data
The 372 varieties were genotyped with a 9k Infinium SNP array (Cavanagh
et al., 2013; Supplementary Table S1), a 90k Infinium SNP array (Wang et al.,
2014a) and 732 SSR markers resulting in 782 loci (Kollers et al., 2013a, b,
2014). In total, 78% of the SNP markers from the 9k array were also present on
the 90k SNP array.
We performed quality control for SNP markers to exclude those with rates of

missing values above 5%, rates of heterozygotes above 5% and allele frequencies
o0.05 or 40.95. For SSR markers, we excluded those with rates of missing
value above 10% and rates of heterozygotes above 5%. All varieties were
additionally genotyped for three predefined functional markers, the dwarfing
genes Rht-B1, Rht-D1 and the photoperiodism gene Ppd-D1 (Ellis et al., 2002;
Beales et al., 2007), which were used for association mapping.
We estimated Rogers’ distances for each pair of lines using the three different

marker sets. Correlations between each pair of distance matrices were calculated
and the Mantel test (Mantel, 1967) was applied. Principal component analyses
were performed for the three marker sets. To test for differences in the
proportion of variance explained by the individual principal components, we
implemented a bootstrap approach as outlined in detail elsewhere (Heslot et al.,
2013).

Association mapping and marker-assisted selection
We applied for each marker set a two-step association mapping scan. In the
first step, the best linear unbiased estimate for each genotype in each
environment was estimated assuming fixed genotype and random replication
effects using a linear mixed model. Then, in the second step, a standard linear
mixed-model approach (Yu et al., 2006) was used to perform a genome-wide
association mapping scan:

y ¼ mþ amþ Xg þ El þ e;

where y is the vector of best linear unbiased estimates for each genotype in each
environment, μ is the vector of common intercept term, m is the effect of the
marker being tested, α denotes the vector of scores of the marker, g is the vector
of genotype effects, l is the vector of environment effects, X and E are the
corresponding design matrices, and e is the residual term. In the model only
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the marker effect was assumed to be fixed and all other effects are random.
The population structure was considered by assuming gBN 0;Gs2G

� �
, where G

is twice the kinship matrix estimated as 1 minus the Rogers’ distances and s2G is
the genotypic variance estimated by a restricted maximum likelihood approach.
To check whether the model is able to adequately control the population or
family structure, a qq-plot was drawn based on the observed P-values and
expected P-values of all markers (Yu et al., 2006). Significance of marker–trait
associations was tested based on the Wald F statistic. The proportion of the
phenotypic variance explained by all QTLs was estimated using the R2 values
fitting a multiple regression (Utz et al., 2000), which ignores information of
relatedness. In addition, we implemented the method suggested by Sun et al.
(2010) and estimated the likelihood-ratio-based R2 values (R2LR), which takes
the information of relatedness into account.
Given the same threshold, there would be more marker–trait associations

detected in the 90k SNP array than in the 9k SNP array. However, the number
of informative markers is not necessarily higher in the 90k array because of
possible linkage disequilibrium. We defined a new statistic parameter called
effective number of marker–trait associations. To calculate it, we first
performed principal component analysis with the significant markers among
the 372 lines, and then extracted the minimal number of principal components
needed to portray 95% of the total variation.
SNP markers were scored as 2, 1 or 0 as the number of copies of a particular

allele. SSR markers were treated differently from SNP markers. For the SSR
markers, we avoided treating each allele as an individual locus. Instead, markers
were scored as a class (factor) indicating the presence of the different alleles.
However, SSR markers that could reliably be mapped to different genomic
positions were considered as separate loci.
The accuracy of prediction of marker-assisted selection was evaluated by

fivefold cross-validation with a total of 100 cross-validation runs. In each run,
four-fifths of the 372 wheat lines used in the study were assigned to the
estimation set, whereas the remaining one-fifth was assigned to the test set. We
then performed an association mapping scan for the estimation set and
recorded the detected QTLs. We applied three different significance thresholds
to study their influence on the accuracy of prediction. For the 9k SNP array and
SSR markers, we set the thresholds to Po0.01, 0.005 and 0.0001. For the 90k
SNP array, the thresholds were Po0.005, 0.001 and 0.0001. In each run of
cross-validation, a multiple linear regression model was fitted in the estimation
set with fixed effects of significant markers detected in the association mapping
scan. The non-cross-validated accuracy of prediction was determined within
the estimation set as square root of the coefficient of determination
standardized with the square root of the broad-sense heritability on an entry-
mean basis (Lande and Thompson, 1990). To determine the cross-validated
accuracy of prediction of marker-assisted selection, we estimated the effects for
the significant markers using the previous linear regression model fitted with
the estimation set and predicted the genotypic value of the lines in the test set.
Based on these values, we calculated the cross-validated accuracy of prediction
as the Pearson product-moment correlation between predicted and observed
genotypic values in the test set standardized with the square root of the broad-
sense heritability on an entry-mean basis. The average difference between non-
cross-validated and cross-validated accuracies of prediction was considered as
bias. To quantify the proportion of variance explained in the test set because of
the exploitation of relatedness, we calculated the prediction accuracy via the
same training and test sets as before but using randomly chosen markers. More
precisely, in each cross-validation run we randomly chose the same number of
markers as the number of QTLs observed in the association mapping scan in
the estimation set, estimated the effects for these randomly chosen markers
using the estimation set and predicted the genotypic value of the individuals in
the test set. The prediction accuracy in the test set was defined as above. The
procedure was repeated 1000 times.

Simulation study to examine the impact of relatedness on marker-
assisted selection
We investigated the influence of relatedness on the accuracy of prediction of the
phenotypic performance by conducting computer simulations based on the 9k
SNP array data of our study. We selected 30 SNP markers with a linkage
disequilibrium measured as r2 values of 0.1 or less to all other markers. We then

assumed that each of these 30 SNPs is perfectly linked to one QTL explaining
1.7% of the genotypic variance each, resulting in a total of 50%. We further
assumed a heritability of 0.90. The simulated data set was used to conduct
association mapping coupled with fivefold cross-validation with 100 runs, with
the accuracy of prediction defined as the Pearson product-moment correlation
between predicted and observed genotypic values in the test set standardized
with the square root of the heritability. The following four scenarios were
contrasted in order to separate the contributions of marker effects and
relatedness: (1) we assumed the 30 SNP markers to represent predefined
marker–trait associations and estimated their effects based on the estimation
set. The accuracy of prediction was validated in the test sets. (2) We assumed
that the 30 SNP markers were not predefined and performed an association
mapping scan in the estimation set to identify the 30 most significant marker–
trait associations. Effects of these marker–trait associations were estimated
based on the estimation set. The accuracy of prediction was evaluated in the test
set. (3) Randomly selected 30 SNP markers excluding those with significant
marker–trait associations were sampled and their effects were estimated in the
estimation set. The accuracy of prediction was then evaluated in the test set. (4)
Randomly selected 30 SNP markers were sampled among all SNPs and their
effects were estimated in the estimation set. The accuracy of prediction was
then evaluated in the test set.

Genomic selection
Three genomic selection models were applied in evaluating the prediction
accuracy. They are ridge regression best linear unbiased prediction (RR-BLUP;
Whittaker et al., 2000; Meuwissen et al., 2001), reproducing kernel Hilbert
space regression (RKHSR; Gianola and van Kaam, 2008) and Bayes-Cπ (Habier
et al., 2011). In the following, we give some descriptions about the three
models. For more details, we refer to the above references.
Let n be the number of genotypes, m be the number of markers and l be the

number of environments. The RR-BLUP model has the form y= 1nμ+Xg+e,
where y is the vector of best linear unbiased estimates of FHB scores for all
genotypes across environments, 1n denotes the vector of 1’s, μ is the overall
mean, g is the vector of marker effects (for SSR markers, allele effects), X is the
corresponding design matrix and e is the residual term.
In the model, we assumed that marker and residual effects are random and

follow the multivariate normal distribution gBN 0;s2g
� �

, eBNð0; s2e Þ, where
s2g ¼ s2G=m for SNP markers and s2e ¼ s2R=l. Here s2G and s2R are the genotypic
and residual variance components obtained in the mixed model in the
phenotypic data analysis. The penalty parameter is l ¼ s2R=l

� �
= s2G=m
� �

. For
SSR markers, we treated s2G=m as shared by all alleles in each marker, with each
allele effect having the same variance within each marker. Hence, the variances
of allele effects are different among markers.
The RKHSR model is of the form y=1nμ+Kα+e, where y, 1n, μ and e are the

same as in the RR-BLUP model, aBNð0;K�1s2aÞ is a vector of random effects
and K is the n×n symmetric positive-definite matrix whose entries are defined by

Kij ¼ exp
�ðxi � xjÞ0ðxi � xjÞ

h

� �
:

In the above formula, xi and xj are (m×1) vectors of marker indices for the
i-th and j-th genotype respectively, and h is a smoothing parameter. To
determine h and estimate s2a, we first chose a grid of values for h. For each
value of h, we estimated s2a using a restricted maximum likelihood approach
and then calculated the fitted values of the model. Finally we chose the value h
optimizing the generalized cross-validation statistic of the model.
The basic model of Bayes-Cπ is the same as RR-BLUP. However, all

parameters are treated as random variables in a Bayesian framework. First, we
defined the prior distributions as gBN 0;s2g

� �
, eBNð0; s2e Þ. The prior of μ is

a constant. The prior distribution of s2g is assumed to be zero with probability π
and a scaled inverse chi-squared distribution with probability (1− π). The
probability π is a random variable whose prior distribution is uniform on the
interval [0,1]. The prior distribution of s2e is also scaled inverse chi-squared.
A Gibbs sampler algorithm was then implemented to infer all the parameters in
the model. It was run for 10 000 cycles and the first 1000 cycles were discarded
as burn in. The samples of g from all later cycles were averaged to obtain
estimates of the marker effects.
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We evaluated the accuracy of prediction of the three genomic selection
models using a fivefold cross-validation across genotype scheme. The indivi-
duals were randomly divided into five subsets. Then four of the five subsets
were used as the estimation set and the genotypic values of the individuals in
the remaining test set were calculated. After the genotypic values of all
individuals were calculated, the means and standard errors of the prediction
accuracy were calculated using a bootstrap approach (Rutkoski et al., 2012).
The sampling of bootstrap was repeated 1000 times. The accuracy of prediction
was defined as the correlation between observed and predicted values divided
by the square root of the heritability rGS ¼ cor ypred ; yobs

� �
=h.

Moreover, we studied the effect of the number of markers on the prediction
accuracy of genomic breeding values through cross-validation. Therefore, we
varied in the cross-validation studies the number of markers from 5 to 90% of
markers available for each of the three marker sets (9k and 90k SNP, SSR). All
calculations were done using R and Asreml-R (Gilmour et al., 2006).

RESULTS

Population structure observed based on SSR markers, 9k SNP and
90 SNP array data
We observed a wide-range of pairwise Rogers’ distances for all three
marker systems used (Table 1). The coefficient of variation (CV) of
pairwise Rogers’ distances was similar for the 9k (CV= 0.17) and 90k
(CV= 0.15) SNP array data, both slightly exceeding that for the SSR
marker data (CV= 0.12). The distance matrices estimated with the
three different marker data sets were significantly (Po0.01) associated
with Pearson product-moment correlation coefficients of above 0.84.
The analysis of the population structure revealed the absence of

genetically distinct sub-populations for all three marker data sets
(Figure 1 and data not shown). We applied a bootstrapping procedure
and found significant (Po0.05) differences among the SSR and SNP
markers in terms of the explained proportion of molecular variation
for the first three principal components (Figure 2). This suggested that
the population structure estimated based on SSR markers is more
complex than that examined with SNP markers. The observed
differences among SSR and SNP markers may be attributed to the
biallelic (SNPs) and multiallelic (SSRs) nature of the two marker types,
respectively.

Artificial inoculation resulted in high-quality phenotypic data
Disease pressure was high as reflected by a broad range of FHB scores
among the panel of 372 European wheat inbred lines with a mean
value of 11% (Table 2). The distribution of FHB scores of the 358
winter wheat varieties was similar to that of the 14 spring wheat
varieties (data not shown), suggesting that combined analyses are not
afflicted by population stratification effects. The genetic variance of

FHB scores was significantly (Po0.01) larger than zero. Heritability
on the line mean basis was high and amounted to 91%. This clearly
underlines the high quality of the phenotyping data.
FHB resistance is often influenced by flowering time and plant

height. For our panel of 372 wheat lines, Kollers et al. (2013a)
estimated that flowering time explained only 5% of the variation in
FHB resistance. Consequently, we expect only minor relevance of
flowering time as masking effect on FHB resistance. Plant height had a
slightly higher predictive value explaining 12% of the variation of FHB
resistance. Consequently, it is likely that genes with large impact on
plant height have a role for genomics-based prediction of FHB
resistance.

Marker-assisted selection for FHB resistance
The functional markers for Ppd-D1 and Rht-D1, two major genes in
the regulation of flowering time and plant height in wheat, were
significantly (Po0.005) associated with FHB resistance
(Supplementary Table S2). This result could be expected considering
the association between FHB resistance and plant height as well as
heading time observed at the phenotypic level (Kollers et al., 2013a).
The marker–trait association for Rht-B1 was not significant (P40.05),
which could be explained by the low allele frequency of the mutant
allele detected in only 26 of the investigated varieties. Another
explanation may be given by the known difference in the effects of
Rht-B1 and Rht-D1 on FHB (Srinivasachary et al., 2009). The Rht-D1
gene significantly influences both type 1 resistance (resistance to initial
infection) and type 2 resistance (resistance to spread of the fungus
within the spike), whereas Rht-B1 has significant influence only on
type 1 resistance.
We performed more detailed further analyses for the two functional

genes Ppd-D1 and Rht-D1. Excluding the two markers and closely
linked ones from our association study led to a drop of cross-validated
prediction accuracy of 14–30% (depending on the threshold used). In
comparison, the cross-validated accuracy of prediction for the
corresponding random scenario avoiding sampling the two genes
dropped only by 4.2–17%. Thus, Ppd-D1 and Rht-D1 are functional in

Table 1 First- and second-degree statistics for RD among 372 wheat

lines estimated by three different sets of markers as well as Pearson

product-moment correlation coefficients among distance matrices

(rRD)

Parameters 9k SNP 90k SNP SSR

Mean 0.332 0.326 0.502

Range 0.002–0.504 0.002–0.486 0.052–0.667

CV (s.e.) 0.166 (0.004) 0.151 (0.001) 0.120 (0.005)

rRD
9k SNP 0.90a 0.84a

90k SNP 0.85a

Abbreviations: CV, coefficient of variation; RD, Rogers’ distances; SNP, single-nucleotide
polymorphism; SSR, simple sequence repeat.
aSignificant at the level of 0.01 in the Mantel test.

Figure 1 Heat map plot of the relationship measured as one minus Rogers’
distance based on the 90k SNP array data of the 372 wheat lines ordered
according to a hierarchical cluster analysis. The red segments indicate the
positions of the 14 spring varieties in the diversity panel. A full color version
of this figure is available at the Heredity journal online.
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determining FHB resistance. When solely Ppd-D1 and Rht-D1markers
were used in prediction, the cross-validated accuracy reached 0.50.
However, this result has to be considered with caution, as the
correlation between Rogers’ distances among the 372 lines estimated
based on all markers with the one based on solely Ppd-D1 and Rht-D1
amounted to 0.26 (significant at Po0.001). Thus, a large part of the
accuracy of prediction accuracy was due to relatedness.
In preparation for genome-wide association mapping, qq-plots

based on observed P-values and expected P-values were drawn
(Supplementary Figure S2). For all three marker data sets, the plots
were close to a diagonal line, confirming that the association mapping
model used in this study has adequately controlled false positives
because of population structure. A total of 4, 114 and 6 significant
(Po0.005) marker–trait associations were detected for the 9k SNP
array, 90k SNP array and SSR markers, respectively (Supplementary
Table S2). It is worth to note that the effective number of significant
marker–trait associations defined as the minimal number of principal
components needed to portray 95% of the variation of the significant
markers was 40 for the 90k SNP array, indicating that we indeed
detected more marker–trait associations than in the 9k SNP array. We
then compared the importance of different parameters for the
selection of potential functional markers for use in breeding or
map-based cloning activities. When we first tested the deviation of
P-values of marker–trait associations in fivefold cross-validation runs,
we observed substantial variation in P-values (Figure 3). P-values of
markers with minor allele frequencies were on average less robust than
those for markers with intermediate frequencies. Nevertheless, also
P-values for markers with intermediate frequencies were sometimes
substantially higher in the full data set in contrast to the estimation
sets. Thus, inspecting the distribution of the cross-validated P-values
in the estimation sets can be used as one criterion in the search of
robust candidates such as BS00043676_51 (coded as SNP_2144, see
Supplementary Figure S1) for map-based cloning.

Table 2 First- and second-degree statistics for 372 wheat lines

evaluated for FHB resistance (%) in four environments

Source Value

Mean and range 11.29 (0–59.5)

Genotypic variance 42.44a

G × E variance 9.82a

Residual variance 21.73a

Heritability (h2) 0.91

Abbreviation: FHB, Fusarium head blight.
The range of the FHB score is from 0% (the most resistant) to 100% (the most susceptible).
aSignificantly different from 0 at the level of 0.01.

Figure 2 Principal component analyses of the 372 wheat lines based on the
three marker sets 9k SNP array, 90k SNP array and SSR markers.
Proportions of variance explained by the first 10 principal components are
shown with confidence intervals obtained by 1000 bootstrap samples.

Figure 3 P-values of 20 most significant markers detected in the genome-wide association mapping scan (red triangles) and the distributions of P-values in
the 100 cross-validation runs. The gray boxes highlight markers that are not significant according to the median P-values of the cross-validation runs. The
polymorphic information content (PIC) of each marker is indicated in the bracket after the name of the marker. Linkage disequilibrium among markers is
given in Supplementary Figure S1. The names of markers in the 90k SNP chip were coded for better visibility. The original names of those markers are listed
in Supplementary Figure S1. A full color version of this figure is available at the Heredity journal online.

Genetic architecture of Fusarium head blight resistance
Y Jiang et al

322

Heredity



Second, we investigated the correspondence between the observed
P-values with two approaches to estimate the explained proportion of
phenotypic variation. The likelihood-ratio-based parameter R2

LR was
closely associated with the P-values in contrast to the R2 estimated
with multiple regressions (Figure 4). The strong deviation of P-values
of the association mapping scan from R2 values in a multiple
regression is not surprising, because the latter approach ignores
information on genetic relatedness. In contrast, the close association
between R2

LR and P-values of the association mapping scan is expected
as both are based on similar biometrical models considering genetic
relatedness. The different interpretations of R2 versus R2

LR have to be
considered while selecting markers for further use in marker-assisted
breeding or map-based cloning. If the distance matrix of functional
markers such as Rht-D1 is associated (r= 0.26; Po0.001) with the
overall genetic structure of the mapping population, then R2

LR will
underestimate the value of true functional markers.
Irrespective of the chosen significance thresholds, the analyses

revealed an overestimation of the accuracy of prediction of FHB
resistance for all three marker systems as is reflected by higher
accuracies observed for non-cross-validated compared with the
cross-validated value (Figure 5). This bias was less pronounced for
the 9k SNP array compared with the 90k SNP array and SSR marker
data analyses. Interestingly, the accuracy of prediction dropped down
only slightly when information on marker–trait associations was
ignored in cross-validation by using random samples of markers in
numbers corresponding to the average number of QTL detected. This
suggests that relatedness is the major driving force for the prediction
accuracy of marker-assisted selection.
To examine our findings on the role of relatedness in more detail,

we performed computer simulations in different scenarios. For all, we
postulated an involvement of 30 QTLs, each explaining ~ 1.7% of the
genotypic variation, summing up to 50% of the total genotypic
variation. In the first simulation scenario, we assumed that all SNPs

would have marker–trait associations in order to study how precise
QTL effects can be estimated in the underlying mapping population.
We observed an accuracy of prediction of 0.64 (Figure 6), which
corresponds to 75% of the genotypic variation explained by the 30
QTLs. In the second scenario, we assumed that marker–trait associa-
tions were unknown and had to be detected in a genome-wide
association mapping scan. Before calculating the prediction accuracy,
we checked the false-positive rate in the scan, which was 0% under the
threshold of Po0.001. Thus, population structure was adequately
controlled in our association mapping model. The accuracy of

Figure 4 The relationship between P-values and the proportion of the phenotypic variance explained by all QTLs estimated using multiple regressions (R2)
and a likelihood-ratio-based method (R2

LR).

Figure 5 Marker-assisted selection for FHB resistance based on 9k SNP
array, 90k SNP array and SSR markers. Accuracy of prediction was
determined non-cross-validated (white columns), cross-validated as the
Pearson product-moment correlation between predicted and observed
genotypic values in the test set (black columns) or cross-validated based on
a randomly selected set of markers (gray columns). The average number of
significant markers used for prediction is indicated in brackets.
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prediction decreased to 0.39 by approximately 40% compared with the
first scenario, which was nevertheless still surprisingly high taking into
consideration the population size and the effect size of each QTL. The
QTL detection rate per cross-validation run on average reached only
10%. Contrasting the second scenario with a third scenario using 30
SNP markers unlinked to marker–trait associations led to only
approximately 20% lower accuracy of prediction of 0.30. This clearly
underlines that genetic relatedness is a major driving force for
prediction accuracy in marker-assisted selection for complex traits in
the absence of QTL with large effect sizes. The fourth scenario was
similar to the third one except that we randomly sampled 30 SNPs out
of all SNPs, thus potentially selecting also marker–trait associations.
This scenario reflected the ‘random’ marker scenario of the experi-
mental data analyses. We observed only a marginal increase of the
accuracy of prediction to 0.31. Compared with the third scenario, this
suggested that the bias in the ‘random’ scenario of the experimental
data analysis by sampling all markers including also putative QTL can
be ignored.

Genomic selection of FHB resistance
The cross-validated accuracy of prediction of phenotypic performance
was at a significance threshold of Po0.005 on average 47% higher for
genomic than marker-assisted selection across 9k SNP array, 90k SNP
array and SSR marker-based data (Table 3 and Figure 5). Interestingly,
we observed no significant differences in the accuracies of prediction
between marker platforms. The mean accuracies of prediction also did
not differ significantly across the three genomic selection models RR-
BLUP, RKHSR and Bayes-Cπ. Re-sampling of reduced sets of markers
revealed that the accuracy of prediction was already reaching a plateau
at rather low marker densities (Figure 7).

DISCUSSION

Relatedness strongly impacts the cross-validated prediction
accuracy in association mapping studies
It has been suggested that high-throughput genome-wide association
mapping studies have the potential to simultaneously answer two
central questions in quantitative genetics, regarding (I) how many
genes influence a particular trait and (II) what the allele distributions
at these gene loci are (Wallace et al., 2013). For complex traits such as
FHB resistance that are determined by a rather large number of genes,
association mapping studies in wheat were often found to explain a
surprisingly high amount of the genetic variation (Miedaner et al.,
2011; Rutkoski et al., 2012; Kollers et al., 2013a). Our results are in
accordance with these previous findings, as the marker-assisted
selection approaches based on the three marker systems explained
up to 78% of the phenotypic variation for the total population when a
significance threshold of Po0.005 was applied. This number dropped
in fivefold cross-validation (Figure 5) as was expected from previous
results (Guo et al., 2012; Miedaner et al., 2013; Zhao et al., 2013;
Gowda et al., 2014; Würschum and Kraft, 2014). Nevertheless, the
cross-validated accuracy of prediction of FHB resistance is still high
and in most cases higher than using randomly sampled markers
(Figure 5), suggesting that genome-wide association mapping studies
indeed have the potential to at least partially answer the two central
questions on the genetic architecture of FHB resistance outlined above.
In order to maximize the information gained from a genome-wide

mapping study, an optimum significance threshold reflecting a balance

Figure 6 Simulation of marker-assisted selection based on 9k SNP array
data to separate contributions of marker effects and relatedness. The cross-
validated accuracy of prediction defined as the Pearson product-moment
correlation between predicted and observed genotypic values in the test set.
(1) We assumed the 30 SNP markers to represent predefined marker–trait
associations and estimated their effects based on the estimation set. (2) We
assumed that the 30 SNP markers were not predefined and performed an
association mapping scan in the estimation set to identify the 30 most
significant marker–trait associations. Effects of these marker–trait
associations were estimated based on the estimation set. (3) We randomly
selected 30 SNP markers excluding those with significant marker–trait
associations, and estimated their effects in the estimation set. (4) We
randomly selected 30 SNP markers among all SNPs and estimated their
effects in the estimation set.

Table 3 Means and s.e. of cross-validated prediction accuracies of

genomic selection for Fusarium head blight resistance of 372 wheat

lines based on the three different marker sets 9k SNP array, 90k SNP

array and SSR markers and the three different biometrical models

RR-BLUP, RKHSR and Bayes-Cπ

Marker set RR-BLUP RKHSR Bayes-Cπ

9K SNP 0.706±0.032 0.724±0.033 0.716±0.031

90K SNP 0.740±0.031 0.742±0.036 0.721±0.032

SSR 0.710±0.034 0.713±0.035 0.684±0.037

Abbreviations: RKHSR, reproducing Kernel Hilbert space regression; RR-BLUP, ridge regression
best linear unbiased prediction; SNP, single-nucleotide polymorphism; SSR, simple sequence
repeat.

Figure 7 Effect of the number of markers on the prediction accuracy of
genomic selection. The total number of markers used is indicated in
brackets.
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between false-discovery rate and power to detect QTL of interest needs
to be chosen (Moreau et al., 1998). Applying increasingly conservative
thresholds, we observed a monotonic decreasing trend in cross-
validated values of prediction accuracies, which suggests that within
the investigated range of P-values, increasing the power of QTL
detection with a more relaxed significance threshold was more relevant
than increasing the risk to detect false-positive QTL. However, a
further explanation for this is that relatedness also contributes to the
accuracy of prediction of marker-assisted selection. Every sequence
polymorphism, also the ones defining QTL, will contribute to
relatedness. This relatedness is then exploited in marker-assisted
selection. This has been observed earlier in a genome-wide mapping
study in a vast hybrid wheat population (Gowda et al., 2014) and in
two bi-parental rye populations (Wang et al., 2014b). Relatedness can
be portrayed more precisely with relaxed significance thresholds that
allow a high number of SNPs to be used in the prediction models.
We also sampled a random set of markers corresponding to the

number of QTL detected in the QTL mapping scans, and used this
random set of markers to predict the phenotypic performance by
applying fivefold cross-validation. Our finding that using significant
marker–trait associations did lead to only marginal higher accuracy of
prediction of FHB resistance in comparison with the random set of
markers was surprising (Figure 5). It clearly indicated that the
contribution of genetic relatedness to the prediction ability of
significant markers is far from negligible. To confirm that, we
compared the correlations between Rogers’ distances among the 372
lines estimated using full marker data set and that based on significant
markers detected in the association mapping scan. We observed
significant correlations that amounted to 0.28 (Po0.001) with only
4 significant SSR markers and 0.24 (Po0.001) with 21 significant SNP
markers in the 9k array. Hence, our analysis underlined that genetic
relatedness has a key role in the prediction of FHB resistance in
marker-assisted selection. We further substantiated our results apply-
ing simulations (Figure 6). As a consequence, relatedness must be
taken into account when interpreting the results on the genetic
architecture of complex traits in genome-wide association mapping
studies.

Influence of marker system and biometrical model on the accuracy
of prediction in genomic selection
The non-linear, semi-parametric RKHSR has the potential to capture
complex interactions better than RR-BLUP and Bayes-Cπ assuming
linear relationships between phenotype and genotype (de los Campos
et al., 2010). Previous genome-wide association mapping studies
suggested presence of epistatic effects for FHB resistance (Miedaner
et al., 2012). Thus, it is tempting to speculate that RKHSR outper-
forms RR-BLUP and Bayes-Cπ as observed in several previous
genomic selection studies (Crossa et al., 2010, 2011; de los Campos
et al., 2010; Heslot et al., 2012). In contrast to this expectation,
however, no significant differences among the accuracies of the three
applied genomic selection models were observed (Table 3). The
variation of the accuracy of prediction of the applied genomic
selection models across the different cross-validation scenarios also
did not differ. Consequently, RR-BLUP, the model with the lowest
requirement on computational time, seems to be the most promising
model for implementation of genomic selection for FHB resistance in
wheat breeding programs.
Genomic selection exploits to a large extent the relatedness among

the plant material in estimation and test sets to predict the phenotypic
performance. In total, 29% of the variation in Rogers’ distances
observed with the 90k SNP array cannot be explained with the SSR

marker data (Table 1). Thus, the choice of the marker set is expected
to impact the accuracy of genomic selection. In addition, the bootstrap
analyses of the principal component analyses revealed a more complex
population structure for the SSR as compared with the SNP arrays
(Figure 2). This slightly different picture is expected because of the
different nature of SNP versus SSR markers, with SSR markers
possessing a higher resolution to unravel the more recent population
history (Würschum et al., 2013). Consequently, it is surprising that we
did not observe differences in accuracies of prediction of the different
marker systems. One possible explanation for the similar accuracies of
prediction of the different marker systems is that the true relationship
matrix for the 372 wheat lines lies in between the two matrices
estimated with the SSR markers or the two SNP arrays. This would
lead to similar accuracies of prediction of SSR and SNP marker data.

CONCLUSIONS

Our cross-validation study clearly underlined that the accuracy of
prediction of marker-assisted selection is strongly influenced by
relatedness. This was confirmed applying computer simulations. Our
findings, however, also showed that relatedness can be better exploited
by applying genomic selection instead of marker-assisted selection.
Marker density had only a marginal impact on the prediction accuracy
of genomic selection. Consequently, genomic selection as an attractive
complementation to phenotypic selection of FHB resistance can be
most efficiently implemented based on low- to medium-density
marker panels.
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