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UGMDR: a unified conceptual framework for detection
of multifactor interactions underlying complex traits

X-Y Lou

Biological outcomes are governed by multiple genetic and environmental factors that act in concert. Determining multifactor
interactions is the primary topic of interest in recent genetics studies but presents enormous statistical and mathematical
challenges. The computationally efficient multifactor dimensionality reduction (MDR) approach has emerged as a promising tool
for meeting these challenges. On the other hand, complex traits are expressed in various forms and have different data
generation mechanisms that cannot be appropriately modeled by a dichotomous model; the subjects in a study may be recruited
according to its own analytical goals, research strategies and resources available, not only consisting of homogeneous unrelated
individuals. Although several modifications and extensions of MDR have in part addressed the practical problems, they are still
limited in statistical analyses of diverse phenotypes, multivariate phenotypes and correlated observations, correcting for potential
population stratification and unifying both unrelated and family samples into a more powerful analysis. I propose a
comprehensive statistical framework, referred as to unified generalized MDR (UGMDR), for systematic extension of MDR. The
proposed approach is quite versatile, not only allowing for covariate adjustment, being suitable for analyzing almost any trait
type, for example, binary, count, continuous, polytomous, ordinal, time-to-onset, multivariate and others, as well as combinations
of those, but also being applicable to various study designs, including homogeneous and admixed unrelated-subject and family
as well as mixtures of them. The proposed UGMDR offers an important addition to the arsenal of analytical tools for identifying
nonlinear multifactor interactions and unraveling the genetic architecture of complex traits.
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INTRODUCTION

Genes act together in interconnected networks to generate organismal
phenotypes under a developmental environment. The network’s
architecture strongly influences its overall behavior in ways that
cannot be predicted based on the parts alone and are filled with
nonintuitivity and nonlinearity (Nijhout, 2003). Consequently, the
presence of interactions among genes, gene–gene or epistatic interac-
tions, and between genes and environmental factors (broadly defined
as all non-genetic exposures), gene–environment interactions, is a rule
rather than an exception (Carlson et al., 2004). Pervasive interactions
usually result in a weak marginal correlation between a factor and the
phenotype, making the factor rather difficult to be tracked down
(Phillips, 2008). Traditional univariate hunting strategies have been
proved to bring only limited success, giving rise to the mystery of
missing heritability (Manolio et al., 2009). Failure to take account of
the context dependence also leads to a ‘flip-flop’ phenomenon in gene
discoveries (Lin et al., 2007). It remains a daunting task in genetics
fields to dissect genetic architecture of a complex biological trait.
It necessitates a multifactorial strategy to identify highly mutually

dependent factors underlying a trait. However, such a search has to
face a significant obstacle called ‘the curse of dimensionality’, a
problem caused by the exponential increase in volume of possible
interactions with the number of factors to consider (Moore and
Ritchie, 2004). The conventional regression methods, established by
the extension under the concept of univariate approaches, are hardly

appropriate for tackling ubiquitous yet elusive interactions because of
several problems: heavy (usually intractably) computational burden,
increased type I and II errors, and reduced robustness and potential
bias as a result of highly sparse data in a multifactorial model
(Carlborg and Haley, 2004). Novel approaches such as data mining
and machine learning have been explored for various kinds of
phenotypes (Cordell, 2009).
Among these methods emerged recently, data reduction approaches

(a constructive induction strategy), such as the multifactor dimension-
ality reduction (MDR) method (Ritchie et al., 2001) and the restricted
partition method (Culverhouse et al., 2004), are promising to address
the multidimensionality problems. A data-reduction strategy seeks for
a pattern in a combination of factors/attributes of interest that
maximizes the phenotypic variation it explains. It treats the joint
action as a whole, offering a solution that avoids the exponential
growth in the number of parameters as each new variable is added. It
also has a straightforward correspondence to the concept of the
phenotypic landscape that unifies biological, statistical genetics and
evolutionary theories (Wolf, 2002). Notably, the pioneering MDR
method has sustained its popularity in detection of interactions since
its launch.
There are, however, a few limitations in the original MDR and the

other data-reduction methods that may restrict their practical use,
including not allowing for covariates, being unable to accommodate
various kinds of phenotypes and being confined to specific study
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designs, such as unrelated samples. To overcome these weaknesses,
MDR has been extended to survival analysis (Gui et al., 2011;
Lee et al., 2012), case–control study of structured populations (Niu
et al., 2011), family study (Martin et al., 2006) and inclusion of
covariates (Lee et al., 2007). The existing generalized MDR (GMDR)
(Lou et al., 2007, 2008) is still limited in tackling diverse phenotypes
and samples, specifically being unable to analyze ordinal or poly-
tomous nominal data, survival data and multivariate phenotypes,
correct for population stratification in unrelateds and unify both
unrelated and family samples into a joint analysis. Recently, Chen et al.
(2014) developed a GMDR method for unifying analyses of both
unrelateds and families for dichotomous and continuous traits based
on an adjustment with the principal components on the phenotypes
but not on the markers. I propose a comprehensive and versatile
framework called unified GMDR (UGMDR) for extension of MDR
with applicability to continuous, dichotomous, polytomous, ordinal,
event-count, time-to-an-event and multivariate response variables and
various kinds of samples, including unrelated-subject, family and
admixed individual, as well as a better adjustment strategy for
population stratification.

MATERIALS AND METHODS

The original MDR method for a case–control study proceeds as follows (Ritchie
et al., 2001): each subject is allocated into a cell in a space spanned by a set of m
attributes of either genes or discrete environmental factors based on the
attribute observations; every nonempty cell in this m-dimensional space is
labeled as either ‘high-risk’ or ‘low-risk’ according to whether or not the ratio
of cases to controls in the cell is larger than a preset threshold; and then a new
dichotomous attribute (that is, a classification model) is formed by pooling the
high-risk cells into the high-risk group and the low-risk cells into the low-risk
group, thus changing the representation space of the data from originally higher
dimensions to one dimension. The new attribute is evaluated for its ability to
classify or predict the phenotype; accuracy, defined as the proportion of the
correct classifications (that is, cases in the high-risk group and controls in the
low-risk group), is a commonly used measure. Cross-validation and/or
permutation technique can be integrated into the above process of defining
the new attribute for evaluation of model, and the optimal subset(s) of features
can be selected in terms of the classification ability measured by accuracy or its
derivatives, such as P-value. In essence, MDR is a constructive induction
approach for feature subset selection (Michalski, 1983).
GMDR uses the same variable construction algorithm as in MDR. The

generalization lies in that GMDR substitutes a general statistic for affection status,
to classify the two divergent groups. Thereby, GMDR offers a flexible framework
for addressing diverse phenotypes, allowing for covariate adjustment, accom-
modating various study designs, controlling for cryptic population structure and
unifying analyses for unrelated and family samples. In a nutshell, the statistic of
individual i with respect to cell k in a given contingency table is expressed as the
product of its membership coefficient πik and residual ri, respectively, defined in
subsections ‘Residuals in the null model’ and ‘Membership coefficient’,

Sik ¼ ripik: ð2:1Þ
As summarized in Figure 1, the conceptual framework is composed of three

components: (1) to compute the residuals in a fitted model under the null
hypothesis; (2) to determine the membership coefficients of a subject belonging
to given cells in the space spanned by the putative factors; and (3) to implement
the data-reduction algorithm using the statistic as the classification criterion.
The three components are elaborated as follows.

Residuals in the null model
Assuming no effects of any target factors, the residuals are computed from an
appropriate statistical model corresponding to data type and plausible data-
generation mechanism. The residuals need not re-compute for different
combinations of target factors. To make the presentation self-contained, the
relevant statistical models and estimation theory are recapitulated in
Supplementary Appendix A.

Generalized linear model (GLM) for dichotomous, count or continuous phenotypes.
Many phenotypes can be represented by a GLM in the exponential family
of distributions (Nelder and Wedderburn, 1972). Supposing for a
response variable Y generated from a GLM, a set of explanatory variables
influence the outcome only through a linear function and the linear predictor
can be written as,

lðmÞ ¼ Z ¼ b0 þ xTt bt þ xTc bc ¼ xTb; ð2:2Þ

where μ= E(Y) is the expectation, l(·) is an invertible link function relating the
mean μ to the linear predictor η, β0 is the intercept, βt is the vector of the ‘target
effects’ that we wish to infer, xt is the target predictor variable vector that, in the
genetics context, codes for gene–gene and/or gene–environment interactions of
interest and is composed of the membership coefficients defined in Equation
(2.2), βc is the covariate effect vector and xc is the corresponding vector coding
for covariates. When the linear predictor η is the same as the location
parameter, also known as the canonical parameter, θ, l(·) is called the
canonical link.

The general procedure for model fitting is shown in Supplementary
Appendix A1. Briefly, the maximum likelihood estimator for β can be derived
by setting the score equal to zero and solving the resulting estimating equations,
and when necessary, the scale parameter ϕ can be estimated via the moments
method. In the GMDR, fit b̂0 and b̂c as well as f̂ when necessary to data under
the null hypothesis of no target effects (that is, βt= 0). Then, the score-
contributed residual can be computed by Equation (A1) in Supplementary
Appendix A. The statistic of an individual can be computed via Equation (2.1)
that is, in essence, the score residual in a GLM.

Quasi-likelihood model (QLM) for dichotomous, count or continuous phenotypes.
It is not always possible as in GLMs to establish a certain probability model for
data because of insufficient information on data nature, even if some of the data
features can be specified: how the mean is related to the explanatory variables
and how the variance of an observation is related to its mean. In such cases,
quasi-likelihood functions can be constructed that mimic proper likelihood
functions and have the same properties as log-likelihood function (McCullagh,
1983). A QLM only specifies the link function and the relationship between the
first two moments but does not necessarily specify the complete distribution of
the response variable and thus can model a broader class of phenotypes
than a GLM.

As shown in Supplementary Appendix A2, with a known function between
the expectation of a response variable and a set of predictor variables as in
equation (2.2), the quasi-score function can be formulated by differentiating
the quasi-likelihood function. The quasi-score behaves like the score in GLMs.
QLMs can be fitted using a straightforward extension of the algorithms used to
fit GLMs. As in GLMs, after the residual under the null hypothesis is computed
by Equation (A2) in Supplementary Appendix A, the statistic can be computed
via Equation (2.1).
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Figure 1 An overview of GMDR.
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Generalized estimating equations (GEEs) model for correlated observations and
multiple complex traits. In GLMs and QLMs, all observations are assumed to
be independent. This assumption does not necessarily hold true in a repeated
measurement experiment in which there are several measurements on the same
observational unit, a longitudinal study in which there are multiple observa-
tions over time and a clustered design in which subjects are not sampled
independently but in a group. Further, many complex disorders such as
asthma, mental disorders and drug addictions are generally a multifaceted
phenotype, measured by a set of scales and/or intermediate phenotypes that can
be correlated as the outputs of a metabolic network with many interwoven
pathways and governed by pleiotropic determinants. The GEE model can be
used to handle a GLM or QLM with a possible unknown correlation (Liang and
Zeger, 1986).

GEE model requires only to specify a functional form for relationships
between the outcome variable and the explanatory factors and between the
mean and the variance of the marginal distribution, avoiding the need to model
the multivariate distribution for data. Specifically, letting Y= (Y1, Y2, ⋯, YK)

T

be a group of response variables, suppose that (1) there is a link function
relating the expectation of Y, μ, to a linear predictor, l(μ)=η=Xβ, where β
consists of β0, βt and βc for the intercept, the target effects and the covariate
effects, respectively; and (2) the variance is a function of the mean, Var(Yj)= aj
(ϕj)Vj(μj), where ϕj is the scale parameter and aj(·) and Vj(·) are some known
functions. Parameters β(j) and ϕj, functions aj(·) and Vj(·) and regressor values
xj corresponding to component Yj may be either the same or different to
characterize GEE models for diverse scenarios.

Considering the data consisting of a number of strata that are uncorrelated
with each other, the estimating function is formed via a set of score or quasi-
score functions. The function behaves like the derivative of a log-likelihood.
The estimates of β can be found typically by solving the estimating equation.
Supplementary Appendix A3 outlines parameter estimation in GEE models.
After fitting the model under the null hypothesis, the residuals can be
computed via Equations (A3) or (A4) for different purposes. In the case where
the components of a stratum have the same target parameter βt whether or not
the predictor vectors of the components are distinct, the statistic of component
j in stratum i with respect to cell k in a given contingency table can be
computed by (treating as individual ij and cell k),

Sijk ¼ rijpijk; ð2:3Þ
where rij is the residual and πijk is the membership coefficient of component j in
stratum i pertaining to cell k; all rijs of stratum i (j= 1, 2,⋯, Ki) are the same in
a repeated measurement study; and all πijks of stratum i (j= 1, 2, ⋯, Ki) for cell
k are the same in a repeated measurement study and probably in a longitudinal
study. In application to multivariate phenotypes with a goal to detect the overall
and/or pleiotropic effects of genetic determinants, the statistic is considered as
(treating as individual i and cell jk),

Sijk ¼ rijpik; ð2:4Þ
where rij is the residual and πik is the membership coefficient denoting
individual i belonging to cell k in a given contingency table.

Multinomial logistic model for polytomous data. Many complex phenotypes of
medical importance such as disease severity are neither continuous nor binary
but in the form of multi-categories (either ordinal or nominal). To use the
traditional logit model, the common strategy is to collapse the categories into
two mutually exclusive groups or to limit the analysis to pairs of categories.
Such a strategy that ignores observations or combines categories will lead to loss
in efficiency.

The dichotomous logit model can be extended to a polytomy by employing
the multivariate logistic distribution (Begg and Gray, 1984). Considering a
multinomial response variable with K categories, denote the outcome Y= (Y1,
Y2, ⋯, YK)

T where Yj is an indicator variable taking value 1 if the observed
category is j and 0 otherwise. A polytomous logit model can be formed by
nominating one of the response categories as a baseline and then formulating a
set of K− 1 logits for all other categories relative to the baseline. Without loss of
generality, using category K as the baseline, the multinomial density has a
multivariate exponential form with a canonical link, ηj= l(μj)= xTβ(j), j= 1, 2,

⋯, K− 1, where β(j) consists of bðjÞ0 , bðjÞt and bðjÞc for the intercept, the target
effects and the covariate effects, respectively.

Solving the score equations leads to the maximum likelihood estimation. As
an alternative, the GEE approach in subsection ‘Generalized estimating
equations (GEEs) model for correlated observations and multiple complex
traits’ can also be used to fit the polytomous logit model (Sutradhar and
Kovacevic, 2000). Having fitted parameters to data under the null hypothesis
where bðjÞt ¼ 0ðj ¼ 1; 2;?;K � 1Þ, the residual can be calculated by Equation
(A5) in Supplementary Appendix A. As there are various sets of effect
parameters for response categories, it is proper to treat the residual as a
(K− 1)-dimensional vector as in the case of multivariate phenotype. The
statistic is computed by Equation (2.4).

The polytomous logistic model does not utilize the ordering of response
categories. It is applicable to analysis of both unordered and ordered categorical
outcomes.

Proportional odds model for ordinal data. Commonly, outcomes of interest are
measured in an ordinal scale, which have natural ordering of severity or
certainty (Ananth and Kleinbaum, 1997). Such response categories are no longer
purely qualitative or nominal, rather than ordered. Although the polytomous
logit model may be applied to ordinal data by assuming cardinality instead of
ordinality as well, it is often less desirable to ignore the ordering of categories.
One of the most popular models for ordinal responses is the proportional odds
model (Agresti, 1999). This model uses logits of cumulative probabilities, and
assumes an identical effect of the predictors for each cumulative probability,
thus being a more parsimonious model (McCullagh, 1980).

Consider an ordinal response consisting of K ordered categories in a
decreasing order of severity or certainty, denoted by 1, 2, ⋯, K. Define a new
response, Zj (j= 1, 2,⋯, K), taking value 1 if the observed category isp j and 0
otherwise. Then, the observation vector, Z= (Zj)=LY, and its expectation,
E(Z)= γ=Lμ, where Y and μ are defined in subsection ‘Multinomial logistic
model for polytomous data’ and L is a lower triangular matrix with element 1.
The proportional odds model with the restriction that only the intercepts of the
regression equations differ has the following representation, formed by K− 1
logit equations,

g ¼ log it gj
� �h i

¼ Ib0 � Xtbt � Xcbc ¼ Xb;

where I is a unit matrix.

Parameter estimation is relegated to Supplementary Appendix A5. Fisher’s
scoring or Newton–Raphson iterative procedure can be employed to find the
maximum likelihood estimates. The residual is calculated via Equation (A6) in
Supplementary Appendix A. As the set of effect parameters are the same for
different response categories, it is appropriate to treat the residual as a scalar.
The statistic can be computed via Equation (2.1).

Proportional hazards model for survival data. In many medical studies, an
outcome of interest is the time to an event, conventionally termed this kind of
phenotypes survival outcomes regardless of the nature of the event (Altman and
Bland, 1998). The distinguishing feature of survival data is that the observations
are probably censored because the observation period expires before the event
occurs or the subjects are lost to follow-up. Further, the survival times are more
unlikely to be normally distributed and the probability distribution of time is
difficult to model. Moreover, in addition to the status of event, the
ascertainment time and the time to event can also carry valuable information.
Thus the analysis of survival data requires specialized techniques that focus on
the distribution of survival times.

Recently, Gui et al. (2011) proposed the surv-MDR method for identifying
gene–gene interactions by using log-rank statistics instead of case–control ratios
within the MDR frame. Similar to the log-rank test, the surv-MDR method
does not allow for inclusion of other explanatory variables. It also involves
intensive computations for log-rank statistics of all possible factor combina-
tions. To overcome these drawbacks, Lee et al. (2012) developed the Cox-MDR
by incorporating the martingale residual into the GMDR framework. Both the
surv-MDR and the Cox-MDR, however, are suitable only for unrelated samples
from a homogeneous population; no population and family structures are
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permitted in samples. This article is to advance a unified frame for handling
diverse sources of survival data.

Hazard rate is a crucial parameter to characterize survival data. The best
known proportional hazards model assumes the hazard as a product of the
time-related baseline hazard and the covariates-related component. Typically in
such a model, the baseline hazard can ‘cancel out’, and the effects of predictor
variables can be estimated by maximizing the remaining partial likelihood, thus
being reported as hazard ratios. The Cox proportional hazards model with
stationary coefficients is used here to illustrate the proposed method. The
further extensions are straightforward, for example, to time-dependent effects
and to parametric proportional hazards models by specifying a baseline hazard
function.

The Cox proportional hazards model (Cox, 1972) is a semi-parametric
model where the dependence of time-to-event on explanatory variables is
precisely modeled, but the actual survival distribution, that is, the baseline
hazard function, is not specified and can take any form. The Cox model (Cox,
1972) is written as,

ln hðt; xÞ ¼ ln h0ðtÞ þ xTb;

where h(t, x) is the hazard rate at time t, h0(t) is the baseline hazard rate, β
consists of βt and βc for the target effects and the covariate effects, respectively,
and x is the predictor vector.

Using the score function and Hessian matrix in Supplementary Appendix A6
the partial likelihood can be maximized via the Newton–Raphson algorithm.
After fitting a null proportional hazards model assuming no target effects, the
residuals and the statistics can be computed via Equation (A7) in
Supplementary Appendix A and Equation (2.1), respectively.

Membership coefficient
Membership coefficients are used to characterize to which cell(s) a subject can
be allocated in the space spanned by a set of target factors and a fractional
membership is also allowed for adjusting population stratification. The
membership coefficient is applied for various study designs and purposes.
Family-based and unrelated subject-based designs are commonly used in
genetic studies. Sometimes, there are both kinds of data available in a single
study, and a combined analysis is required. The principle of transmission
disequilibrium is used here to formulate a unified framework for samples in
different designs. In sexual reproduction, corresponding to a real individual,
there exists a pseudo individual, called the nontransmitted sib, who is
composed of two gametids complementary, respectively, to the egg and the
sperm that unite to develop into the zygote. The nontransmitted sib can serve
as an internal control to test the null hypothesis (that is, equi-probable
transmission) when his/her genotype can be inferred from the genetic
information on the real individual and other pedigree member(s) (Lou et al.,
2008). When no genetic information on the pedigree member(s) is available
(for example, singletons or founders in pedigrees), the nontransmitted sib is
considered as being missing.

Unrelated samples without population stratification. For an unrelated subject
sampled from a homogeneous population, the membership coefficient is
defined as an indicator variable, πik, coded as 1 if subject i is allocated to cell
k and 0 otherwise.

Unrelated samples with population stratification. When the population homo-
geneity does not hold true, it is necessary to correct for the population structure
in unrelated samples in order to eliminate the potential spurious results (false
positives or false negatives). Principal components analysis (PCA) method has
been proved to be effective in correcting for population structure (Price et al.,
2006). PCA can be implanted into the GMDR framework to rule out the effects
of population stratification. The PCA-based procedure is summarized in
Supplementary Appendix B.

Let gGi be the coding genotypic value at loci of interest that takes 1 when the
multilocus genotype is G or 0 otherwise and ri be the residual, for unrelated
individual i. The genotypic values and the residual values can be adjusted with
the first L principal components, assuming the population structure can be
represented by them. Then the membership coefficient of individual i, πik, that
may be fractional, is ĝ Gi if the subject is allocated to cell k and ϕ(k)=G, where

ĝ Gi is adjusted values and ϕ(k) is an operation of taking the genotype for cell k
and 0 otherwise. When adjustment is applicable, using adjusted r̂ i in place of ri
computes the score statistic. In the previous report (Chen et al., 2014), an
adjustment strategy only on the phenotypes, but not on the genetic markers,
was used for correcting population structure. Although the resulting GMDR is
valid in the sense of controlling correct type I error rates, as shown in
Supplementary Appendix B, the current strategy of adjustment both on the
phenotypes and on the markers is more theoretically sound from the
perspective of statistical power.

Family samples. The principle of transmission is used to tackle pedigree
structure. As in (Lohmueller et al., 2003), it is algebraically equivalent to
contrasting the observed genotype with the control being from a population
with equal numbers of transmitted and nontransmitted genotypes. For a
nonfounder in a pedigree, the membership coefficient, πik, can be defined as 0.5
if subject i is allocated to but his nontransmitted sib is not allocated to cell k, 0
if neither or both of subject i and his nontransmitted sib are allocated to cell k
and − 0.5 otherwise. It is equivalent to that in the pedigree-based GMDR (Lou
et al., 2008) when only nonfounders are considered.

Pooled nonfounder and unrelated samples. When both family and unrelated
samples are available, founders in pedigrees and singletons can be considered as
unrelateds, while nonfounders can be treated as a contrast of transmission with
nontransmission. Similar to the literature (Lohmueller et al., 2003), both
nonfounders and unrelated samples can be pooled into a unified framework
through the adjusted or unadjusted membership coefficients. Usually, such a
strategy can boost statistical power substantially.

Once all membership coefficients are determined, they can serve as the
design or incidence matrix for the target effects in statistical models. The
statistic for the score residuals can be computed. The potential bias due to
population stratification and family structure can be guarded against through
the PCA adjustment technique and the principle of transmission equilibrium.

Multifactor dimensionality reduction algorithm
The statistic defined above reflects a putative association between the phenotype
(s) of interest and the target factor(s), offering a possibility for variable
construction to create new attributes that maximize the residual phenotypic
correlation. The dimensionality reduction process is illustrated with the c-fold
cross-validation procedure although such a cross-validation is not always
necessary as other techniques such as permutation testing may determine
whether a classification model is beyond chance. The MDR process is outlined
in Figure 2 and can be briefly described as follows.
In Step 1, the data are randomly split into c equal or nearly equal parts for

cross-validation (c= 10 in Figure 2). One subset is used as the testing set and
the remaining as the independent training set. Then, Steps 2 through 5 are run
for the training set to construct a new dichotomous attribute and Step 6 for the
testing set to evaluate the fitness of the new attribute(s). In Step 2, a subset of m
factors is selected from all M genetic and/or discrete environmental factors,
giving rise to a total of C(M,m) distinct subsets. In Step 3, each such subset
spans into an m-way contingency table and each component membership of a
subject corresponds to one cell in the table. The statistic value can be averaged

over each nonempty cell, for example, for cell k, Sk ¼
PN

i¼1 Sik/
PN

i¼1 pikj j.
Each nonempty cell is labeled either high-valued if its average statistic value is
larger than some threshold T or low-valued otherwise. In Step 4, a new
attribute is created by pooling high-valued and low-valued cells into two
contrasting (that is, high-valued and low-valued) groups, representing the
classification that best captures the correlation between this set of factors and
the phenotype(s). In Step 5, the classification accuracy can be assessed for each
contingency table. The best model(s) can be identified among all the possible
m-way contingency tables based on classification accuracy. In Step 6, the
independent testing set is used to evaluate the testing accuracy for the best
model among those with different dimensionalities identified in Step 5. If the
null hypothesis holds true and the classification model is formed purely by
chance, it will give a null testing accuracy of 0.5 as the testing set is independent
of the training set in which the model selection is involved. The significance test
can be implemented based on permutation testing, nonparametric sign testing
and asymptotical z-test of testing accuracy (Chen et al., 2014). The test
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procedures are briefly described as follows. The empirical P-value can be
determined according to how extreme the observed accuracy is in its null
distribution that is generated by permutations. Specifically, after analyzing a set
of real data, a certain number of sets of pseudo samples are generated by
randomly shuffling either the genotypes or the residual statistic among the real
samples so that any potential relationship of interest between the genotypes and
the phenotypes was disrupted in the sets of permuted samples. The same
analysis as in the real data set is applied to each set of pseudo samples, and the
resulting accuracies form the null distribution of accuracy. The P-value is then
estimated by the proportion of the pseudo samples resulting in larger accuracy
than the observed one in the real data set. When the null hypothesis holds true,
the testing accuracy will be equi-probably either ⩾ 0.5 (positive sign) or o0.5
(negative sign). The frequencies of positive and negative signs can be used to
evaluate P-values. When the sample size is sufficiently large, as the result of the
central limit theory, testing accuracy asymptotically has a normal distribution
and the P-value can be assessed from the z-test.
An open source GMDR package is developed in Java for implementing the

proposed methods. Software note is presented in Supplementary Appendix C.
The software is available at http://www.soph.uab.edu/ssg/software.

RESULTS

Real data analysis
To demonstrate the increased power, the UGMDR method was
applied to detect interactions among single-nucleotide polymorphisms
in three genes that were revealed responsible for smoking-related
phenotypes in the literature (Li et al., 2010; Chen et al., 2012): 8 in
CHRNA5, 12 in CHRNA3, and 20 in CHRNB4, for nicotine
dependence in the cohort for Study of Addiction: Genetics and
Environment (SAGE) composed of three subsamples: the Collabora-
tive Study on the Genetics of Alcoholism (COGA), the Collaborative
Study on the Genetics of Nicotine Dependence (COGEND), and the
Family Study of Cocaine Dependence (FSCD). A majority of the SAGE
are unrelated samples plus a few families. After quality control, a total

Figure 3 Manhattan plots for trigenic interactions. The dummy coordinates
along the x axis index the 1920 interactions while the negative logarithm of
the P-value associated with each interaction is displayed on the y axis.
SAGE represents the unified analysis for three subsamples: FSCD, COGEND,
and COGA, while the meta-analysis is implemented with the Fisher’s
combining P-value method for individual analyses of the three subsamples.
The brown triangle represented the interaction, rs6495306–rs8040868–
rs12905641, which had the highest P-value in the SAGE samples. A full
color version of this figure is available at the Heredity journal online.
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Figure 2 Summary of the steps involved in implementing GMDR method. A balanced case–control study with no covariate is assumed for illustrative purpose
in which a case has a score of 0.5 while a control does a score of −0.5. In step 3, bars represent hypothetical distributions of cases (left, dark shading) and
controls (right, light shading); the numbers not in parentheses above bars are the numbers of cases/controls and those in parentheses above bars are sums of
the scores. In steps 4 and 6, the numbers in parentheses are the average scores. Assuming an average score of 0.0 as the threshold, ‘high-risk’ cells are
indicated by dark shading, ‘low-risk’ cells by light shading and ‘empty’ cells by no shading. A full color version of this figure is available at the Heredity
journal online.
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of 2793 individuals, including 695 in the COGA, 1353 in the
COGEND, and 745 in the FSCD were used for analysis. Sex and age
were modeled as covariates for the Fagerström Test for Nicotine
Dependence score, and the five principal components were used to
correct the potential population stratification. As a contrast, the
benchmark meta-analysis was also conducted with the Fisher’s
combining P-value method. Figure 3 depicts the Manhattan plots on
the P-values of 1920 trigenic interactions from the two methods. As
compared with the meta-analysis, the unified strategy substantially
increased the statistical power, supporting that a pooled analysis is
likely more powerful than a meta-analysis of combining P-values from
individual analyses (Skol et al., 2006).

Simulation study
To further verify the power gain, a series of simulations was conducted
based on the genotypic data of the same set of SAGE samples analyzed
in the real case study. A trigenic (that is, three functional loci involved)
interaction model was used to simulate the phenotypic data, in which
the genotypes with three uppercase were set as a high-valued
phenotypic groups and the rest as a low-valued group. The phenotypic
value of an individual was generated under the following linear model,

yi ¼ b0 þ xib1 þ ei

where β0= 0 is the intercept, β1= 0.3 is the regression coefficient, xi is
the indicator variable taking 1 if the genotype belongs to the high-
valued group or taking 0 otherwise and ei~N(0,1) is the residual
error. One single-nucleotide polymorphism in each of the CHRNA5,
CHRNA3 and CHRNB4 genes was set as a causal variant, resulting in a
total of 1920 trigenic scenarios. The heritability varied from a trigenic
scenario to another because of different allelic frequencies and linkage
disequilibrium structures across these single-nucleotide polymorphism
loci, and the upper limit of the heritability was ~ 0.07 when the high-
valued group and the low-valued group were nearly equi-frequent. A
total of 200 simulations were run to evaluate the statistical power.
As in the real data analysis, the unified analysis and meta-analysis

were performed for simulated phenotypes. The P-value was deter-
mined by permutation testing with 1000 replicates in each simulation,
and statistical power was calculated at the significance level of 0.05.
Figure 4 displays the Manhattan plots on the statistical power of 1920
trigenic interactions from the two methods. As shown in Figure 4, the
averaged power of the unified analysis and the meta-analysis were
0.706 and 0.566, respectively, supporting a substantial power gain in
the unified analytical strategy.

DISCUSSION

No gene or environmental factor is an island, entire of itself, in
shaping a biological phenotype; every one is a piece of the interactive
genome and epigenome. Thus it is pivotal in unveiling genetic basis of
such polygenic and multifactorial traits to identify background-specific
factors among genes in combination with lifestyles and environmental
exposures. The MDR approach is one of the most prevailing methods
and has considerable appeal as a feasible strategy to attack the
formidable analytical and computational difficulties arising from the
tremendous volume of potential interactions. However, the existing
extensions of MDR are still underpowered in applications to diverse
types of phenotypes and various study designs. Complex traits take
various forms, for example, continuous in distribution such as height
and blood pressure, dichotomous such as affection status ‘well’ and
‘affected’, ordinal such as disease severity, meristic such as tumor
number, time-to-event such as survival time, multifaceted such as
substance addictions, or other, and each type of data may have its own

nature corresponding to the specific developing mechanism. MDR is
also subject to both false positives and false negatives in the presence
of population stratification and cryptic structure. MDR is not able to
handle family-based samples that are immune to confounding and
biasedness due to population heterogeneity and pooled unrelated and
family samples.
The proposed GMDR offers a conceptual framework for a

comprehensive extension of MDR to handling the breadth of data
types and addressing statistical issues associated with study design and
sampling scheme. The generalization is based on use of two flexible
coding schemes, one related to the attributes of interest and the other
related to the phenotypic outcome. The former takes care of the issues
on the study design and sample structure while the latter accounts for
different types and multiplicity of phenotypes. Different combinations
of coding schemes well serve for multi-purposes in genetic studies.
Although retaining the advantage of MDR being computationally
efficient, the proposed UGMDR can be used for many scenarios in
identifying multifactor interaction, not only allowing for covariate
adjustment, being suitable for the analysis of almost any type of
phenotypic data, for example, real-valued, binary-valued, categorical-
valued, count-valued, as well as combinations of those, but also being
applicable to various study designs, including unrelated-subject,
admixed sample and family as well as mixtures of them. The proposed
conceptual framework will pave the way toward more tailored and
effective analysis and broaden the use of GMDR approach. There is an
expanding list of applications of GMDR to a number of complex
disorders for detection of gene–gene and/or gene–environment
interactions since the appearance of GMDR (see an incomplete
summary of applications in Supplementary Appendix D). These
support that GMDR is having an increasingly important role in

Figure 4 Manhattan plots of power for trigenic interactions. The dummy
coordinates along the x axis index the 1920 interactions while the power
associated with each interaction is displayed on the y axis. SAGE represents
the unified analysis for three subsamples: FSCD, COGEND, and COGA, while
the meta-analysis is implemented with the Fisher’s combining P-value
method for individual analyses of the three subsamples. The reference line
in red is the average of power over the 1920 trigenic scenarios. A full color
version of this figure is available at the Heredity journal online.
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tracking down interacting contributors and mapping complex geno-
type–phenotype relationship.
The proposed UGMDR can promote statistical power, theoretically

arisen from the covariate adjustment to eliminate the noise attributable
to confounders, a unified analytical strategy to entertain unrelated and
related samples as well as those from structured populations, capturing
information from correlated phenotypes and better choice for model
fitting. The power gain has been extensively demonstrated in the real
data analyses and the simulations in the present study and other
reports (Lou et al., 2007, 2008; Chen et al., 2011, 2014).
In addition to the models presented in the Methods section, there are

many alternative statistical models used in genetics such as log-linear
model, probit model and complementary log-log model for dichot-
omous and polytomous phenotypes, continuous latent response model
and continuation-ratio model for ordinal phenotypes and parametric
survival model. It is straightforward to integrate these models into the
proposed GMDR framework for a more relevant choice of phenotypic
models. Moreover, the statistic reflecting a subject-specific contribution
to the component residual score/quasi-score is used as it is coherent
with the estimating equations. Several other types of residuals can be
also considered in GMDR, including response residual, working
residual, Pearson residual and deviance residual. The validity of GMDR
does not depend on the choice of residuals in the sense of correct type I
error rates, although the power may.
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