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Inferring the degree of incipient speciation in secondary
contact zones of closely related lineages of Palearctic green
toads (Bufo viridis subgroup)

C Dufresnes1, L Bonato2, N Novarini3, C Betto-Colliard1, N Perrin1 and M Stöck4

Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may
strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid
offspring 420 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is
poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising
several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers,
we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after
Plio-Pleistocene divergence (2.6 My, 3.3–1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low,
if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My,
2.5–1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential
mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more
than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by
differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with
strong introgression may develop when secondary contacts occur o2 My after divergence, whereas narrower zones with
restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing
lineages with different divergence times within the same radiation.
Heredity (2014) 113, 9–20; doi:10.1038/hdy.2014.26; published online 9 April 2014

INTRODUCTION

A central assumption in evolutionary biology is that reproductive
isolation accumulates with increasing genetic distance, ‘more likely as
a series of small steps than in a single genetic revolution’ (Barton and
Charlesworth, 1984), and thus will correlate with divergence time.
However, comparative research in natural systems often neglects the
time taken to speciate. In fact, diverging evolutionary lineages can be
observed anywhere in the continuum from near-panmixia to various
levels of increasing genetic isolation and distance, up to complete
reproductive isolation. The evolutionary processes combine subtle to
complex genomic changes through intrinsic mutation and drift (non-
adaptive, ‘neutral’), and/or selection caused by extrinsic pressures
(adaptive, ‘selective’; for example, Pereira and Wake, 2009), with
ecology playing a role in most (Sobel et al., 2010).

Hybridization has complex effects on the speciation processes as
recently reviewed by Abbott et al. (2013). One fascinating aspect for
evolutionary research is the formation of secondary hybrid zones, in
which ‘it is uncertain if barriers to gene flow will be strengthened or
broken down due to recombination and gene flow’ (Abbott et al.,
2013). While theory and empirical evidence suggest the latter is more
likely, strongly selected genomic regions might pose exceptions
(Abbott et al., 2013). Despite the potential stochastic occurrence of

single large-effect factors (cf. Barton and Charlesworth, 1984),
generally a gradual increase in reproductive isolation can be
expected over evolutionary time in allopatry. When such lineages
come early into secondary contact, with few if any ‘barrier loci’
(Abbott et al., 2013) evolved, gene flow may negate any incipient
speciation (for example, Seehausen et al., 2008). In more advanced
stages of allopatric speciation, gradual build up of many isolating
factors of small effect (for example, Barton and Charlesworth, 1984
and Abbott et al., 2013) and necessary associations among such
loci (Smadja and Butlin, 2011) can further contribute to reduce
gene flow between diverging gene pools (Abbott et al., 2013),
so that the involved genomes become less permeable and no longer
merge.

Considering the likely gradual build up of reproductive isolation
(for example, up to a certain ‘threshold above which observed
differentiation is significantly greater than expected by neutral
evolution alone’, Nosil and Feder, 2012), we suggest that in closely
related lineages with known divergence times (estimated from
paleogeographic scenarios or molecularly dated), the degree of natural
hybridization at secondary contacts may serve to better understand
the timing of onset and progression of speciation. Several amphibians,
particularly anurans, offer suitable species systems to test this
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assumption, but studies on incipient speciation in this group have
rarely been performed.

Meta-analyses of anuran (bufonid) breeding experiments suggest
that reproductive isolation (measured by reduction in hatching
success, number of larvae produced, and percentage of metamor-
phosis) increases with phylogenetic distance (Malone and Fontenot,
2008). It appears that very large time spans (48 My) are required to
achieve hybrid infertility or inviability. We recently discussed such
laboratory data on anurans (Colliard et al., 2010), with divergence
time estimates from immunological (Wilson et al., 1974), allozyme
(Sasa et al., 1998) and mitochondrial distances (Malone and
Fontenot, 2008), or mitochondrial and nuclear sequence data
(Sumida et al., 2007), showing that in the laboratory some anurans
may still produce viable F1 offspring after 420 My divergence, but
may develop ‘partial or complete hybrid inviability’ after 48 My
divergence (Sumida et al., 2007). However, under natural conditions,
several empirical studies on anurans suggest reproductive isolation to
have arisen after divergence initiated in the Pliocene (5.3–2.6 My) or
earlier, as best studied in parapatric Bombina (for example, Szymura,
1993, Kruuk et al., 1999, Vines et al., 2003 and Hofman et al., 2007),
assumed to have diverged between Upper Miocene and Lower
Pliocene (B. bombina–B. variegata, 8.96 (12.74–4.93) My or 6.48
(8.89–4.19) My, depending on two different calibration settings;
Pabijan et al., 2013). Similar time frames were estimated for single
hybrid systems of Australian and European hylid frogs (Hoskin et al.,
2005; Verardi et al., 2009), South-American dendrobatids (Simões
et al., 2012) and green toads (Colliard et al., 2010). By contrast, case
studies on clades of more recent, Pleistocene (2.5 My–11 Ky) diver-
gence (for example, 1.33 My in ranid frogs, Canestrelli and Nascetti,
2008; 1.69–0.33 My in bufonid toads, Sequeira et al., 2011) may form
‘wide hybrid zone(s) with a considerable genetic exchange between
both gene pools’ (Santucci et al., 1996), where reproductive barriers
could be weak or absent.

One challenge for testing an inverse relationship between diver-
gence time and natural hybridization in anuran amphibians in the
long term is the disconnected evidence from multiple (often) distantly
related species groups. The radiation of Palearctic green toads (Bufo
viridis subgroup) offers an excellent opportunity as it includes several
lineages that arose at different times and form secondary contact
zones. Specifically, the central and northeastern Mediterranean shores,
the Apennine Peninsula and Sicily, are inhabited by four lineages with
secondary contacts bringing together pairs with three different
Plio-Pleistocene divergence times (Stöck et al., 2006, 2008a, b). These
are Bufo variabilis (PALLAS, 1769) on the eastern Balkan Peninsula, in
Asia Minor, and northern Central Asia, B. viridis (LAURENTI 1768), on
the western Balkan Peninsula and in Central Europe, B. balearicus
(BOETTGER, 1880) on the Apennine Peninsula, Corsica, Sardinia and
the Balearic Islands, and finally B. siculus STÖCK, SICILIA, BELFIORE,
BUCKLEY, LO BRUTTO, LO VALVO, ARCULEO 2008, in Sicily.

We have recently shown that the Sicilian endemic B. siculus and the
Italian mainland-origin B. balearicus, with an estimated divergence
time of 2.7 My (4.9–1.1, Stöck et al., 2008a), form a narrow hybrid
zone east of Mt. Etna. Analysis of nuclear genomes showed very sharp
transition at the contact, with essentially no admixture (Colliard et al.,
2010). The highest pairwise FST values (40.50) were found between
populations from each side of this contact zone (only B16 km apart).
All individuals from these populations were assigned with maximum
likelihood (100%) to either B. siculus or B. balearicus, respectively.
MtDNA analyses evidenced some limited bidirectional introgression
overB40 km, with few cases of cyto-nuclear discordances, testifying
to rare events of past hybridization, but no wild-caught F1 individuals.

Altogether, this analysis suggested very low, if any, current gene flow,
as furthermore supported by several experimental crosses, showing
strong hybrid breakdown in F2 and backcrosses (Colliard et al., 2010).

In the present paper, we compare signatures of secondary contact
and introgression in Sicily with another contact zone in northeastern
Italy, where the same lineage B. balearicus meets another but more
recently diverged lineage, namely B. viridis. As we show, this contact
zone offers a striking contrast to the Sicily situation, with much wider
introgression both at nuclear and at mitochondrial levels, suggesting
that gene flow is barely constrained by intrinsic genomic incompat-
ibilities in these less differentiated lineages.

MATERIALS AND METHODS
Sampling
Samples (buccal swabs from adults and subadults; muscle from road kills and

scientific vouchers; tail tips from tadpoles) were collected during fieldwork

(2008–2010; Figure 1, Table 1; Supplementary Table S1), or came from

scientific collections (Museo di Storia Naturale di Venezia, MSNVE; Museo

Civico di Storia Naturale di Ferrara, MCSNFE). Overall, 316 specimens from

63 localities were available across the eastern Po Plain, between the northern

Apennine and the Venetian Pre-Alps. The majority of samples per population

(term used in the sense of ‘locality sample’ throughout this paper) came

from single sampling sites. As long as no potential barriers like rivers (see

Discussion) or highways (for example, Forman et al., 2003) were in between,

very few samples from neighboring sites were pooled (Supplementary

Table S1) if their distance was o2 km, corresponding to the lower limit of

the migration distance of green toads in a single year (2–10 km; Blab et al.,

1991). This seems justified because the Po Plain is otherwise almost free of

elevation differences and major natural barriers for amphibian movement.

For tadpoles, to avoid the collection of siblings, samples were taken from

unconnected ponds or, in rare instances, where it was not possible, very distant

positions within the same pond, and in such cases always from differently sized

cohorts.

DNA extraction and generation of genotype and sequence data
DNA was extracted using the Qiagen DNeasy kit. Twelve microsatellites,

polymorphic in both species, were amplified for 254 samples as described

(Colliard et al., 2010, Dufresnes et al., 2011). In 287 individuals, we sequenced

ca. 860 bp of the mitochondrial D-loop, according to Stöck et al. (2006). For

direct comparisons, only a fragment (591 bp) of this, also available from a

previous study (Stöck et al., 2008a), could be included to estimate the

divergence time. We also cloned and sequenced 580 bp of a sufficiently variable

nuclear intron of alpha-Tropomyosin (details: Stöck et al., 2008a), in 13

individuals from the contact zone and representatives of both species from

throughout their distribution ranges.

Sequence alignment and phylogenetic analyses
Sequences were edited in SEQUENCHER v. 4.9 (Gene Codes) and aligned using

SEAVIEW v.4.2.4 (Gouy et al., 2010). For the population analyses of mtDNA, we

used the program TCS v.1.21 (Clement et al., 2000). Phylogenetic analyses were

made using PHYML, v.2.4.5 as implemented in SEAVIEW (Gouy et al., 2010), and

HKYþG models (JMODELTEST v.0.1.1; Posada, 2008) for both mtDNA and

nuDNA. We choose a BioNJ as a starting tree, and used the combined subtree

pruning and regrafting plus nearest neighbor interchange options for tree

improvement; otherwise, default parameters were used (http://atgc.lirmm.fr/

phyml/ for details). We generated bootstrap values based on 1000 resampled

data sets.

Molecular dating
Molecular dating for major mitochondrial and nuclear lineages was performed

using BEAST v.1.6.1 (Drummond et al., 2007; http://beast.bio.ed.ac.uk/). To

obtain relative divergence time estimates for the most recent common ancestor

of B. viridis vs B. balearicus, we calibrated the previously obtained divergence

date for B. siculus vs B. boulengeri at 1.8 My (3.5–0.63, 95% highest posterior

density intervals, HPDIs; Stöck et al., 2008a), and the divergence of lineages
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boulengeri-siculus vs balearicus-viridis at 2.75 My (4.9–1.18) on a previously

used fragment of the mtDNA control region (591 bp; Stöck et al., 2008a),

assuming an uncorrelated lognormal relaxed molecular clock and a Yule

birthrate tree prior (constant speciation rate per lineage) as most appropriate

for species level divergences (Drummond et al., 2007). We applied the same

calibrations for the nuclear data set (alpha-Tropomyosin). We used an UPGMA

starting tree. Two independent analyses for 50 million generations were run

with tree sampling every 1000 generations. Convergence and stationarity were

checked in the program TRACER v.1.5. Results were combined in the BEAST

module LOGCOMBINER v.1.6.0. The ‘burn-in’ value was selected after visualizing

log likelihoods associated with the posterior distributions of trees in TRACER.

All trees generated before the log likelihood curve flattened out were discarded.

Demographic analyses
To calculate the distributions of observed and expected pairwise nucleotide

site differences between individual mtDNA haplotypes under a model of

demographic expansion (mismatch distributions), we used DNASP v.5 (Librado

and Rozas, 2009). We included only D-loop markers for which 874 bp 100%

readable sequences were available. Ages of expansions were calculated from the

parameter t, estimated by DNASP (t¼ 2mt, where m is the substitution rate and

t is the time since expansion), using a substitution rate for the D-loop of ca. 2%

per million years (Stöck et al., 2008a). In addition, we computed (DNASP) the

following tests of selective neutrality: Fu’s Fs, Tajima’s D and Ramos-Onsins

& Rozas’s R2 (Ramos-Onsins and Rozas, 2002 and references therein);

significances were tested by coalescent simulations (10 000 replicates).

Genotype data analyses
We used MICRO-CHECKER v.2.2.3 (Van Oosterhout et al., 2004) to exclude

genotyping errors due to null alleles, stuttering and allelic dropout. Using FSTAT

v.2.9.3 (Goudet, 1995), we tested for linkage disequilibrium between each pair

of loci in each population. Hardy–Weinberg equilibrium and pairwise

differentiation (FST) were assessed for populations with sufficient sample sizes

(nX5) in ARLEQUIN v.3.5 (Excoffier et al., 2005). For these populations, we also

computed allelic richness (A. r.) and observed heterozygosity (He) with FSTAT,

which performs a rarefication procedure to a common sample per locus.

Analyses of microsatellite genotypes provided no evidence for large allelic

dropout from any locus or population.

We used the Bayesian clustering algorithm STRUCTURE v.2.3 (Pritchard et al.,

2000) to assess interspecific and intraspecific genetic structures of populations

based on microsatellite genotypes. We applied the admixture model and

allowed for correlated allele frequencies between populations, as recommended

for cases of subtle population structure. A range of different cluster sizes (K)

from 1 to the number of localities per analysis was tested. Each run was

replicated 10 times with 105 iterations following a ‘burn-in’ period of 104. To

infer the number of clusters (K) that best fitted our data, we applied the DK

ad hoc statistics (Evanno et al., 2005).

In interspecific analyses, individuals were considered as hybrids if their

STRUCTURE assignment probability to either cluster (K¼ 2) was o0.9, with 90%

credible intervals (CIs) neither reaching 0 nor 1, or if they were assigned by

STRUCTURE to one clade (that is, nuclearly ‘pure’: 90% CI within 0.9 and 1) but

contained the mitochondrial haplotype of the other lineage (cyto-nuclear

Figure 1 Assignment to Bufo balearicus or B. viridis for all populations, based on Bayesian clustering (STRUCTURE) of 12 microsatellite genotypes.

Assignment per population (pie charts) corresponds to the average assignment probabilities of individuals at this location to each of the two groups. Pie size

proportional to sample size; bar plots from STRUCTURE to the right (K¼2); approximate Bronze Age paleohydrographic system (Piovan et al., 2010) in purple.
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discordance). Considering CIs allows distinguishing between individuals that

harbor alleles uninformative about the source taxa, and confidently assigned

hybrid or ‘pure’ individuals (for example, Sá-Pinto et al., 2010). To get insights

into the nature of hybrids, we analyzed our microsatellite data set with

NEWHYBRIDS v.1.1 (Anderson and Thompson, 2002), which computes the

Bayesian posterior probability of assignment of each individual to several

genotypic classes (parental, F1, F2, backcrosses). Runs were repeated with

various numbers of iterations. Several individuals were pre-assigned as

‘parents’ (using the z parameter), but we restricted this pre-assignment to

individuals whose assignment by STRUCTURE was higher than 0.99 (with 90%

confidence interval within 0.9 and 1), to discard potential highly backcrossed

individuals. We also conducted a principal component analysis using PCAGEN

v.2 (Goudet, 1999) on allelic frequencies to visualize population differentiation.

Significance of axes was tested by 10 000 randomizations of genotypes.

Geographic transects
We conducted additional STRUCTURE analyses along three transects evenly

distributed in the flat corridor delimited by the Pre-Alps in the northwest and

Adriatic Sea in the east, crossing the Po and Adige rivers (Figure 2; A�C),

and presumably corresponding to major, topographically possible migration

directions of the two toad lineages (transect A: locs. 1–4, 17, 25–26, 28, 47–52,

56; transect B: locs. 1–4, 18, 24, 27, 29–33, 43–46, 53–55; transect C: 5, 6, 8–15,

23, 34–40, 57–60). Along transects, the frequencies of alleles diagnostic for

B. balearicus (that is, absent from pure viridis populations) were calculated for

localities with nX4 (transect A: locs. 1–4, 17, 26, 28, 47, 50, 56; transect B: locs.

1–4, 30, 31, 43, 53–55; transect C: 5, 6, 8–15, 23, 34–40, 57–60). For two

transects (A, B; C was dismissed due to a sampling gap in its southern part),

we computed genetic clines for the mitochondrial marker and for micro-

satellites possessing species-specific alleles (that is, alleles that contributed to

Figure 2 Frequency of mitochondrial D-loop haplotypes for all populations (map), mismatch distributions of three mtDNA haplotype groups (corners), and

microsatellite genotypes (STRUCTURE assignment probabilities) along three transects A, B and C (barplots). Pie size is proportional to mtDNA sample size;

approximate Bronze Age paleohydrographic system (rivers, coast line; Piovan et al., 2010) in purple; relative locations of the modern Po and Adige Rivers in

blue (in purple for paleo-rivers) within bar plots; mismatch distributions: the dotted line shows the frequency distribution of the observed pairwise

differences; the solid line shows the frequency distribution of the expected pairwise differences under the sudden expansion model.

Table 2 Neutrality tests (mitochondrial DNA) for the B. viridis clade,

and the B. balearicus subclades 1A and 1B

n Fu’s Fs Tajima’s D Ramos-Onsins & Rozas’s R2

Bufo viridis 129 �6.8*** �1.7*** 0.35*

Bufo balearicus 1A 97 �11.9*** �2.3*** 0.34*

Bufo balearicus 1B 33 �3.1** �1.4* 0.08*

*P-valueo0.1, **P-valueo0.05, ***P-valueo0.001.
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cluster differences and for which frequencies, when narrowed down to a two-

allele system, were higher than 0.9 in pure populations of one species).

We further cross-checked the diagnostic value of alleles according to

coordinates on the first axis of a multiple correspondence analysis (GENETIX

v.4.05; Belkhir et al., 1998) of allelic frequencies of pure populations (Gay et al.,

2008). For each microsatellite, selected alleles were assigned to species-specific

compound alleles to reduce the variation to a two-allele system. Along each

transect, clines were fitted to allelic (microsatellites) and haplotype (mtDNA)

frequencies with the program CFIT v.7.0 (Gay et al., 2008), using a three-part

stepped cline model, comprising a central sigmoid and two exponential tails

(Szymura and Barton, 1986). We performed a likelihood search for a common

center (coincidence) and slope (concordance) of all clines (Gay et al., 2008),

reiterating each fit with different random seeds to check for convergence.

Models with different constraints (common center, common slope and both)

were successively fitted to all markers simultaneously, and likelihood-ratio tests

were performed to compare constrained with unconstrained clines. In the final

models, individual clines, for which the constrained models were rejected

(likelihood-ratio tests significant, 5% level), were fitted independently. For each

transect, we chose the final model with the lowest Akaike information

criterion (AICc).

To examine isolation by distance and the role of major rivers (Adige, Po) as

potential barriers to dispersal, we computed partial correlations between

pairwise FST, geographic distances and a matrix of the number of rivers

between populations (nX5) by partial Mantel tests (ARLEQUIN). The geographic

distance matrix was obtained using GEOGRAPHIC DISTANCE MATRIX GENERATOR

v.1.2.3 (Ersts, 2006). Significance of correlations was tested by a permutation

procedure (10 000 permutations).

RESULTS

Phylogenetic analyses and divergence times
The viridis mtDNA clade is homogenous across the study region, and
reveals a significant range expansion that occurred ca. 16 Ky ago
(Figure 2; Table 2). In contrast, the balearicus haplotypes form three
subclades (1a, 1b and 2; Figure 2; Supplementary Figure S1) with
some geographic structure. Two subclades show significant signs of
expansions (Figure 2; Table 2), dating back to 43 Ky ago for haplotype
1A (the most northern), but only 3 Ky for haplotype 1B (Figure 2).
Transects show a large region of co-occurrence and a smooth
transition in frequencies over 4100 km from balearicus to viridis
haplotypes. Networks for the major clades are provided with
maximum-likelihood bootstrap support in Supplementary Figure S1
(see also trees in Stöck et al., 2006, 2008a).

Nuclear sequences (alpha-Tropomyosin intron) also differentiate
two highly supported clades, corresponding to B. viridis and
B. balearicus, respectively (Figure 3). The B. balearicus clade is
widespread on the Apennine Peninsula, from the Po Plain (study
area) to southern Italy, and also found on Sardinia, the Balearic
Islands and easternmost Sicily. Interestingly, two individuals (Po16,
loc. 30; BV247, loc. 1, Figure 3) harbored an allele from balearicus as
well as viridis, demonstrating their nuclear hybridity.

Molecular dating of mitochondrial and nuclear sequence data
using BEAST suggests a Lower Pleistocene divergence of B. viridis and
B. balearicus. Estimates point to 1.9 My (95% HPDI: 2.5–1.3 My) for
the mtDNA D-loop, and 2.0 My (95% HPDI 3.04–1.09 My) for
intronic sequences of the nuclear Tropomyosin. The posterior pre-
dictions for the divergence time between B. siculus and B. balearicus
were very close to the mode assumed for the prior, and consistent
between mtDNA and nuDNA: namely 2.65 (95% HPDI: 3.3–1.9 My)
and 2.5 My (95% HPDI: 3.5–1.55 My) for the D-loop and the
Tropomyosin, respectively.

Population structure
In two populations, assigned to B. balearicus (pop. 50, 56), null alleles
were detected for locus C201 and corrections performed. We did not
find significant linkage disequilibrium in any population after
sequential Bonferroni corrections. All but one population (pop. 40,
B. balearicus) met Hardy–Weinberg expectations. Analyses of micro-
satellite genotypes using STRUCTURE clearly grouped individuals into
two clusters (K¼ 2, best fitting the whole data set), corresponding to
viridis and balearicus gene pools (Figure 1). Most individuals from the
northeastern part of the study area (north of Euganei hills and Venice;
pop. 1–4, 7–8, 12–13, 15) were assigned to pure viridis, whereas
individuals from south of the Po River were mainly assigned to pure
balearicus (pop. 50, 52, 54–56, 58). Individuals from localities in
between showed intermediate but robust probabilities of assignment
(that is, 90% CI neither reaching 0 nor 1), suggesting clear signs of
nuclear admixture (Figure 1).

Pairwise FST values revealed a clear pattern of isolation by distance,
as illustrated by the principal component analysis (Figure 4). The first
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Figure 3 Phylogenetic tree based on a nuclear sequence marker. Maximum

likelihood tree based on clones (‘cl’) obtained from 580 bp of an intron of

alpha-Tropomyosin. Sample number (sometimes several with same

haplotype and locality) is followed by locality information and population

number (as in Figure 1, Supplementary Table S1); individual ‘Po2’,

highlighted green, possessed a D-loop of one lineage but Tropomyosin

alleles from the opposite species; toads BV247 and Po16 each contained

an allele from balearicus and viridis, respectively.
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and only significant axis explaining 33.6% of the variance (P¼ 0.0001,
bootstrapping) opposes pure viridis (right) to pure balearicus (left)
populations. The transition in-between is continuous through the
contact zone. The populations farthest away from the contact zone
center display the highest FST values (0.53), whereas those at the
contact zone show little or no differentiation (FST 0.00–0.03;
Supplementary Table S2).

Isolation by distance was confirmed by Mantel tests; over the whole
data set, pairwise FST increased significantly with geographic distance
(44% of the variance explained, Po0.001). In addition, partial Mantel
tests revealed a significant effect of major rivers (Po and Adige).
Including the present-day riverbeds explained 61% of the variance, of
which 25% was due to geographic distance, and the remaining (36%)
to the number of large rivers (0, 1 or 2) separating populations.
Interestingly, very close and significant values are also obtained when
historical (Bronze Age), rather than present-day riverbeds are
included (Table 3).

Genetic diversity was quite uniform over the study region, although
values at the contact zone (He X0.60) were slightly higher than in the
pure viridis or balearicus range (Table 1).

Cline analyses
Seven microsatellites with at least one species-specific allele
(STRUCTURE) and the mitochondrial marker were selected for cline
analyses (Figure 5; Supplementary Table S3). The overall pattern
shows two extrinsic effects: that of geographic distances and that of
riverbeds (Figure 5). The proportion of balearicus-specific alleles
decreases smoothly with increasing latitude, with marked drops
corresponding approximately to the (historic beds of) Po and Adige
Rivers. No viridis-specific nuclear alleles were detected south of the Po
River. At both transects, the best models had a shared center and a
shared slope for six out of the seven nuclear markers (Supplementary
Table S4, AICc). The common center was located between the two
major rivers (20.0 km northeast of the Po for transect A and 20.5 km
for transect B; that is, near the historic Po River bed). Cline widths,
calculated as the inverse of the slope, were remarkably narrow (2.3 km
for transect A, 2.6 km for transect B; Supplementary Table S3), given
that B. viridis can migrate 2–10 km in a single year (Blab et al., 1991),
but flanked with large introgression tails, expanding northwards of
Adige into the viridis range (Figure 5). For the mtDNA, the shape of
the clines differed strongly from those of nuclear markers, with
centers of mtDNA clines located much further north (46.6 km
northeast of the Po for transect A; 96.4 km for transect B).

Additional evidence for wide asymmetric introgression
and backcrosses
Many cases of cyto-nuclear discordances were detected, with an
asymmetric distribution. Of the individuals confidently assigned to
viridis by nuclear markers (51 inds.), 29% possessed balearicus
mtDNA (15 inds.), including some from populations distant from
the center of the contact (pops. 3–4, 7–8; Figure 1). However, none of
those confidently assigned to balearicus (23 inds.) presented viridis
mtDNA (all possessed balearicus mtDNA). NEWHYBRIDS also identified
many hybrids at localities displaying admixture: populations 22–35
had 42% of F2 hybrids and 16% of backcrosses, while populations
37–48 had 59% F2 hybrids and 3–5% of backcrosses (Supplementary
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Figure 4 Principal component analysis on allelic frequencies including all populations, using PCAGEN (Goudet, 1999). Only the first axis is significant

(Po0.01); green/red coloration is proportional to average assignment probability to B. viridis/B. balearicus, respectively (see Figure 1).

Table 3 Partial correlations between FST, geographic distances and

number of large rivers between populations, analyzed by partial

Mantel tests

FST vs distance þ
current rivers

FST vs distance þ
paleo-rivers

FST vs

distance

Correlation FST�distance 0.67*** 0.67*** 0.67***

Correlation FST�rivers 0.72*** 0.66*** —

Determination of FST by distance 25% 31% 44%

Determination of FST by rivers 36% 29% —

Explained variance of FST 61% 60% 44%

Unexplained variance of FST 39% 40% 56%

Distinct tests considered the current major rivers or the paleo-river beds (Bronze Age, ca.
5 Kya, Piovan et al., 2010).
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Figure S2). No F1 hybrids were detected. The geographic distribution
of the Tropomyosin alleles also provides evidence for introgression,
with admixed populations mostly at the center of the contact zone.

DISCUSSION

Differences in the degree of introgression
As our results show, the Italian (B. balearicus) and the European green
toad (B. viridis) come into parapatry in the lower Po and Adige
drainages. Despite substantial mitochondrial and nuclear sequence
differentiation, accumulated over 1.9 My divergence (Figure 3 and
Supplementary Figure S1; see also Stöck et al., 2008a), these two
lineages show extensive hybridization in their secondary contact zone.

This situation contrasts strikingly with the one documented in Sicily
between B. balearicus and B. siculus, two lineages with a deeper
divergence (2.6 My). MtDNA introgression was limited to 40 km in
Sicily (Colliard et al., 2010), but stretches up to 130 km in the
Po Plain (Figure 2). Similarly, nuclear admixture (that is, 410%
assignment probability to the alternative taxon) was almost absent in
Sicily, but expands over 40–50 km in the balearicus/viridis contact
zone (Figure 1).

This contrast is reflected in the patterns of isolation by distance: in
Sicily, pairwise FST reach their highest values (0.50) between the
siculus and balearicus populations immediately adjacent to the contact
zone (only B16 km apart), but increase smoothly with geographic
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distance in the balearicus/viridis contact zone, reaching their max-
imum (FST¼ 0.53) between the most distant populations. Genetic
diversity shows a similar contrast: in Sicily, He values were the lowest
at the balearicus/siculus contact zone (Colliard et al., 2010), but were
largely uniform over the Po Plain, with slightly higher values
(HeX0.60) at the viridis/balearicus contact zone. This and the
advanced degree of hybridization in the Po Plain zone, including
many individuals exhibiting a cyto-nuclear discordance, suggest that
no major pre- and post-zygotic reproductive barriers limit the gene
flow between both species, although detailed bioacoustic studies and
examination of Haldane effects (see below) are still missing. Taken
together, all population genetics parameters reveal two clearly
dissimilar situations: introgression under secondary contacts is still
extensive between B. balearicus and B. viridis (1.9 (2.5–1.3) My
divergence) but virtually absent between B. balearicus and B. siculus
(2.6 (3.3–1.9) My divergence).

Although our results are well in line with the relatively few
scattered studies in anurans in which the relationship between
divergence time and natural degree of hybridization has been studied
(see Introduction), the two hybrid zones compared so far do not
allow us to draw general conclusions yet. Nevertheless, we note
that narrow hybrid zones form in secondary contacts of lineages
with Pliocene divergence (43 My; Szymura, 1993; Hofman et al.,
2007, Verardi et al., 2009, Simões et al., 2012), whereas secondary
contacts of lineages with more recent Plio-Pleistocene divergence
(2.5 My–11 Kya) result in wide(r) hybrid zones with considerable
genetic exchange between both gene pools (Santucci et al., 1996,
Canestrelli and Nascetti, 2008; Sequeira et al., 2011). While few if any
comparative studies within the same radiation have been undertaken
in anurans, among urodeles, the Ensatina ring species complex
presents a famous system, in which ‘extant intermediate stages of
terminal forms have a nearly continuous range, offering replicated
interactions at several stages of divergence’ (Pereira and Wake, 2009).
Reproductive isolation in Ensatina ‘is likely to be a byproduct of
processes that contribute to overall [nuclear] genetic divergence,
such as time in geographic isolation’ (Pereira et al., 2011), and
recent evidence supports ‘asymmetric reproductive isolation between
terminal forms’ of the ring (Devitt et al., 2011).

Beyond divergence time, additional specificities of the two green
toad hybrid zones may contribute to the observed introgression
differences. Island populations, like that of B. siculus, can experience
increased drift and selection and thus accelerated rates of molecular
evolution (for example, Woolfit and Bromham, 2005), which could
enhance the incompatibility between B. balearicus and B. siculus gene
pools. Moreover, we assume that the time since toad lineages came
first into secondary contact in Sicily dates at least back to low sea
levels during the Last Glacial Maximum (20 Kya; allowing B.
balearicus to colonize Sicily). Signatures of population expansion
(43–3 Kya; see above; and river translocations, see below) point to
similar, and thus an overlapping time period for the first contact
between B. balearicus and B. viridis in the Po Plain. Therefore, the age
of contact zones would hardly explain the contrasting introgression
patterns.

Hybrid zone movement, geography and colonization history
Gene flow in the Po Plain seems barely restricted by genomic
incompatibilities and rather reflects the history of colonization and
dispersal effects as well as fine scale influences of geographic features.

Interestingly, the clines of nuclear markers are asymmetric, with a
long tail on the viridis side (Figure 3). A tail of clines of unlinked
neutral markers with apparent unidirectional introgression across the

zone (Moran, 1981, cited in Buggs, 2007) is typical of a ‘moving
hybrid zone’. Barton and Hewitt (1985) suggested that evidence for
hybrid zone movement should be based on many neutral alleles,
introgressing in the same direction. This is the case for balearicus
microsatellite alleles and suggests zone movement as partial explana-
tion for the introgression asymmetry and tail at the viridis side of the
zone in the Po Plain. This evidence is further supported by an
asymmetry of nuDNA vs mtDNA introgression, again with a tail at
the viridis side of the hybrid zone. Contrasting with most nuclear
markers that share a common center (20 km north of the modern Po
river), the mtDNA cline centers much further north (Figure 5), in line
with the patterns of cyto-nuclear discordances: we found many
balearicus mtDNAs in a viridis nuclear background but not the
reverse.

Beyond introgression asymmetry and isolation by distance, the
balearicus/viridis hybrid zone reflects signatures of physical barriers
(Figures 2 and 5) to gene flow imposed by the current and historic
position of large rivers (Po and Adige). Partial Mantel-tests could
assign 36% of the variance in pairwise FST to the number of main (or
historic) rivers (0, 1 or 2), separating populations. Cline analyses also
showed marked drops in the frequency of balearicus specific alleles,
corresponding to these main, current or historic, rivers (Figure 5).
Intriguingly, all hybrid populations showing nuclear introgression
(Figure 1) are almost perfectly delimitated to the south by the modern
Po river, and to the northeast by the ancient Po and Adige riverbeds,
which, some 5 Kya, were situated 20–40 km farther northeast than
today (pink in Figures 1 and 2; Piovan et al., 2010). As the Mantel
tests supported, the locations of historical riverbeds were only slightly
less important than modern ones in accounting for present day
population structure (Table 3).

All of this suggests the following scenario for this secondary contact
zone. Since the Last Glacial Maximum (LGM), the Po Plain vegetation
changed from a natural steppe-like to a densely forested habitat. This
was followed some 4–5 Ky ago by human deforestation (Amorosi,
2004), which presumably facilitated green toad range expansion. The
region was progressively colonized by balearicus and viridis from their
glacial refugia, respectively, south and east of the study area. The
contact zone might have been established at the Po and/or Adige
paleo-riverbeds, which at this time posed faster running river barriers
than today (Fontana et al., 2008), with relatively few, but some
migrants overcoming them (for example, balearicus may have
expanded further north). A 20–40 km southward river translocation
into the modern beds then trapped some balearicus populations
northeast of the present-day Po River. Continuous gene flow from
incoming northern viridis colonizers progressively diluted local
balearicus genomes, now isolated by the Po River from the main
range of balearicus. The long tail of mtDNA and nuDNA clines in the
north might be a result of this influx of viridis genes into the hybrid
zone, explicable as ‘balearicus dilution’ itself and/or by truly south-
westwards migrating viridis populations. In any case, this dynamic,
apparently ongoing process exhibits the clear features of a ‘moving
hybrid zone’. In accordance with a scenario of ‘balearicus dilution’,
NEWHYBRIDS analyses did not detect any pure balearicus or F1

genotypes north of the Po River, suggesting instead an advanced
state of nuclear admixture (‘F2’ and backcrosses; Supplementary
Figure S2). The absence of ‘F1’ suggests that the individuals labeled
‘F2’ might in fact also represent backcrosses. Most importantly, these
data imply that at least some hybrids become adult and fertile, as they
successfully reproduce. This scenario would suggest a minimal age of
5 Ky for the hybrid zone (that is, 42500 generations, assuming a
2-year generation time; Stöck et al., 2008b), as inferred from the last
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major Po River translocation. The further reaching mitochondrial
than nuclear introgression of balearicus into a viridis background
might further indicate a smaller female effective size in viridis
invaders, possibly stemming from sex differences in dispersal ability.
A male-biased dispersal is expected to increase male effective
population size at the front of invading populations, favoring mtDNA
over nuclear introgression (Petit and Excoffier, 2009). We do not
know whether slight size differences between the green toad lineages
involved (Stöck et al., 2008b) could skew the mating preferences as,
for example, observed within B. bufo for differently sized males
(Davies and Halliday, 1979). Another alternative that could explain
nuDNA/mtDNA introgression asymmetry might stem from sex
differences in hybrid fitness or fecundity. Haldane’s rule predicts
lower hybrid fitness in the heterogametic sex. Several taxa of the
B. viridis group, probably including B. balearicus, have a male
heterogametic (XY) sex determination system (Stöck et al., 2013).
Although Haldane’s rule might be less prevalent in taxa with
homomorphic sex chromosomes, too few non-model hybrid
organisms have been studied, especially in natural systems of
amphibians, to exclude this scenario (Schilthuizen et al., 2011).

CONCLUSIONS

Our data show a striking contrast in the degree of hybridization
between closely related green toad lineages in secondary contact. In
comparison with the system of greater divergence (Sicily, 2.6 My), the
North-Italian green toad hybrid zone (of lineages diverged 1.9 My)
exhibits a much wider and asymmetric introgression at nuclear and
mitochondrial levels. Gene flow in this apparently dynamic system
seems mainly constrained by local geographic barriers (large rivers),
and less by intrinsic genomic incompatibilities. All of this suggests
that reproductive isolation during incipient speciation increases
gradually with the time of divergence (up to a certain threshold; for
example, Nosil and Feder, 2012), and might be driven by complex
genomic processes rather than single speciation genes. Our study
represents a contribution toward comparative studies of secondary
contacts of closely related anuran lineages. It is well in line with
scattered research in other anuran species, with examples among
discoglossoids, bufonids, hylids and ranids, but has the advantage to
compare lineages with different divergence times from the same
radiation.
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