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Abstract

Primary Angle Closure Glaucoma (PACG) is
one of the most common types of glaucoma
affecting over 15 million individuals world-
wide. Family history and ethnicity are strongly
associated with the development of the dis-
ease, suggesting that one or more genetic
factors contribute to PACG. Although strictly
heritable disease-causing mutations have not
been identified, a number of recent association
studies have pointed out genetic factors that
appear to contribute to an individual’s risk to
develop PACG. In addition, genetic factors
have been identified that modify PACG endo-
phenotypes for example, axial length. Herein
we review the current literature on this
important topic.
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Introduction

The two most common types of clinically
characterized glaucoma in humans include
primary open-angle (POAG) and angle closure
glaucoma (PACG).1 Both types of glaucoma are
characterized by progressive and irreversible
destruction of optic nerve axons and
degeneration of the retinal ganglion cells
(RGCs), frequently in association with increased
intraocular pressure (IOP).2 There are 15.7
million cases of PACG reported worldwide.3,4

The number of PACG cases is projected to reach
21 million by 2020, and it is estimated that 5.3
million bilaterally will be blind from this
condition.5 The proportion of all cases suffering
from significant loss of vision is three times
higher in PACG than POAG,6,7 as considerable
damage can occur before symptoms become
apparent. The absence of symptoms makes the
condition difficult to detect and results in a large
proportion of cases being undiagnosed and
untreated, which significantly increases the risk
for blindness in affected individuals.

Etiology and classification criteria

PACG is characterized by apposition of the
peripheral iris against the trabecular meshwork
resulting in obstruction of aqueous outflow by
closure of an already narrow angle of the
anterior chamber.8 Whether this structural
alteration solely results in angle closure depends
on (1) the baseline position of the iris, (2) the size
of the pressure differential, and (3) iris–lens
channel resistance.9,10 The PACG eye typically
displays a shallow anterior chamber, increased
thickness of the lens, hyperopic refractive error,
and short axial length.
In the human eye, the two most commonly

identified mechanisms of PACG are pupillary
block and plateau iris. In pupillary block, the iris
dilates and moves posteriorly at the pupillary
margin, which increases resistance to the flow of
aqueous humor into the anterior chamber.11 This
in turn creates a relative pressure gradient
between the posterior and anterior chambers,
and causes the iris to move forward and contact
the trabecular meshwork, which results in
aqueous blockage at (i) the pupillary margin and
(ii) the trabecular meshwork. Repeated episodes
of pupillary block may produce intermittent
symptoms of acutely elevated IOP and lead to
the development of peripheral anterior
synechiae.
Plateau iris occurs when the ciliary body is

positioned anteriorly or rotated forward causing
the anterior displacement of the peripheral iris in
relation to the trabecular meshwork, thus
leading to an occluded iridocorneal angle. The
condition is characterized by a relatively deep
central anterior chamber and a centrally flat iris
plane12 causing either persistent angle closure or
angle closure and elevated IOP upon pupillary
dilation despite a patent laser iridotomy. Recent
studies have shown that plateau iris, once
thought to be a rare cause of angle closure, may
be present in up to a third of cases of PACG.13
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The identification of genetic loci associated with PACG
has suffered in part from the loose and indiscriminant use
of the term PACG to indicate disease. This is problematic
as the term is frequently used without specifying the
presence of optic neuropathy, and it does not denote a
quantifiable risk of vision loss.14 Furthermore, the
diagnosis of the disease has been primarily based on the
detection of presenting symptoms despite their absence in
the chronic form of the disease.15–19 In an effort to address
these issues, several attempts at classifying the subtypes
of PACG have been made over the years.20–23 In
epidemiological studies of PACG the presence of an
‘occludable angle’ is frequently used as a measure to
estimate glaucoma, as it is an important disease
predisposing trait. An occludable angle is equated to
PACG if the posterior trabecular meshwork is seen in
o90° of the angle circumference.24

PACG risk factors

There are a number of predisposing factors that have been
extensively studied in an attempt to explain the observed
geographic and racial variations in the prevalence of
PACG. Among the demographic risk factors, such as age
and sex, race is the most prominent disease risk factor.25

PACG and POAG have dissimilar incidence rates in
different populations. On average, PACG is three times
more common in Asian populations compared to
European-derived populations.26–28 In Europeans, POAG
contributes to ~ 62%, while PACG accounts for only 6% of
all reported glaucoma incidences.25 On the other hand,
PACG is particularly prevalent in Eskimos as well as in
Chinese and Asian Indians.29 Chinese PACG patients
account for 47.5% of the total number of PACG cases
worldwide5 and it is likely that PACG is responsible for
the vast majority (91%) of bilateral glaucoma blindness in
that country.7,30,31 It is also estimated that 28 million
people in China have an occludable drainage angle.
In addition to geographic and population-specific

patterns of PACG prevalence, the incidence of the disease
increases with age.32 The manifestations of ocular damage
as a result of PACG are rarely observed in cases below the
age of 40 years. Moreover, females are at greater risk of
developing PACG than males.32,33 Studies estimating
global disease prevalence have shown that females
represent 59% of all glaucoma cases, but 70% of all PACG
cases.5,34

The configuration of the eye itself is perhaps the most
prominent PACG risk factor. The reported anatomic risk
factors for angle closure glaucoma include short axial
length, small corneal diameter, shallow anterior chamber,
steep curvature, and thick, relatively anteriorly positioned
lens.35–38 A small anterior segment represents a major risk
factor with limbal and axial anterior chamber depth being

the traits most strongly correlated with ACG.39–41 In eyes
with hyperopia or shallow anterior chamber depth, the
iris is repositioned so that its anterior movement during
dilation blocks the iridocorneal angle. This can lead to an
acute entrapment of aqueous fluid behind the iris and a
rapid increase in IOP. In a population-based study in
South Africa, individuals of Southeast Asian descent with
hyperopia showed increased predisposition for PACG.42

The association between older age, female gender, and
angle closure might be explained by basis of differences in
anterior segment biometry. Females and individuals of
older age tend to present with smaller eyes and narrower
anterior chamber depth (ACD). Eskimo women were
found to have shallower ACD than men from the same
population.43 Several studies have demonstrated that
individuals of Eskimo or Chinese descent present with
shallower ACD than those of European descent and are
therefore at greater risk for PACG.44–47 One possible
mechanism explaining the increased risk of PACG in
older individuals is the steady expansion of the crystalline
lens throughout life. This leads to shallowing of ACD and
narrowing of the iridocorneal angle, a condition known as
phacomorphic glaucoma.48,49

The baseline position of the iris relative to the cornea is
another inherent anatomical factor that predisposes
certain individuals and populations over others, to angle
narrowing and subsequent outflow impediment. One
model established by Tiedman to explain iris behavior
predicts that the forward movement of the iris increases
with a more anterior lens position and with a mid-dilated
pupil, thus increasing the risk of angle occlusion.50

The genetics of PACG

The ethnicity and gender-specific predisposition to PACG
suggests a genetic basis for the development of PACG in
certain populations. There is strong evidence that
glaucoma in humans is influenced by genetic factors and
that it is a complex, multifactorial disease. The reported
high incidence of PACG among siblings of affected
patients further suggests the involvement of genetic
factors in pathology of the disease.51 Family history is one
of the major risk factors for glaucoma and heritability
estimates have shown that there is 3.7 times higher risk to
develop the disease for the siblings than the general
population.52,53 In Eskimos, the prevalence of PACG in
any first-degree relatives of affected individuals is
reported to be at least 3.5 times higher than in the general
population,43 and a population-based survey in China
revealed that any family history of glaucoma results in a
sixfold increase in risk of PACG.54 Significant heritability
of PACG was also indicated through the study of Chinese
monozygotic and dizygotic twins.55 Previous studies in
Chinese twins and nuclear families also reported high
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heritability estimates for IOP, which supports the role of
genetic effects in the segregation of IOP among
families.55,56 Moreover, it has been shown that the size of
the anterior chamber is strongly determined by genetic
components, suggesting that morphological
characteristics predisposing to PACG are also
heritable.52,53

Recent advances have indicated several genes and
genetic loci57–60 that may be causative for POAG, but
evidence for genes causing PACG remains sparse.
The first evidence for a genetic locus linked to familial
PACG comes from the analysis of a large family
with nanophthalmos, hyperopia, and angle closure
glaucoma.61 This study has led to the identification of the
gene nanophthalmos 1 (NNO1) on chromosome 11.
NNO1 is currently the only human gene known to cause
an angle closure glaucoma phenotype (Table 1).
In contrast, a number of genetic loci have been

identified that may not be causative, but enhance an
individual’s risk to develop PACG (Table 1). A recent,
genome-wide association study (GWAS) in an Asian
population of PACG identified three PACG susceptibility

loci in PLEKHA7, COL11A1, and within PCMTD1 and
ST18.62 COL11A1 is a particularly interesting gene as it
encodes one of the two alpha chains of type XI collagen,
which is highly expressed in the scleral tissue. Several
studies provide further evidence for the potential role of
collagen in glaucoma. Alterations in collagen deposition
impact the biomechanical and remodeling capabilities of
the sclera and could thereby result in glaucoma-
predisposing axial length changes and associated
refractive errors.63 A single-nucleotide polymorphism
(SNP) in the gene COL1A1 is associated with increased
risk of myopia in a Japanese and Chinese Han
populations64,65 and it is conceivable that other genetic
variants result in conformational changes to the anterior
segment that predispose toward the development of the
disease. However, differences in collagen composition of
the sclera may be correlated with suboptimal optic nerve
head biomechanics, resulting in increased susceptibility to
axonal damage in glaucomatous eyes.66,67

The extracellular composition of the sclera is influenced
and modified as a result of intraocular pressure
fluctuations68 and PACG-associated variants have also

Table 1 A review of genes identified in linkage or association with PACG and/or PACG predisposing traits

Gene Phenotype Location Authors

NNO1 Nanophthalmos, hyperopia and ACG 11p13 Othman et al61

PLEKHA7, COL11A1, PCMTD1
and ST18

PACG 11p15, 1p21, 8q11.23 Vithana et al62

COL1A1 Myopia 1p21 Inamori et al,64 Zhang et al65

MMP9 PACG 20q13.12 Awadalla et al,73

Cong et al,69 Wang et al,70

Micheal et al71

MTHFR PACG, anterior segment extracellular
matrix (ECM) remodeling

1p36.3 Micheal et al76

MFRP PACG 11q23.3 Wang et al,77 Aung et al,72

Shi et al103

MFRP Autosomal recessive nanophthalmos,
short axial length, high degree of
hyperopia, high lens-to-eye-volume ratio
and small corneal diameter

11q23.3 Sundin et al79

CHX10 PACG 14q24.3 Aung et al72

HGF PACG and hyperopia 7q21.1 Awadalla et al,86

Jiang et al85

RSPO1, C3orf26, LAMA2, GJD2,
ZNRF3, CD55, MIP, ALPPL2
and ZC3H11B

Axial length regulation 1p34.3, 3q12.1, 6q22.33,
15q14, 22q12.1, 1q32,
12q13, 2q37, 1q41

Cheng et al87

PRSS56 ACG, posterior microphthalmia 2q37.1 Nair et al93

ABCC5 PACG, ACD regulation 3q27 Nongpiur et al94

MYOC ACG 1q24.3 Faucher et al,98 Dai et al100

CYP1B1 PACG 2p22.2 Chakrabarti et al,101

Dai et al100

eNOS PACG, ACD regulation 7q36 Ayub et al,102

HSP70 PACG 19q13.42 Ayub et al,102 Shi et al103

SPARC PACG, IOP regulation 5q33.1 Yan et al,109 Chua et al,104

Haddadin et al110

CALCRL Acute PACG 2q32.1 Cao et al111

NEB Canine PACG Ahram et al118

Genetics of angle closure glaucoma
DF Ahram et al

1253

Eye



been identified in the matrix metalloproteinase-9 (MMP9)
gene, which encodes an enzyme participating in tissue
remodeling. These studies include a GWAS of PACG in a
Southern-Chinese population that implicated the SNP
rs2250880 in MMP9 in association with the disease.69

A different SNP (rs17576) within the same gene was
identified in association with increasing risk for PACG in
studies of acute PACG in a Taiwanese as well as a
Pakistani patient cohort.70,71 The same variant, however,
was not found to display a statistically significant
association with PACG in Singaporean patients.72 In
addition, two risk variants (rs3818249 and rs17576) in the
MMP9 were identified in association with PACG in an
Australian Caucasian population, which further supports
the role of MMP9 in conferring risk for PACG.73 It was
suggested that variants in MMP9 affect protein function
by impairing its ability to remodel extracellular matrices.
It has also been shown that MMP9 among several other
MMPs are present in the aqueous humor and may be
involved in mechanisms of IOP regulation.74,75

In addition, several PACG-associated risk conferring
variants have been identified in the membrane-type
frizzled related protein (MFRP) gene,
methylenetetrahydrofolate reductase (MTHFR) gene, and
retinal homeobox gene CHX10.76,77 MFRP and CHX10 are
thought to be involved in the regulation of eye size and
axial length of the eye.72,77 Mutations in MFRP to cause
autosomal recessive nanophthalmos, which is
characterized by short axial length, a high degree of
hyperopia, a high lens-to-eye-volume ratio, as well as a
small corneal diameter.78,79 One function of MTHFR
appears to be the remodeling of connective tissue and the
extracellular matrix (ECM) of the anterior segment.76 On
the other hand, the combined genotype of two MTHFR
polymorphisms (C677T and A1298C) was associated with
PACG, but also correlated with high homocysteine serum
levels in patients in a Punjabi study.76 Elevated plasma
levels of the sulfur-containing amino-acid homocysteine
can elicit a DNA damage response in neurons and
promote apoptosis and vulnerability to excitotoxicity.80

Furthermore, homocysteine may directly induce
retinopathy through damage specifically to RGC, but not
to other retinal neurons and photoreceptors.81,82 It must
be cautioned that data with regard to the association of
MTHFR variants with PACG is conflicting, which may
suggest that the presence of polymorphism of this gene
vary in different ethnic populations.76,83 For example, a
recent case-control study in a north Indian population did
not provide evidence for an association ofMTHFR variant
C677T with PACG. Rather this study found that this
variant is associated with POAG.84 This may suggest that
the pathogenic effect of MTHFR mutations is primarily
related to homocysteine toxicity leading to RGC loss,
which is a characteristic feature of all types of glaucoma.

Another gene with possible function in axial length
regulation is hepatocyte growth factor (HGF). Variants in
this gene have been reported in association with PACG
and hyperopia in the Nepalese and Han Chinese
populations, two conditions sharing the features of
reduced axial length and shallow AC depth.85,86 A recent
meta-analysis of genome-wide associations for ocular
axial length was conducted in patients of European and
Asian ethnicity displaying refractive errors, which along
with hyperopia and myopia is majorly determined by
axial length. Nine genome-wide significant loci for axial
length were identified including RSPO1, C3orf26, LAMA2,
GJD2, ZNRF3, CD55, MIP, and ALPPL2 and ZC3H11B.87

Variation in gene expression was observed for these loci
in a minus-lens-induced myopia mouse model and
human ocular tissues. Furthermore, RSPO1 and ZNRF3
have been previously described to influence Wnt
signaling, a pathway implicated in the regulation of
eyeball size.88–91 Members of the R-Spondin family, which
includes RSPO1, appear to act as potent activators of the
Wnt/β-catenin signaling pathway by inhibiting the cell-
surface transmembrane ZNRF3.89,92 Associations to genes
implicated in axial length regulation have also been
identified in animal-based genetic studies. A novel serine
protease-encoding gene (PRSS56) was identified in
association with reduced axial length in a mouse model
with an ACG-like phenotype.93 Variations in PRSS56
were also found to cause significant reduction in the
ocular axial length of individuals with posterior
microphthalmia in the same study. In a recent GWA
study of ACD and PACG in an Asian cohort, variants in
the ATP-binding cassette, sub-family C (CFTR/MRP),
and member 5 encoding gene (ABCC5) were found to
influence ACD and increase the risk of PACG
development.94 ABCC5 has been shown to participate in
tissue defense and cellular signal transduction
mechanisms.95 The findings of this study support the role
of ACD-modifying variants in mediating risk to PACG.
Collectively, data from these studies suggest that multiple
genes contribute to the regulation of ocular axial length
and AC depth, which ultimately determines the potential
risk for developing ACG.
Investigation of associations between PACG and the

open angle glaucoma genes myocilin (MYOC), optineurin
(OPTN), WDR 36 and cytochrome P450 (CYP1B1) in
middle-eastern patients failed to identify risk-conferring
variants.96 Similarly, no risk-conferring associations to
MYOC were identified in a Chinese PACG cohort97

despite reports of MYOC association in a study of PACG
in a Quebec population.98,99 On the basis of these results,
it is unlikely that MYOC is a major contributor to the
development of the PACG, contrary to its positive
association with POAG.
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On the other hand, a positive association to CYP1B1,
a gene implicated in the development of congenital
glaucoma, was identified in studies of PACG in patients
of Chinese, Indian, and Canadian origin.100,101 Likewise,
variants in the endothelial nitric oxide synthase (eNOS)
and heat-shock protein 70 (HSP70) have been identified in
association with PACG in a Pakistani population.102

A weak association of HSP70 with PACG was additionally
identified a Han Chinese population.103 In this study,
eNOS was found to display a positive association with
anterior chamber depth regulation, thus hinting at its
possible role in the pathogenesis of PACG.
Additionally, a significant increase in the expression of

secreted protein, acidic and rich in cysteine (SPARC) in
the iris of PACG patients recruited at the Singapore
National Eye Centre (SNEC) was noted in comparison
with healthy controls, suggesting a possible role for
SPARC in PACG.104 SPARC is a matricellular protein,
which is involved in ECM remodeling and regulation of
collagen I incorporation into tissues by binding directly to
various collagen fibrils.105–107 SPARC is present in
aqueous humor and is produced by trabecular meshwork
endothelial cells.108,109 SPARC-null mice reportedly
display lower IOP than wild-type animals, which
suggests a potential role for SPARC in regulating IOP.110

Furthermore, investigation of two patient cohorts of
Southern Chinese origin with acute and chronic PACG
has led to the identification of an association between
CALCRL polymorphisms and acute but not chronic
PACG.111 CALCRL (calcitonin receptor like) and related
receptors are a family of G-protein-coupled receptors that
comprise several subtypes. The activity of this receptor is
mediated by G proteins, which activate adenylyl cyclase.
Overexpression of this gene has been found to result in
pupillary sphincter muscle relaxation, closure of the
anterior chamber angle and obstruction of the aqueous
outflow leading to elevation of IOP.112

Heritability is also conferred through mitochondria.
The analysis of this genetic material is not trivial since
each cell contains several genetically heterogeneous
mitochondria. Furthermore, age and stress further induce
somatic mutations in the mtDNA population and these
likely differ between ocular cells and those found in
peripheral blood lymphocytes that are commonly
used for genetic analyses. Data in support113,114 and
opposition96,115 of mitochondrial changes in PACG have
been presented, but the study size was often modest.
It is hoped that the introduction of high throughput
sequencing technologies will stimulate research in this
area and lead to unequivocal data.
Additional insight into the genetics of PACG may also

be obtained through genetic analysis of several dog
breeds with a predisposition toward the disease. A recent
GWA study of PACG in the Basset Hound resulted in the

identification of two susceptibility loci on chromosome 14
(COL1A2) and chromosome 24 (RAB22A).116 In addition,
a GWA study of a late onset form of PACG described in a
Dandie Dinmont Terrier cohort has led to the
identification of a novel susceptibility locus on canine
chromosome 8.117 A recent study in a pedigree of Basset
Hounds with PACG implicated variations in NEB
(Nebulin), a large protein of the sarcomere that is highly
expressed in the ciliary muscle of the eye.118 These
variations were also found to be associated with the
disease in a study of unrelated Basset Hounds. These
findings imply that ciliary muscle tone may be important
in maintaining an open configuration of the
iridocorneal angle.
Finally, as a complex disease it is likely that

environmental risk factors participate in the development
of PACG. Several population-based studies have reported
associations of PACG attacks with sun exposure,
temperature and atmospheric pressure levels. In a
Singaporean study conducted to identify demographic
and meteorological risk factors associated with acute
PACG, a higher incidence of attacks was reported on days
where the temperature was high.119 Conversely, a Finnish
study assessing the association between sun exposure and
risk for acute ACG suggested that the number of hours
without sunshine is positively associated with the
incidence of acute closed angle glaucoma, when other
meteorological variables are controlled for.120 Acute
attacks were also reported to occur more frequently in the
same population group in winter and autumn than
summer or spring.120 A common factor among all these
studies and environmental effects is thought to be that
during adverse weather conditions people tend to stay
indoors. This may increase the likelihood of a mydriatic-
induced acute ACG attack due to pupillary dilation and a
subsequent spike in IOP.121 Yet, to date it is unknown
whether these environmental factors are more significant
in patients with certain genetic predispositions.

Conclusion

It has long been appreciated that angle closure glaucoma
is associated with certain populations and families,
suggesting that genetics contribute to the development of
the disease. More recently, systematic investigations of
large patient cohorts have revealed a number of genetic
loci that are associated with PACG. The effect of each of
these loci is relatively small and these studies indicate that
additional genes remain to be identified. However, the
conducted studies were carried out with a sufficiently
large number of samples to indicate a genetic factor
contributing to an overwhelming fraction of PACG
probably does not exist. Rather PACG is a complex disease

Genetics of angle closure glaucoma
DF Ahram et al

1255

Eye



with numerous genes contributing to morphologic and
biochemical features placing an eye at risk.
It is likely that larger population based studies will

eventually reveal additional PACG loci, but a more
successful approach may lie in the study of genes
regulating the development of endophenotypes, eg axial
length. Such studies have already yielded convincing data
that can be used to evaluate specific anatomic, functional,
or ethnic aspects of PACG.
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