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Prediction of disease–gene–drug relationships
following a differential network analysis

S Zickenrott1, VE Angarica1, BB Upadhyaya1 and A del Sol*,1

Great efforts are being devoted to get a deeper understanding of disease-related dysregulations, which is central for introducing
novel and more effective therapeutics in the clinics. However, most human diseases are highly multifactorial at the molecular level,
involving dysregulation of multiple genes and interactions in gene regulatory networks. This issue hinders the elucidation of
disease mechanism, including the identification of disease-causing genes and regulatory interactions. Most of current network-
based approaches for the study of disease mechanisms do not take into account significant differences in gene regulatory network
topology between healthy and disease phenotypes. Moreover, these approaches are not able to efficiently guide database search
for connections between drugs, genes and diseases. We propose a differential network-based methodology for identifying
candidate target genes and chemical compounds for reverting disease phenotypes. Our method relies on transcriptomics data to
reconstruct gene regulatory networks corresponding to healthy and disease states separately. Further, it identifies candidate
genes essential for triggering the reversion of the disease phenotype based on network stability determinants underlying
differential gene expression. In addition, our method selects and ranks chemical compounds targeting these genes, which could
be used as therapeutic interventions for complex diseases.
Cell Death and Disease (2016) 7, e2040; doi:10.1038/cddis.2015.393; published online 14 January 2016

The availability of reliable methodologies for generating
iPSC-derived cells1,2 (induced pluripotent stem cells) has
contributed to the establishment of diseasemodeling as a very
promising approach for studying the molecular basis of
disease onset and progression. Moreover, the possibility of
producing patient-specific iPSC-derived cells from individuals
with disease-relevant mutations offers an advantageous
in vitro system for the study of pathogenesis and performing
drug screening in differentiated human cell types.3 However,
the multifactorial nature of many human diseases, which are
characterized by the dysregulation of multiple genes and
interactions in gene regulatory networks (GRNs)4–6 signifi-
cantly hampers our understanding of molecular mechanisms
related to the disease pathology. As a result, the rate at which
novel drug candidates can be translated into effective
therapies in the clinic is rather low.7,8

In the past years, the large-scale generation of
high-throughput biological data has enabled the construction
of complex interaction networks that provide a new framework
for gaining a systems level understanding of disease
mechanisms.9 These network models have been useful for
predicting disease-related genes based on the analysis of
different topological characteristics, such as node
connectivity,1,10 or gene–gene interaction tendency in specific
tissues.12 Disease-gene associations have also been
predicted based on the identification of network neighbors of
disease-related genes,13–15 or by predicting disease-related

subnetworks.16–18 In other approaches, cellular phenotypes
are represented as attractors – that is, stable steady states – in
the gene expression landscape,19 and phenotypic transitions
are modeled by identifying nodes destabilizing these
attractors.20–22 This rationale has been used to model disease
onset and progression as transitions between attractor states,
in which disease perturbations, such as chemical compounds
or mutations, can cause a switch from a healthy to a disease
attractor state.23,24

An alternative approach increasingly used explores func-
tional connections between drugs, genes and diseases,
involving the development of databases and tools integrating
bioactivity of chemical compounds, chemical perturbation
experiments and drug response at the cellular, tissue or
organism levels.25–28 In particular, some of these resources
have been developed for connecting drugs and diseases
based on gene signatures29–31 – for example, differentially
expressed genes between disease and healthy phenotypes.
For example, the Connectivity Map (CMap)30,31 constitutes a
widely used database of gene expression profiles from
cultured human cancer cells perturbed with chemicals and
genetic reagents. It has been successfully applied for
predicting drug effects and mode of action in different human
diseases.32–35 However, following this approach disregards
the underlying gene regulatory mechanisms. Network phar-
macology strategies attempt to address this problem and
identify genes whose perturbations could result in a desired
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therapeutic outcome.36 This guided rationale for drug predic-
tion is of great importance as previous studies suggest that
only ~ 15% of network nodes can be chemically tractable with
small-molecule compounds.37 Moreover, molecular network
robustnessmay often counteract drug action on single targets,
thus preventing major changes at a systems level.38 Thus,
network pharmacology methodologies are promising for the
identification of optimal combinations of multiple proteins in
the network whose perturbation could revert a disease
state.7,38–40

Nevertheless, current network and gene signature-based
approaches for identifying disease-related genes and
drug–disease associations have important limitations. In
particular, network-based methods rely on a unique network
topology while there are compelling evidences suggesting that
different cellular phenotypes, such as healthy and
disease states, are characterized by fairly different GRN
topologies,41,42 leaving these methods unable to identify
differential regulatory mechanisms leading to a disease
pathology. Furthermore, gene signature-basedmethods, such
as the CMap,30,31 have some important shortcomings for the
selection of the right subset of genes composing a signature.43

Recently, new methods have been proposed to improve gene
signature analysis assuming independence between the
expression of different genes, leading to more reliable
drug–drug43,44 and drug–disease connections.29,45 However,
a detailed analysis of gene–gene interaction networks in a
specific phenotype is generally neglected in these
approaches. Moreover, to our knowledge there are no
approaches combining information on perturbation of cellular
phenotypes with a thorough differential network-based analy-
sis for identifying disease–gene–drug relationships. In addi-
tion, strategies for predicting multitarget drugs are scarce and
there is a lack of a robust set of design tools to routinely apply
these multitarget approaches.7

In this paper, we introduce a novel network-based approach
for predicting target genes and bioactive compounds that
could revert disease phenotypes. Our method relies on the
reconstruction of GRNs corresponding to disease and healthy
phenotypes21 by compiling gene interactions from literature.
Further, it performs a differential network analysis for identify-
ing gene targets and drugs that could induce the transition
from disease to healthy phenotypes. Validation of our method
with perturbation data from the CMap30,31 shows that in most
cases our predictions of drugabble genes is in good
agreement with the experimental data. Finally, our method
was used to make predictions of disease-related genes and
bioactive compounds in three different disease models, which

have not been extensively studied. Thus, we believe that the
method presented here can be useful in the identification of
disease–gene–drug relationships, and therefore in guiding
experimentalists in the design of effective therapeutic strate-
gies for treating human diseases.

Results

Network reconstruction and differential network analy-
sis. Network-based models of GRNs constitute an important
tool for disease modeling, aiming at identifying
disease-causing genes. Experimental studies suggest that
the regulatory impairments leading to disease pathology are
associated with different GRN topologies, underlying the
phenotypic differences between healthy and disease
states.41,42 Thus, differential network modeling is essential
for identifying differential regulatory network modules stabiliz-
ing the pathological expression pattern under study. In the
approach presented here, our method infers phenotype-
specific GRNs for disease and healthy states, starting from
experimentally validated gene–gene interactions compiled
from Thomson Reuters’ MetaCore database. To obtain
contextualized GRNs, our method prunes literature interac-
tion maps compiled in each case, including interactions
occurring in different tissues and organisms, and at the same
time infers the mode of action of interactions having
unspecified effects (see Materials and Methods for details).
We validated the inference algorithm by assessing the

enrichment of validated ChIP-Seq interactions before and
after contextualization (seeMaterials andMethods for details).
Our results for these benchmarking assays show that up to
89.6% of the ChIP-seq interactions are preserved in the
contextualized networks (Table 1), which demonstrate that our
method is able to reconstruct fairly reliable phenotype-specific
GRNs (Supplementary File S1). Moreover, we observe a high
variability in the ratio of phenotype-specific and common
interactions between the two networks in these examples
(Table 2), indicating that both phenotypes cannot be
accurately modeled by considering a single GRN topology,
thus highlighting the importance of a differential network
analysis approach.41,42 We also performed a thorough
comparison of our method with other methods available for
network reconstruction of direct and signed GRNs using
CellNOptR46 and SignetTrainer.47 In this comparison, we
measured the enrichment in experimentally validated interac-
tions in the reconstructed GRNs, as well as the agreement
between the GRN models generated by each method and the
phenotype-specific gene expression patterns in the 20

Table 1 ChIP-Seq validation of phenotype-specific network inference algorithm

HepG2/GM HepG2/H1 HepG2/K562 GM/H1 GM/K562 H1/K562

HepG2 GM HepG2 H1 HepG2 K562 GM H1 GM K562 H1 K562

Raw 92 36 122 20 74 0 2 0 88 18 4 4
Pruned 86 30 111 13 71 0 2 0 79 13 4 3
Retained (in %) 93.5 83.3 91 65 95.9 — 100 — 89.8 72.2 100 75

For six different examples, we compared the number of initially contained interactions from ChIP-Seq (Raw) to those contained in the phenotype-specific networks. On
average the network inference algorithm retains 86.6% of ChIP-Seq interactions in the contextualized networks.
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benchmarking data sets analyzed (Supplementary Table S2.1
in Supplementary File S2). The results confirm that our
method generates more accurate GRNs (94% compared with
48 and 88%) while showing higher enrichment in
ChIP-Seq-validated interactions (94% compared with 58
and 83%).
After obtaining healthy and disease phenotype-specific

GRNs, our methodology identifies common stability determi-
nants between these networks to derive candidate target
genes, whose perturbations could revert the disease pheno-
type (see Materials and Methods for details). We analyzed
GRN response to millions of combinations of target gene
perturbations, in the following referred to as multitarget
combinations, and ranked drugs according to the enrichment
of their targets in these multitarget combinations (see
Materials and Methods for details). At the same time,
simulation assays were performed to study the effects of
specific drugs on the system’s attractor (see Materials and
Methods for details). Combining simulation assays and
enrichment analysis allow us to predict the most suitable
drugs to revert the disease phenotype.

Validation of the algorithm for inferring disease–gene–
drug relationships. To show the applicability of our method
for predicting genes and drugs triggering cellular phenotypic
transitions, we selected six examples from the CMap,31

encompassing cellular gene expression changes upon
chemical perturbation. These examples include the use of
different chemical compounds such as celastrol+androgen,
gedunin+androgen,32 celastrol, cobalt chloride, estradiol and
genistein for treating LNCap or MCF7 cell lines. Following our
methodology, we contextualized GRNs for the control and
drug-induced phenotypes and assessed enrichment of the
top-ranking drugs obtained from the CMap by means of
simulated multitarget combinations (see Materials and
Methods for details).
In all but one of the examples, we identified multitarget

combinations able to revert at least 60% of the gene
expression pattern (Supplementary Table S1). Furthermore,
comparing the resulting enrichment distributions clearly
identifies the drug inducing the phenotypical change in all
cases (Table 3). Here, lower area under the curve (AUC)
values correspond to better enrichment patterns, as the
cumulative enrichment distribution functions are then lowly
enriched in the worst multitarget combinations and highly
enriched in the top-ranking ones. The deviation from the
uniform AUC then provides insight into how much more
specific the drugs are in comparison with an uninformative
enrichment pattern (see Materials and Methods for details).
Figure 1 illustrates the results of the enrichment analysis of
drug targets in the simulated multitarget combinations for the
drugs tested in the different examples. The normalized
enrichment score corresponds to the induced gene expres-
sion changes of non-perturbed genes (see Materials and
Methods). As can be seen in the examples of celastrol/
gedunin+androgen, our method is also applicable to drug
combinations (Figures 1e and f). Even though, in general,
combinatorial effects of compounds need to be taken into
account, celastrol/gedunin and androgen do not have com-
mon gene targets and thus exhibit no combined effects upon
induction. Among all the examples, genistein constitutes a
special case, as the AUC is lower compared with that for any
other drug (Table 3), but simulation assays do not seem to
confirm this as only 12.24% of the gene expression pattern is
changed upon perturbation (Supplementary Table S1). In
case of cobalt chloride, simulation assays of multitarget
combinations containing candidate genes reveal a change of
35% of the gene expression program, upon perturbation

Table 2 Statistics of validation networks for the network inference algorithm

HepG2/Gm12878 HepG2/H1-hESC HepG2/K562 Gm12878/H1-hESC Gm12878/K562 H1-hESC/K562

Common 424 608 430 298 662 594
Phenotype1 total 530 824 520 324 999 859
Phenotype1 specific 106 216 90 26 337 265
Phenotype1 ratio 20.00% 26.20% 17.30% 8.00% 33.70% 30.80%
Phenotype2 total 508 707 498 323 819 720
Phenotype2 specific 84 99 68 25 157 126
Phenotypes2 ratio 16.50% 14.00% 13.70% 8.30% 19.20% 17.50%

For six different examples, the number of common and phenotype-specific interactions is dissected. The percentage of phenotype-specific interactions varies
markedly between 8.0 and 33.7%, highlighting the necessity of a differential network approach to accurately represent two different phenotypes.

Table 3 Statistical comparison of simulated drugs in the validation examples

Case Drug AUC Difference from AUC
of uniform
distribution

Celastrol+
androgen

Celastrol+
androgen

12.645 25.61%

Gedunin+
androgen

Gedunin+
androgen

10.423 25.55%

Estradiol Arachidonic acid 18.683 −0.99%
Estradiol 12.541 26.22%

Genistein Cobalt chloride 14.628 5.62%
Estradiol 13.772 11.15%
Genistein 12.855 17.06%
Tacrolimus 14.532 0.62%

Cobalt chloride Cobalt chloride 4 27.27%
Genistein 4.833 12.12%
Tretinoin 4.134 24.83%

Celastrol Celastrol 19.776 15.85%
Parthenolide 21.943 0.66%
Whitaferin A 24.471 −0.41%

In the six drug-induced examples taken from theCMap, the area under the curve
(AUC) of the cumulative enrichment distribution function is shown and compared
against the AUC of a uniform distribution. Lower AUC values and higher
difference from the uniform distribution indicate an enrichment of drug targets in
multitarget combinations able to induce a higher change of the gene expression
program. Themost enriched drugs are highlighted in each case (bold) and agree
with the experimentally induced drug.
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of RUNX1 (runt-related transcription factor 1), FOSL2
(FOS-like antigen 2), ASCL1 (achaete-scute family BHLH
transcription factor 1) and SOX2 (SRY (sex determining region
Y)-Box 2), which belong to network stability determinants
(Supplementary Table S1 and Figure 2). Topological analysis
of the contextualized control network reveals only four
repressive interactions, so that the repression of a gene can
only be modulated by the absence of any activator, explaining
the poor change in the gene expression program upon
perturbation (Figure 2). However, cobalt chloride is still
identified as the most suitable drug to induce the phenotypical
transition (Table 3). As can be seen in Figure 1 and Table 3, in
general the top-ranking solutions predicted using our

methodology are enriched in genes targeted by the drugs
that were used to experimentally induce the phenotypic
transition.

Predicting candidate genes and drugs from disease-
control studies. We applied our methodology to disease/
control case studies, including rheumatoid arthritis in B cells
and systemic lupus in B and CD4+ cells for identifying
differential network determinants involved in stabilizing
disease and healthy phenotypes, for predicting genes that
could be perturbed to revert the disease phenotypes. Further,
we gathered information from the Comparative Toxicoge-
nomics Database48 to identify gene–drug mode of action to

Figure 1 Results of drug-induced examples from the CMap. Violin plot of (a) celastrol, (b) cobalt chloride, (c) estradiol, (d) genistein, (e) celastrol+androgen and
(f) gedunin+androgen showing the enrichment of drugs in the space of normalized gene expression changes resulting from simulated multitarget combinations. White dots
represent the mean gene expression change of the simulated multitarget combinations underlined by the variance of the distribution (black bar). The dashed lines show the
maximum enrichment score in percent for each drug in all of the cases. An optimal enrichment pattern corresponds to low scores in low normalized gene expression changes and
high scores in high expression changes reflecting that the drug targets are specific to induce significant changes of the gene expression pattern. Application of cobalt chloride in
(b) is an example of such optimal distributions
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propose candidates for perturbing the predicted target genes.
Enrichment of the drugs was assessed by comparing the
AUC of the cumulative enrichment distribution function and
compared against the AUC of a uniform, uninformative
enrichment distribution (see Materials and Methods for
details). An overview of the common and phenotype-
specific interactions for the reconstructed networks in each
case can be found in Supplementary Table S5.

Systemic lupus (B cells): We used our approach for
predicting drug candidates to revert the phenotype of
systemic lupus in B cells (GEO: GSE4588). After reconstruct-
ing the disease and healthy specific GRNs, the differential
network analysis for identifying network stability determinants
rendered 11 candidate genes including STAT1 (signal
transducer and activator of transcription 1), whose upregula-
tion is associated with onset and progression of systemic
lupus.49 The top-ranking drugs were found to be tetrachlor-
odibenzodioxin (TCDD) (8 targets), cyclosporine (5 targets)
and resveratrol (5 targets). Notably, all identified candidate
drugs perturb STAT1, indicating their prospective efficacy for
treating systemic lupus. Enrichment analysis revealed that
cyclosporine and TCDD share a similar enrichment pattern
(Figure 3a). However, the enrichment of resveratrol shows a
more pronounced effect reflected by higher scores in
Figure 3a, and lower AUC of the enrichment cumulative
distribution function (CDF) (Table 4). In Supplementary Table

S2, we show the analysis of the network response upon
drug application and the gene enrichment in multitarget
combinations. The simulation assays suggest that resveratrol
and TCDD induce a change in the gene expression program
of 59.4% and 68.8%, respectively. Thus, application of these
drugs constitutes interesting therapeutic formulations for
treating systemic lupus in B cells. There exist experimental
evidence supporting our predictions, as resveratrol has been
found to act as an antiatherogenic agent in human
macrophages.50 Also, a positive effect of TCDD on the
pathological process of systemic lupus is suggested owing to
its immunosuppressive effects in murine systemic lupus.51

Furthermore, cyclosporine was found to represent a helpful
treatment of systemic lupus in clinical trials.52 Thus, our
analysis reveals cyclosporine, an already known effective
treatment for systemic lupus, as well as predicts resveratrol
and TCDD as prospective therapeutic interventions.

Rheumatoid arthritis (B cells): In this example, we predicted
drug candidates for rheumatoid arthritis in B cells
(GEO: GSE4588) using our methodology. We identified 27
candidate genes for perturbation, including a TCF7L2
(transcription factor 7-like 2 (T-cell specific, HMG-box))
polymorphism assumed to be associated to rheumatic
arthritis53 and CDKN1A (cyclin-dependent kinase inhibitor
1A (P21, Cip1)), whose decreased expression has been
linked to an increased risk to develop autoimmune diseases,
such as rheumatoid arthritis.54 The drugs having more gene
targets in the disease network are benzo(a)pyrene
(14 targets), copper sulfate (12 targets), TCDD (12 targets),
valproic acid (12 targets) and cyclosporine (10 targets).
Simulation assays of multitarget combinations show that both
TCF7L2 and CDKN1A are included in all combinations
inducing the most significant phenotypic change. Enrichment
analysis reveals copper sulfate to have the highest
enrichment in the top-ranking multitarget combinations,
followed by benzo(a)pyrene, TCDD and cyclosporine
(Figure 3b and Table 3) underlined by the lower AUC of
copper sulfate showing its more specific enrichment in the
best multitarget combinations. Simulation assays reveal that
copper sulfate reverts 53% of the disease phenotype,
whereas cyclosporine only reverts 34% (Supplementary
Table S3). Indeed, most of the genes in the core of the
disease network are targeted by copper sulfate, explaining its
pronounced effect on the gene expression program. In
contrast, application of benzo(a)pyrene results in an unstable
behavior of the network and is therefore not be considered to
cause the phenotypic transition in this disease. Previous
studies support these conclusions, showing the beneficial
effects of cyclosporine in the short-term treatment of
rheumatoid arthritis,55 whereas copper sulfate constitutes a
novel approach whose effect on this disease needs to be
further elucidated.56

Systemic lupus (CD4 cells): As a last example, we predicted
candidate genes and drugs for treating systemic lupus in
CD4 cells, starting from the same gene expression data set
used in the first example (GEO: GSE4588). We identified 35
candidate genes for perturbation, including STAT1 and other
genes relevant to disease pathology, such as IRF7 (interferon

Figure 2 Core networks of contextualized control network. Network representa-
tion of the control network for cobalt chloride. Four genes (green) are contained in
three common circuits (interactions highlighted in red), one negative autoregulation
(RUNX1 –| RUNX1) and two positive feedback loops between RUNX1 and FOSL2,
and ASCL1 and SOX2, respectively. No differentially regulated genes were found to
be candidate genes for perturbation. The poor circuit coverage of the network is
representative for the poor network response upon application of cobalt chloride.
Most of the network perturbations can be recovered by the network
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Figure 3 Enrichment of predicted drugs in disease-control examples. Violin plots of drug target enrichment in the space of induced normalized gene expression changes on
the basis of simulated multitarget combinations. The white dots represent the mean gene expression change underlined by the variance of the distribution (black bar). The dashed
lines represent the maximum enrichment (in percent) of the drugs. The enrichment patterns are contrasted with the corresponding core disease network highlighting drug targets
of most enriched drug. (a) Enrichment patterns of drugs having the most targets in the disease network of systemic lupus in B cells reveal resveratrol to be the top-ranking drug. Its
drug targets (green) are covering wide ranges of common circuits and perturb STAT1, a hub gene in the network. (b) Enrichment patterns of predicted drugs for rheumatoid
arthritis in B cells reveal cyclosporine, copper sulfate and benzoapyrene to have similar enrichment patterns having the highest enrichment in the highest gene expression
changes. Cyclosporine and copper sulfate are therefore found to be specific to significantly change the gene expression program from the disease to the healthy phenotype. The
pronounced effect of copper sulfate is underlined by its targets in the core of the disease network (green) as it perturbs almost all genes. (c) In case of systemic lupus in CD4+
cells, estradiol and TCDD show the highest enrichments of all candidate drugs. Targets of estradiol (green) are perturbing hub genes of the network, like CDK1, and cover most of
the existing circuits of the network
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regulatory factor 7)57 and ISG15 (ISG15 ubiquitin-like
modifier).58 We identified four drugs targeting the predicted
candidate genes, including TCDD(15 targets), acetamino-
phen (12 targets), estradiol (15 targets) and valproic acid
(11 targets). The enrichment analysis of multitarget drug
combinations shows that estradiol and TCDD are highly
enriched in the predicted candidate genes (Figure 3c), which
is further underlined by the AUC value as a deviation of
420% from the uniform AUC proves its higher enrichment in
the top-ranking multitarget combinations (Table 4). Simulation
assays show that TCDD and estradiol are able to revert 72%
and 62% of the disease gene expression program, respec-
tively (Supplementary Table S4), which makes them suitable
drugs to treat this disease. As stated previously, TCDD acts
as an immunosuppressor in murine systemic lupus,51 and
recent experimental results show the protective effects of
estradiol against lupus-mediated hypertension and protei-
nuria in adult female mice,59 giving support to our predictions
in this case.

Discussion

In this work, we propose a method for predicting disease–
gene–drug relationships based on the reconstruction of
phenotype-specific GRNs underlying phenotypic differences
between disease and healthy states, solely relying on
differential gene expression data. By following this rationale,
we are able to generatemore realistic network models to study
disease mechanisms by analyzing differences in gene
regulatory interactions underlying different cellular
states.41,42 We benchmarked our method for assessing its
reliability for differential network inference and showed that our
method generates fairly reliable context-specific networks,
which are highly enriched in ChIP-Seq validated interactions
contained in ENCODE60 (see Supplementary Table S1.2). We
also performed a thorough comparison of our method with two
available methods for modeling direct and signed GRNs,
namely CellNOptR46 and SignetTrainer.47 The results from
this comparison (Supplementary Table S2.1 in Supplementary
File S2) demonstrate that the GRN models built with our
method are more reliable and enriched in experimentally

validated interactions than the models generated by other
similar methods. After reconstructing phenotype-specific
GRNs, we performed a differential network analysis for
identifying network motifs determining the stability of disease
and healthy phenotypes. In this regard, combinations of
positive and negative circuits have been shown to have an
important role in the stability of GRNs.21,61 To derive candidate
genes for perturbation, our method first selects optimal
combinations of genes belonging to these common circuits
between healthy and disease GRNs. Perturbation of these
genes should be able to trigger the disease to healthy state
phenotypic transition. Second, our method also selects genes
under differential regulation – that is, genes regulated by
different sets of transcription factors – not belonging to
common circuits, as they can only be perturbed individually.
We validated the performance of our methodology for

inferring disease–drug relationships by analyzing six data
sets of known drug-induced phenotypical changes obtained
from the CMap.31 Our results show that by using our
differential network approach, we are able to accurately
predict genes and drugs associated with the phenotypic
changes, as in most cases the top-ranking solutions are highly
enriched in drug gene targets causing the reversion of the
disease phenotype in vitro.31 In all validation examples,
perturbations of candidate genes in the GRN models cause
a change in the global gene expression between healthy and
disease states ranging from 42 to 80%. The only exception is
the genistein case, in which the number of genes in the
reconstructed network model targeted by chemical com-
pounds in databases is rather low.48 These results highlight
that differential topological analyses of GRN models recapi-
tulate phenotypic differences between healthy and disease
states, and can be successfully used for identifying genes
whose perturbations can induce disease reversion. Thus,
unlike current approaches relying on single network topolo-
gies, our method is based on a more realistic framework that
allows us to more accurately predict genes whose perturba-
tions have a desired phenotypic change, and therefore
improving strategies in network pharmacology.37 In addition,
we applied our methodology to three disease-control case
studies, for which there is differential gene expression data, to

Table 4 Statistical comparison of simulated drugs in systemic lupus and rheumatoid arthritis

Case Drug AUC Difference from AUC of uniform distribution

Systemic lupus (B cells) Cyclosporine 11.722 13.17%
Resveratrol 8.918 33.94%
Tetrachlorodibenzodioxin 11.61 14.00%

Systemic lupus (CD4 cells) Acetaminophen 18.721 12.93%
Estradiol 16.627 22.66%
Tetrachlorodibenzodioxin 17.111 20.41%
Valproic acid 18.615 13.42%

Rheumatoid arthritis (B cells) Benzo(a)pyrene 11.892 15.05%
Copper sulfate 11.578 17.30%
Cyclosporine 12.169 13.08%
Tetrachlorodibenzodioxin 12.084 13.69%
Valproic acid 12.695 9.32%

For systemic lupus in B and CD4 cells and rheumatoid arthritis in B cells, the area under the curve (AUC) of the cumulative enrichment distribution function is shown
and compared against the AUC of a uniform distribution. Lower AUC values and higher difference from the uniform distribution indicate an enrichment of drug targets in
multitarget combinations able to induce a higher change of the gene expression program. The most enriched drugs are highlighted in each case (bold) and agree with
the experimentally induced drug.
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predict disease–gene–drug relationships constituting
prospective clinical treatments being subject to future
validations.
Previous approaches aiming at identifying drug perturba-

tions for reverting the disease phenotype solely relied on gene
signatures inferred from differential gene expression,29,45 or
regulatory modules targeted by drugs,62,63 without consider-
ing gene interactions underlying disease and healthy states.
However, the regulatory mechanisms underlying disease
pathologies could provide important mechanistic insights on
cellular responses to drug application,64 and interactions
among genes targeted by the drugs in GRNs. Thus, our
proposed differential network analysis approach overcomes
this drawback by in silico simulating network response upon
drug application of genes in GRN stability determinants.
Indeed, drugs predicted with our approach for reverting the
disease-related expression patterns have been validated in
experimental studies. In all cases, the three candidate drugs
identified to have the most pronounced effects on reverting
disease gene expression programs have been used for
treating the pathological process of systemic lupus and
rheumatoid arthritis. In particular, cyclosporine has been
successfully applied in the process of treating systemic lupus
and rheumatoid arthritis.52,55 However, we predicted resver-
atrol as a novel treatment of systemic lupus, whose potential
therapeutic utility is underlined by previous studies.50 Based
on these evidences, we are not only able to predict suitable
drugs to revert disease-related gene expression patterns but
also to significantly narrow down the set of candidate drugs by
means of a differential network analysis.
The differential network-based approach to identify

disease–gene–drug relationships has been validated with
predictions in drug-induced phenotypes in six examples.
Interestingly, in all the studied examples we predicted
multitarget drug combinations inducing more efficient
transitions between disease and healthy phenotypes in silico.
This could constitute a promising application of our network-
based approach for predictingmultitarget drug formulations for
treating human diseases. Moreover, the application of our
approach to systemic lupus and rheumatoid arthritis identified
well-known drugs already used in current clinical therapies as
well as new prospective treatments subject to future clinical
trials. Thus, our method offers a helpful tool to identify
disease–gene–drug relationships of other pathological pro-
cesses to guide experimentalists in the discovery of more
effective treatments.

Materials and Methods
Compilation of gene–gene interaction maps from literature
resources. To obtain the initial gene interaction maps used throughout this
study, we first identified the differentially expressed genes between two cellular
phenotypes using an independent two-sample t-test. In these interaction data sets,
we only take into account those genes having a P-value lower than and a fold
change higher than the defined case-specific cutoffs that are set depending on the
number of genes profiled in each case, and the number of replicates for performing
the statistical analysis. After defining the sets of differentially expressed genes in
each case, we reconstructed gene interaction maps from experimentally validated
interactions reported in scientific publications. For this purpose, we use the
information contained in MetaCore from Thomson Reuters, a highly curated
resource of biomolecular interactions compiled from literature, to retrieve all direct
interactions among differentially expressed genes. Notably, interactions whose

effect – that is, activation or inhibition – is unknown are also included in the
interaction maps for inferring their corresponding mode of action during the following
steps of our methodology. Even though we use validated interactions reported from
literature throughout this paper, our methodology is designed to be general and can
take advantage of interaction maps generated using different approaches, such as
gene coexpression analysis.

Reconstruction of phenotype-specific GRNs. The interaction maps
compiled from the literature are rather noisy, comprising experimentally validated
interactions reported in different cell lines, tissues or organisms, which make it
difficult to identify the gene interactions taking place in the specific phenotype under
study. As the attractors of the initial network are not necessarily matching the
studied biological conditions – that is, transcriptomic data – it is necessary to
perform a contextualization of the literature interaction maps to derive
the phenotype-specific GRNs, as previously described in other recent
reports.21,65 To accomplish this task, our method implements a genetic algorithm
(GA) to contextualize two different GRNs, and makes them compatible to the gene
expression profiles of two different cellular phenotypes, such as disease and healthy
states. Here, a Boolean modeling formalism with synchronous updating scheme66 is
used to represent the GRNs to capture the steady state behavior of a molecular
network.21 Network dynamics are captured by the evolution of each node at the
same time, defined by an updating rule that depends on the node’s incoming
regulatory interactions. Throughout this study, we assume a ‘majority rule’ – that is,
a gene is expressed (ON) if it has more incoming activating interactions than
incoming inhibiting interactions, and not expressed (OFF) otherwise. Following this
logic, a gene having as many activators as inhibitors is considered to be not
expressed. However, a gene that is not regulated by any other gene constitutes an
exception from this rule as it is assumed to be expressed.
As previously mentioned, the initial interaction maps may contain interactions in

which the effect of the interaction (activation or inhibition) among genes is unknown –
that is, unsigned interactions. During contextualization, a sign for these interactions
is inferred that is consistent with both phenotype-specific networks. The GA is
comprised of a population of individuals implemented using a binary array containing
an interaction map for both phenotype-specific networks and an inferred sign
assignment (Figure 4). The presence of an interaction in a network is represented
following a Boolean encoding, letting ‘1’ represent its presence and ‘0’ its absence. In
the same manner, we encode the signs of interactions, letting ‘1’ represent activation
and ‘0’ inhibition. Consequently, the array representing one individual is split into three
subarrays (Figure 4). The first subarray (green) represents the network
corresponding to the first phenotype (healthy), and the second subarray (blue)
represents the network of the second phenotype (disease), whereas the last subarray
(yellow) corresponds to the inferred signs. As we start from the same initial interaction
map to contextualize against both phenotypes, the inferred signs have to be identical
in both networks.
The complete workflow of the network inference algorithm can be described as

follows: for each phenotype-specific GRN, the GA generates a new population of
individuals – that is, a set of candidate solutions – in each generation, resulting from
the following three-step approach (Figure 4):
(1) Selection: The selection step selects two individuals from the whole population
using our own implementation of cooperative selection67 to preserve diversity in
the population while ensuring the selection of the best individuals at least once.
Following this strategy, the best individual is selected and its fitness value is
updated to the average of the second and third best fitness values. Thus, this
procedure ensures the selection of a different individual in the next selection step –
the second best individual – preserving diversity among the best solutions while still
disregarding the worst solutions in the population.
(2) Mutation: The second step probabilistically alters the selected individuals, by
pruning or reintroducing interactions of the network. Moreover, inferred signs are
also subject to probabilistic mutations resulting in a flip from activation to inhibition
or vice versa. The choice of the mutation probability is, like the choice of the
selection scheme, crucial for the performance of the GA. A high mutation
probability leads to a more representative exploration of the search space. On the
other hand, a low mutation probability allows the GA to converge faster towards an
attractor state, even though it may be only a local optimum. The mutation
parameter is set to 0.01 per subarray for all examples in the study – that is, 1% of
the bits are mutated in every subarray. This conservative choice of the mutation
probability allows the algorithm to converge faster while a higher exploration of the
search space can still be obtained by increasing the user-defined size of the
population.
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(3) Crossover: The third step is the probabilistic recombination of the selected
individuals. With a given probability p, which is set to 0.9 for all the examples
discussed in this paper, the two individuals are recombined and, consequently,
remain unchanged with probability 1− p. As we are analyzing individuals
representing two different network topologies, we adapted the traditional single-
point crossover to a three-point crossover method. To account for the distinct
subarrays for each individual, we choose one crossover point for the first network,
another crossover point for the second network and a third crossover point for the
sign assignment. After recombination we obtain two new individuals, the first one of
which contains the first interaction subarray of the first individual and the second
subarray of the second individual, whereas the other one contains the first
subarray of the second and the second subarray of the first individual (Figure 4).
We choose this crossover operation to ensure that each phenotype-specific
network is treated independently during the pruning and sign estimation process.

The three aforementioned steps are implemented within the jMetal68 implementa-
tion of NSGA-II,69 an elitist multiobjective GA. The number of generations of the three
steps characterizes the termination criterion of the GA. We set the population size to
700, thus being at least almost five times higher compared with the number of
interactions, and the number of generations to 250 for each example. In general,
these parameters have been shown to provide the best solutions. For a detailed
assessment of the parameters see Supplementary File S4. After the user-defined
number of iterations is exceeded, the algorithm outputs the latest population. Even
though we observed that in most cases the trend of the population usually converges,
it is very likely to obtain some level of variability in the solutions. Therefore, our
method takes the top-ranking solutions and creates a consensus solution to narrow
the different solutions down to the most likely GRN representation. Similarly, in the
contextualization process described above, during this step both cellular phenotypes
are treated independently.

Inference of the effect of unsigned interactions. The estimation of the
effects of interactions for which there is no experimental evidence in MetaCore is
performed dynamically during the contextualization step. Instead of considering only
local network properties, such as gene expression of a regulated gene and its

regulator, in our method sign prediction takes into account global network
properties. Based on network stability – that is, the convergence to a steady
state – and the correspondence between the steady state of the GRN and
transcriptomic data, a consistent interaction sign assignment is inferred. Note that
the sign inference procedure allows more freedom to the GA to identify network
topologies best matching the transcriptomic data. During the analysis of unsigned
interactions, network consistency with gene expression data can be increased by
pruning network interactions, and also by inferring the best combinations of
interaction effect throughout the network. As both GRNs are reconstructed from the
same initial interaction map, the inference of interaction effect is performed
simultaneously for the two context-specific network representations. We assessed
our method’s ability to not only infer consistent assignments but also biologically
validated ones in Supplementary File S3.

Validation of the network inference algorithm. We benchmarked the
performance of our algorithm for reconstructing GRNs by building six networks
based on the pairwise differential expression of four well-characterized genome-
wide gene expression experiments annotated in ENCODE.60 In particular, these
experiments were performed in three cancer cell lines (GM12878, K562 and
HepG2) as well as one embryonic stem cell line (H1-hESC). For each of the six
differential expression patterns, starting from a literature-derived interaction map
using MetaCore, we assessed the enrichment of ChIP-seq experimentally validated
interactions before and after contextualization, to evaluate the performance of our
method for identifying phenotype-specific interactions. We also performed a
benchmarking of our methodology for reconstructing phenotype-specific GRNs, in
comparison with other methods available. We gathered 20 interaction data sets, in
which the great majority of the interactions have been experimentally validated
(ChIP-seq interaction data from ENCODE60), and analyzed them with our method,
CellNOptR46 and SignetTrainer47 for assessing the accuracy of the reconstructed
GRNs for explaining the phenotype-specific gene expression patterns, and the
enrichment in experimentally validated interactions in the reconstructed GRNs
(Supplementary Table S2.1 in Supplementary File S2).

Figure 4 Workflow of the GA. Starting from a randomly generated population of binary representations of two phenotype-specific networks and the mode of action
corresponding to the contained interactions, the GA iteratively selects two individuals, mutates them – that is, prunes or restores some of their interactions – and recombines
them. Each individual contains interaction information of the control network (green), the disease network (blue) and a mode of action assignment (yellow). The mode of action is
either activation (+) or repression (− ). Finally, the two newly derived individuals replace the worst individuals in the population. Based on simulation assays, the agreement
between network attractors and transcriptomic data is assessed for each individual. A score is derived in taking into account network attractors and stability
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Selection of validation examples for predicting drugs. We selected
six examples for the validation of our methodology from the CMap using different
small compounds including celastrol+androgen, gedunin+androgen,32 celastrol,
cobalt chloride, estradiol and genistein for treating LNCap or MCF7 cell lines. The
examples of celastrol/gedunin+androgen were chosen to illustrate that our method
is able to cope with combinations of applied drugs while the others are selected
from all available data sets in the CMap having at least three replicates for the
control and drug-induced phenotype, and distinct pharmacological mechanisms.
Estradiol targets the estrogen receptor and genistein belongs to the class of
flavones and is an agonist of the estrogen receptor. Celastrol is a quinone methide
triterpene inhibiting directly kinases IKKα and IKKβ and inactivates CDC37
(cell division cycle 37) and p23 (prostaglandin E synthase 3) proteins and is thus an
HSP90 (heat-shock protein 90 kDa) inhibitor.70 In this context, gedunin has been
found to have similar effect and acts as an HSP90 inhibitor as well.32 Ultimately,
cobalt chloride is lowering NF-κB (nuclear factor of kappa light polypeptide gene
enhancer in B cells) DNA-binding activity and results in higher expression levels of
IL-6 (interleukin-6) and TGFβ (transforming growth factor-β) in the brain.71

Selection of candidate genes for network perturbation. We
implemented the Johnson’s algorithm72 to detect all elementary network circuits
in both reconstructed GRNs, including self-loops. An elementary circuit is a path
starting from and ending in the same node visiting each intermediate node only
once. We then intersect the set of elementary circuits obtained for both phenotype-
specific networks, including positive and negative circuits – that is, between circuits
with an even number of inhibitions (positive circuits) and an odd number of
inhibitions (negative circuits). Positive circuits have been shown to have an
important role in maintaining network stability.73–77 On the other hand, negative
circuits are a necessary condition for a network to have an attractive cycle.78

However, it has been shown that combinations of positive and negative circuits are
able to maintain a stable steady network state.61 Perturbations of positive circuits
have been used in previous studies to induce a transition between two different
phenotypes modeled using a single network topology for describing the two
phenotype-specific attractor states.21 In this representation, any of the genes
contained in a circuit is assumed to be a perturbation candidate and a minimal
combination is derived. Nevertheless, our approach takes into consideration the
differences between the underlying GRN determining cellular phenotypes, and
predicts as candidate genes for perturbation of all the genes contained in positive
and negative circuits determining network stability. Owing to the topologic
differences between phenotype-specific GRNs, network circuits do not cover
similar parts of the networks, and it is more difficult to identify the genes triggering a
transition between the two cellular states. Hence, our method relies on a differential
network topology analysis to identify genes under differential regulation – that is,
genes regulated by different sets of transcription factors – as they constitute ideal
perturbation targets, which can only be perturbed individually. The sets of regulators
are constrained to expressed genes, as genes that are not expressed cannot
contribute to the expression of their targets in the network. The accordingly
identified genes are not necessarily those genes responsible for disease onset but
are rather genes able to revert most of the gene expression program upon
perturbation, which makes them good candidates for pharmacological targeting.

Identification of drugs and multitarget combinations for rever-
sing the disease phenotype. Once the set of candidate genes for
perturbation are identified, we simulate multitarget combinations of up to ten
candidate genes. Usually, we are interested in a minimal multitarget combination
leading to a significant change in the gene expression program between the two
cellular phenotypes, which was set to a change of at least 50% of the genes in the
GRNs. The size of a multitarget combination is defined as the number of genes
contained in it. For each multitarget combination size between 1 and 10 we simulate
network response of up to one million combinations and rank the results according
to the number of genes whose gene expression is reversed between the two
phenotypes. The results are normalized by substracting the number of perturbed
genes from the number of genes whose gene expression is changed upon
perturbation. We refer to this normalized gene expression changes in this paper as
the multitarget combination score. For relating the determined candidate genes to
drugs, we use two different approaches. The first approach, which is used during
the validation of our methodology, solely relies on the differential gene expression
pattern between the two conditions under study. The differential expression is used
as an input for the CMap31 to obtain drugs showing a similar differential expression
pattern. We select the top-ranking drugs and determine their target genes by using

the Comparative Toxicogenomics Database.48 Later, we compute the enrichment of
drug targets in the simulated multitarget combinations. In this approach, each gene
is assigned a different weight according to its simulated single perturbation effect,
and we analyze the enrichment of the gene targets for the compounds causing the
phenotypic transition according to the CMap,31 in the top-ranking multitarget
combinations obtained with our method. In addition, network response to induction
of a single drug is measured and the drugs are ranked in accordance to the
enrichment and this simulation assay analysis. In these simulation assays, the effect
of chemical compounds is assumed to be constant during the trial, and the
expression values of perturbed genes are kept constant throughout the whole
simulation – that is, the drugs are assumed to have dominant effect on the target
genes. The second approach solely relies on the Comparative Toxicogenomics
Database48 and is used for the prediction of disease–gene–drug relationships in
systemic lupus and rheumatoid arthritis. Our method predicts drugs that could have
an effect on triggering the phenotypic transition by first identifying the genes in
network stability determinants as described above. Then, we identified gene–drug
associations by compiling drug mode of action from the Comparative
Toxicogenomics Database.48 We then select those drugs having more gene targets
among the candidate genes and perform enrichment and simulation assay analysis
as described in the previous case.

Analysis of drug–gene target enrichment. To score the drugs obtained
from our differential network analysis, we compute the enrichment of drug–gene
targets in the set of simulated multitarget combinations. Owing to incomplete
information about drug–gene mode of action, not all drug gene targets are
represented in our network. Hence, the predicted candidate genes, and therefore
the multitarget combinations, do not contain all the drug–gene targets in most
cases. Our analysis is therefore restricted to target genes already predicted as
perturbation candidates. To study the extent of phenotypic change upon GRN drug
perturbation, a weight wg is assigned to each perturbation candidate, corresponding
to the normalized gene expression changes resulting from single-target perturbation
of that gene. Then, for each simulated multitarget combination i, an enrichment
score md

i is derived by summing the weights wd
g of targets of drug d contained in

the multitarget combination – that is, md
i ¼ P

jAi w
d
j . To obtain values between 0

and 1, these scores are normalized to obtain md 0
i ¼ md

i =
P

jw
d
j . From the values

obtained for each multitarget combination, a distribution is drawn over the space of
normalized gene expression changes. It is determined by the probability mass
function pd xð Þ ¼ sd ðxÞ=

P
yAZsd ðyÞ, where sd xð Þ ¼ P

iAfi jgec ið Þ¼xgm
d 0
i

and gec(i) is the normalized gene expression change of multitarget combination i.
To assess finally the quality of a drug with respect to its effect on the phenotype, we
derive the cumulative distribution function (CDF) of the scores for each drug and
calculate the AUC. Hence, the CDF of enrichment of drug d can be formulated as

the step function cd xð Þ ¼ PmaxfkAZjkrxg
j¼�N pd ðjÞ and the area under the curve is

determined as AUCd ¼ Pmin x jcd xð Þ¼1f g�1
i¼minfx jcd ðxÞa0g cd ið Þ. Following the definition of cd

as a monotonously increasing function, an optimal enrichment pattern is reflected
by AUCd= 0. Furthermore, smaller values of AUCd reflect a more favorable drug
enrichment pattern as they indicate a lower enrichment in the worst multitarget
combinations and at the same time a higher enrichment in the high-ranking
combinations.
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