
OPEN

DeubiquitylatingenzymeUSP9x regulates radiosensitivity
in glioblastoma cells by Mcl-1-dependent
and -independent mechanisms

F Wolfsperger1,5, SA Hogh-Binder1,5, J Schittenhelm2, T Psaras3, V Ritter4, L Bornes4, SM Huber1, V Jendrossek4 and J Rudner*,4

Glioblastoma is a very aggressive form of brain tumor with limited therapeutic options. Usually, glioblastoma is treated with
ionizing radiation (IR) and chemotherapy after surgical removal. However, radiotherapy is frequently unsuccessful, among others
owing to resistance mechanisms the tumor cells have developed. Antiapoptotic B-cell leukemia (Bcl)-2 family members can
contribute to radioresistance by interfering with apoptosis induction in response to IR. Bcl-2 and the closely related Bcl-xL and
Mcl-1 are often overexpressed in glioblastoma cells. In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a short-lived protein whose stability is
closely regulated by ubiquitylation-dependent proteasomal degradation. Although ubiquitin ligases facilitate degradation, the
deubiquitylating enzyme ubiquitin-specific protease 9x (USP9x) interferes with degradation by removing polyubiquitin chains from
Mcl-1, thereby stabilizing this protein. Thus, an inability to downregulate Mcl-1 by enhanced USP9x activity might contribute to
radioresistance. Here we analyzed the impact of USP9x on Mcl-1 levels and radiosensitivity in glioblastoma cells. Correlating Mcl-1
and USP9x expressions were significantly higher in human glioblastoma than in astrocytoma. Downregulation of Mcl-1 correlated
with apoptosis induction in established glioblastoma cell lines. Although Mcl-1 knockdown by siRNA increased apoptosis
induction after irradiation in all glioblastoma cell lines, USP9x knockdown significantly improved radiation-induced apoptosis in
one of four cell lines and slightly increased apoptosis in another cell line. In the latter two cell lines, USP9x knockdown also
increased radiation-induced clonogenic death. The massive downregulation of Mcl-1 and apoptosis induction in A172 cells
transfected with USP9x siRNA shows that the deubiquitinase regulates cell survival by regulating Mcl-1 levels. In contrast, USP9x
regulated radiosensitivity in Ln229 cells without affecting Mcl-1 levels. We conclude that USP9x can control survival and
radiosensitivity in glioblastoma cells by Mcl-1-dependent and Mcl-1-independent mechanisms.
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Along with surgery, radiotherapy, and chemotherapy are
the main treatment options of tumors. While the former
aims to remove the tumor bulk mass, the latter two intend to
neutralize remaining tumor cells. Ionizing radiation (IR) exerts
its cytotoxic effects by inducing cell death. One form of specific
cell death induced by IR is intrinsic apoptosis, which is
regulated by members of the B-cell leukemia (Bcl)-2
protein family.1

The Bcl-2 protein family consists of protective antiapoptotic
and pro-apoptotic members, which keep each other in check
by antagonizing each other’s function.2 The activation of
pro-apoptotic multidomain proteins Bax and Bak is essential to
induce mitochondrial outer membrane permeabilization,
resulting in the release of cytochrome C and other apoptotic
factors into the cytosol where, in turn, caspases become
activated. Antiapoptotic Bcl-2 family members prevent the
activation of Bax and Bak either by direct interaction or
indirectly by sequestering pro-apoptotic BH3-only proteins
Bim and Bid that are required to activate Bax and Bak. Other

BH3-only proteins are also able to bind to antiapoptotic
proteins, thereby releasing Bax and Bak from their inhibitory
complexes with antiapoptotic proteins. Changing the balance
between anti- and pro-apoptotic Bcl-2 family members can
shift the cells toward survival or apoptosis, depending on
whether the protective or the detrimental proteins dominate.
Bcl-2 itself, Bcl-xL, and myeloid cell lymphoma-1 (Mcl-1)

belong to the antiapoptotic proteins of the Bcl-2 family. They
are often overexpressed in tumor cells and are associated
with increased resistance to apoptosis induction in response
to radio- and chemotherapy.3,4 As more than one of the
protective proteins can be upregulated in tumors, the
neutralization of all antiapoptotic proteins is needed to
successfully induce apoptosis. Blocking the antiapoptotic
function of Bcl-2/Bcl-xL by inhibitors mimicking BH3-only
proteins, such as ABT737 and ABT263, can induce apoptosis
in cells with lowMcl-1 levels but has no effect on cells with high
Mcl-1 levels.5–7 In contrast, specific inhibitors targeting Mcl-1
have been insufficiently described until now. However, Mcl-1
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availability might be modulated by targeting pathways that
regulate Mcl-1 stability.
In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a relatively short-

lived protein.8,9 Usually, Mcl-1 is quickly ubiquitylated by
specific ubiquitin ligases and targeted for proteasomal
degradation. Phosphorylation of Mcl-1, for example by
glycogen synthase kinase GSK-3β, can accelerate this
degrading process,10,11 whereas deubiquitinases counteract
it by removing the polyubiquitin chain, thereby stabilizing the
short-lived protein. The ubiquitin-specific protease 9x (USP9x)
was recently identified as a Mcl-1 specific deubiquitinase.12

However, the circumstances under which USP9x regulates
Mcl-1 stability are not well understood. Schwickart et al.12

showed that USP9x levels correlated with Mcl-1 levels,
suggesting a constitutive regulation of Mcl-1 levels by the
deubiquitinase. In contrast, our recent results showed no
effect of USP9x on Mcl-1 levels in healthy Jurkat cells, but an
accelerated IR-inducedMcl-1 degradation was detected when
USP9x was knocked down.9 This indicates that the associa-
tion of USP9x with Mcl-1 is regulated by a yet unknown
mechanism in response to irradiation.
In the present study, we aimed to analyze the impact of

USP9x on Mcl-1 and cell survival in glioblastoma cell lines.
Glioblastoma is not only the most common but also a very
aggressive form of brain tumor that are primarily removed
by surgery as radically as possible and consecutively treated
with radiochemotherapy, if the patient’s condition allows for
adjuvant therapy.13 Despite the multimodal treatment, the
median patient survival is below 1.5 years. Comparing human
grade III astrocytoma with grade IV glioblastoma samples, we
could show that Mcl-1 and USP9x are upregulated during
tumor progression. Furthermore, we examined four estab-
lished (A172, U373, Ln229, T98G) and two primary (LKI, WKI)
glioblastoma cell lines that differ in their ability to downregulate
Mcl-1 and induce apoptosis in response to IR. Analyzing A172
and U373 cells more closely, we detected an increased Mcl-1
ubiquitylation that correlated with a reduced Mcl-1 stability
48 h after irradiation in U373 cells, but not in A172 cells.
Moreover, Mcl-1 knockdown sensitized A172, Ln229, and
T98G cells to IR-induced apoptosis, suggesting that Mcl-1 is
an important factor increasing glioblastoma cell survival after
irradiation. In contrast, USP9x knockdown slightly increased
apoptosis in IR-resistant A172 cells and significantly in Ln229
cells and reduced clonogenic survival after irradiation only on
these two cell lines. Although USP9x knockdown reduced
Mcl-1 levels and increased apoptosis in A172 cells,
USP9x regulated radiosensitivity independently of Mcl-1 in
Ln229 cells.
Our results show a different requirement of USP9x in the

control of glioblastoma cell survival and radiosensitivity.

Results

Mcl-1 and USP9x are upregulated during tumor
progression. In the first set of experiments, we examined
the expression of Mcl-1 and USP9x in astrocytoma (WHO
grade III) and glioblastoma (WHO grade IV) (Figure 1).
Immunohistochemical analysis shows that number of
Mcl-1- and USP9x-positive cells and staining intensity were

significantly upregulated in glioblastoma compared with
astrocytoma (Figure 1b). Median immune reactivity score
(IRS) of Mcl-1 increased from 0.92±0.40 (95% from 0.13
to 1.71, n=38) in grade III astrocytoma to 5.23±0.43
(95% from 4.38 to 6.08, n=33) in glioblastoma, whereas
IRS of USP9x increased from 3.24±0.42 (95% from 2.39 to
4.08, n= 42) in astrocytoma to 4.91±0.41 (95% from 4.10 to
5.73, n= 45) in glioblastoma. A more detailed mosaic plot
analysis of Mcl-1 and USP9x IRS shows that Mcl-1 was
upregulated in more glioblastoma tissue samples and to a
greater extent than USP9x (Supplementary Figure S1). Yet,
Mcl-1 and USP9x IRS correlated moderately but significantly
in grade IV glioblastoma (Spearman correlation, ρ= 0.47,
P= 0.0063), indicating a coincidental upregulation of Mcl-1
and USP9x.

IR-induced downregulation of Mcl-1 correlates with
apoptosis induction. Previous experiments have shown
the effect of USP9x on Mcl-1 in irradiated Jurkat lymphoma
cells.9 Thus, we compared the protein levels of USP9x, Mcl-1
and several other Bcl-2 family members in Jurkat cells, four
established (A172, Ln229, T98G, U373), and two primary
(WKI, LKI) glioblastoma cell lines (Figure 2). All four
glioblastoma cell lines expressed USP9x as well as
antiapoptotic Mcl-1, Bcl-2, Bcl-xL, and pro-apoptotic Bax,
Bak, Noxa, Puma, and Bad (Figure 2a). The protein levels of
USP9x and Mcl-1 were slightly but insignificantly higher in
five of six glioblastoma cell lines than in Jurkat cells
(Figure 2b). Although all glioblastoma cell lines expressed
pro-apoptotic Bax at similar levels, the levels of the other
pro- and antiapoptotic proteins greatly differed between the
cell lines (Figure 2a).
Next, we irradiated glioblastoma cells with 10 Gy and

determined dissipation of mitochondrial membrane potential
(ΔΨm) and DNA degradation (sub G1 population) by flow
cytometry (Figure 3a and b) to analyze radiation-induced cell
death and apoptosis, respectively. Although ΔΨm dissipation
and DNA fragmentation were hardly increased in A172,
Ln229, and LKI cells in response to IR, irradiation effectively
increased the cell population with dissipated ΔΨm and
fragmented DNA in a time-dependent manner in U373 cells
and, to a lesser extent, in T98G and WKI cells. Similar results
were obtained bymeasuring cell death using an exclusion dye
assay (Supplementary Figure S3).
Western blot analysis clearly showed caspase-3 and PARP

cleavage in U373 and T98G cells and weaker caspase-3 and
PARP cleavage in WKI cells, indicating that IR induced
caspase-dependent apoptosis in U373, T98G, and WKI cells
but not in A172, Ln229, and LKI cells (Figure 3c).
As members of the Bcl-2 protein family regulate the

mitochondrial homeostasis and the intrinsic apoptosis
pathway in response to IR,1,14 up- and downregulation of
those proteins might be responsible for the IR-induced
apoptosis in the three glioblastoma cell lines. Therefore, we
analyzed the protein levels of different Bcl-2 family members in
response to IR (Figure 3d). Although levels of antiapoptotic
Bcl-2 and Bcl-xL did not change after irradiation in all six cell
lines, IR-induced downregulation of Mcl-1 correlated with
caspase-3 activation in U373, T98G, and WKI cells. Levels of
the Mcl-1-regulating deubiquitylating enzyme USP9x were
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only slightly increased by IR in Ln229 cells and not affected in
the other five cell lines. The pro-apoptotic Bcl-2 family
members were regulated differently in response to IR in the
six glioblastoma cell lines, but their regulation did not correlate
with apoptosis induction.

IR reduced Mcl-1 stability in U373 cells. We selected
IR-resistant A172 cells and IR-sensitive U373 cells to further
analyze Mcl-1 ubiquitylation and stability. As phosphorylation
of Mcl-1 at serine 163 is associated with an accelerated
degradation rate, the phosphorylation status was analyzed by
western blot (Figure 4a). Increased phospho-Mcl-1 levels
were detected in A172 cells 48–72 h after IR. In contrast, the
40 kDa form of phosphorylated Mcl-1 decreased in U373
cells 48–72 h following irradiation, but a shift of phosphory-
lated Mcl-1 was clearly visible, indicating a post-translational
modification. Such a modification can be ubiquitylation, which
has been associated with an increased degradation rate
before.10,11 Thus, we precipitated Mcl-1 to analyze its
ubiquitylation by western blot (Figure 4b). Mcl-1 ubiquitylation
was not affected in A172 cells, but was clearly increased in
U373 cells 48 h after irradiation. Further experiments showed
that more Mcl-1 co-precipitated with USP9x in A172 cells
after irradiation, whereas an increased association of Mcl-1
with USP9x was not observed in irradiated U373 cells
(Figure 4c). Levels of Mcl-1, USP9x, and ubiquitylated
proteins in whole-cell lysates that were used for both

precipitation experiments are shown in supplementary
figure (Supplementary Figure S5A).
We also analyzed the protein stability of Mcl-1 in A172 and

U373 cells 48 h after irradiation and in non-irradiated cells.
Mcl-1 was degraded at similar rates in non-irradiated and
irradiated A172 cells (Figure 4d). In contrast, the half-life time
significantly decreased in U373 cells after IR (Figure 4e).
Moreover, comparing Mcl-1 stability in both non-irradiated cell
lines, Mcl-1 was degraded slightly but insignificantly faster in
U373 than in A172 cells (Supplementary Figure S5B).
Summarized, our results suggest that Mcl-1 stability is

regulated by different mechanisms in irradiated A172 and
U373 glioblastoma cells.

Mcl-1 and USP9x affect cell viability in glioblastoma
cells. In previous publications, a stabilizing effect of
deubiquitinase USP9x on Mcl-1 was described.12,15,16 There-
fore, USP9x and Mcl-1 were downregulated by siRNA in
glioblasoma cells (Figure 5). USP9x knockdown resulted in
decreased Mcl-1 levels in A172 and less strikingly in U373
cells, but did not change Mcl-1 levels in Ln299 and T98G
cells (Figure 5a). Neither Bcl-2 nor Bcl-xL levels were affected
by transfection.
The lowered Mcl-1 levels might result in reduced cell

survival due to increased apoptosis. To examine the effect of
USP9x and Mcl-1 knockdown on apoptosis induction, DNA
fragmentation was analyzed by flow cytometry 72 h following
transfection. Downregulation of USP9x markedly increased
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the amount of A172 cells with fragmented DNA and to lesser
extent of Ln229 cells, whereas it hardly induced DNA
fragmentation in U373 and T98G cells (Figure 5b). In contrast,
Mcl-1 knockdown resulted in significantly increased DNA
fragmentation in all four cell lines (Figure 5c).

Effect of USP9x and Mcl-1 knockdown on irradiated
glioblastoma cells. We previously described a radiosensi-
tizing effect of USP9x in Jurkat cells.9 Therefore, we
examined the influence of Mcl-1 and USP9x knockdown on
apoptosis induction in glioblastoma cells following irradiation
with 10 Gy by flow cytometry analyzing DNA fragmentation
and ΔΨm dissipation.
Downregulation of Mcl-1 significantly increased IR-induced

DNA fragmentation in A172, Ln229, and T98G cells, but had
no effect in U373 cells (Figure 6a). Successful Mcl-1 knock-
down in glioblastoma cells was verified by western blot
(Figure 6b). IR-induced ΔΨm dissipation was increased in all
four cell lines transfected with Mcl-1 siRNA (Supplementary
Figure S6A). The data suggest that loweredMcl-1 levels could
sensitize the glioblastoma cells to IR-induced apoptosis or, in
case of U373 cells, accelerate IR-induced apoptosis.
In A172 cells, downregulation of USP9x by siRNA already

resulted in intense DNA fragmentation that was insignificantly
increased after irradiation (Figure 6c). A significant increase of
IR-induced DNA fragmentation was observed in Ln229 cells
transfected with USP9x siRNA. In contrast, no effect of USP9x
knockdown on IR-induced DNA fragmentation was observed
in U373 and T98G cells. Similar effects were observed by
analyzing ΔΨm dissipation (Supplementary Figure S6B). The
data show that USP9x knockdown could sensitize Ln229 cells

to IR-induced apoptosis or accelerate IR-induced apoptosis as
in U373 cells, but had no effect in other glioblastoma cell lines.
Following transfection with USP9x siRNA and irradiation,

we observed a strong downregulation of Mcl-1 in non-
irradiated A172 cells, which was even stronger after irradiation
(Figure 6d). In contrast, IR resulted in decreased Mcl-1 levels
in U373 and T98G cells, but the Mcl-1 protein level was not
affected by USP9x knockdown. In Ln229 cells, neither USP9x
siRNA nor irradiation had any effect on Mcl-1.
Taken together, downregulation of Mcl-1 could sensitize

glioblastoma cells to or accelerate IR-induced apoptosis. In
contrast, downregulation of USP9x had a strong effect on cell
survival in A172 cells but showed a sensitizing effect to IR-
induced apoptosis only in Ln229 cells without affecting Mcl-1
levels.

Irradiation and Mcl-1 knockdown sensitized glioblastoma
cells to Bcl-2/Bcl-xL-induced apoptosis. Maintaining high
Mcl-1 levels seemed to be important for all glioblastoma cells.
However, all antiapoptotic Bcl-2 family members need to be
neutralized to successfully induce apoptosis. To analyze the
role of other antiapoptotic Bcl-2 family members in the control
of cell survival, we treated A172, U373, Ln299, and T98G
cells with different concentrations of the Bcl-2/Bcl-xL inhibitor
ABT737 and with radiotherapy. Apoptosis was assessed by
flow cytometry analyzing DNA fragmentation (Figure 7a) and
ΔΨm dissipation (Supplementary Figure S7A). Our results
show that U373 and T98G cells reacted more susceptible to
ABT737 than A172 and Ln229 cells. However, combined
with radiotherapy, ABT737 increased apoptosis in all four
glioblastoma cell lines. Moreover, our data show that
irradiated cells that downregulate Mcl-1 levels respond better
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to Bcl-2/Bcl-xL inhibition than irradiated cells that fail to
downregulate Mcl-1. To confirm this observation described
above, we knocked down Mcl-1 by siRNA before treating the
cells with ABT737 (Figure 7b, Supplementary Figure S7B).
As expected, Mcl-1 knockdown sensitized all four glioblas-
toma cell lines to ABT737-induced apoptosis. Apoptosis
induction by Bcl-2/Bcl-xL inhibition was as effective in A172
and Ln229 cells as in U373 and T98G cells. These results
confirm the importance of Mcl-1 in regulation of survival.

USP9x knockdown increased sensitivity to IR in A172
and Ln229 cells. After measuring the influence of USP9x on
irradiated glioblastoma cells in a short-term assay, we
analyzed the influence of USP9x on long-term survival by a
colony-formation assay measuring the clonogenic survival
upon transfection with USP9x siRNA or the non-targeting
control siRNA and irradiation (Figure 8). After irradiation, the
surviving fraction (SF) was decreased in all four glioblastoma
cell lines in a dose-dependent manner. USP9x knockdown
further reduced SF in A172 and Ln229 cells. In contrast,

USP9x did not affect radiosensitivity in U373 and T98G cells.
Our data show that USP9x regulates radiosensitivity only in
some glioblastoma cells.

Discussion

Patients with glioblastoma usually undergo neurosurgical
tumor removal before adjuvant radiotherapy, usually combined
with temozolomide.13 However, many patients do not respond
or respond only partially to IR. Novel strategies are needed to
improve the response to radiochemotherapy. One therapeutic
option might be the targeting of the antiapoptotic Bcl-2 family
members that control intrinsic apoptosis.
Here, we used four established glioblastoma cell lines and

two primary glioblastoma cell lines that express the anti-
apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1, but showed
different sensitivity to IR-induced apoptosis. In contrast to
the A172, Ln229 and LKI cells, the cell lines U373, T98G, and
WKI downregulated Mcl-1 and induced caspase-dependent
apoptosis in response to IR. The decline of Mcl-1 levels upon
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irradiation have been correlated before with apoptosis induc-
tion in Jurkat T-lymphoma cells.9 In addition, Mcl-1 increased
resistance of glioblastoma cells to apoptosis induced by
temozolomide or the death ligand TRAIL.17,18 Thus, the failure
to downregulate Mcl-1 levels in A172, Ln229, and LKI cells
could be responsible for survival after irradiation.

Regulation of Mcl-1 stability in glioblastoma cells. Mcl-1
levels are regulated at the transcriptional and translational
level.8,19 Moreover, Mcl-1 stability is controlled by
post-translational modifications. Usually, Mcl-1 is quickly
ubiquitylated and subsequently degraded by proteasomes.
Until now, three ubiquitin ligases have been described that
catalyze the ubiquitylation of Mcl-1,11,20–22 whereas the
deubiquitinase USP9x is able to antagonize this reaction
by removing the polyubiquitin chains, thereby stabilizing
Mcl-1.9,21 In addition, phosphorylation of Mcl-1 by GSK-3β
can accelerate Mcl-1 ubiquitylation and degradation.10 Our
results show that phosphorylated Mcl-1 was more ubiquity-
lated, whereas Mcl-1 half-life time was reduced in U373 cells
after irradiation. Neither Mcl-1 ubiquitylation nor Mcl-1
stability were affected in A172 cells in response to irradiation.
The data suggest that, in U373 cells, ubiquitylation targeted
Mcl-1 for proteasomal degradation in response to IR,
whereas phosphorylated Mcl-1 was stabilized in irradiated
A172 cells. As the interaction between Mcl-1 and the
deubiquitinase USP9x was not changed in U373 cells
upon irradiation, we think that the increased Mcl-1

polyubiquitylation was due to enhanced ubiquitylation activity
rather than to reduced USP9x activity. Alternatively, the
activity of another, not yet identified, deubiquitinase regulat-
ing Mcl-1 stability in U373 cells could be compromised in
U373 cells upon irradiation. Ku70, a component of the non-
homologs end joining DNA repair pathway, was recently
shown to interact with and deubiquitylate Mcl-1, thereby
linking DNA repair to apoptosis.23 Whether the activity of Mcl-
1-specific ubiquitin ligases is increased or the Ku70
deubiquitylating activity is reduced after IR in apoptosis-
inducing glioblastoma cells, this needs further investigation.
On the other hand, the increased interaction between Mcl-1
and USP9x in irradiated A172 cells implicates that USP9x
contributes to Mcl-1 stabilization, thereby improving survival
following irradiation in this cell line.

USP9x is a potential radiosensitizing factor. Low USP9x
levels have been correlated with low Mcl-1 levels and
increased susceptibility to IR.12 Thus, knockdown of USP9x
might result in cell death when cell survival depends on high
Mcl-1 levels. In A172, downregulation of USP9x by siRNA
resulted in lowered Mcl-1 levels and massive apoptosis
induction. Irradiation only slightly increased cell death,
whereas it further decreased Mcl-1 levels. Nevertheless,
USP9x knockdown had a remarkable radiosensitizing effect
in colony-formation assay. A radiosensitizing effect was also
observed in Ln229 cells after transfection with USP9x siRNA.
In this cell line, downregulation of USP9x resulted in
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increased apoptosis and reduced clonogenic survival.
However, Mcl-1 protein levels were neither affected by
USP9x nor by IR, suggesting that USP9x increased
resistance to IR-induced apoptosis and clonogenic cell
death independently of Mcl-1. In contrast, USP9x had no
radiosensitizing effect in U373 and T98G cells, although

USP9x knockdown accelerated IR-induced apoptosis in
U373 cells.
USP9x has also been shown to positively regulate brain

tumor growth.24 We detected a significantly higher USP9x
expression in glioblastoma than in astrocytoma. Thus, our
data indicate that USP9x has a role during tumor progression
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from astrocytoma to glioblastoma. USP9x expression corre-
lated moderately but significantly with Mcl-1 expression in
glioblastoma, supporting our hypothesis that USP9x stabilizes
Mcl-1 in glioblastoma cells. However, not all glioblastoma
tissue samples expressing high Mcl-1 levels also express high
USP9x levels. This again implicates that other factors are also
important regulators of Mcl-1 levels in glioblastoma tumors.
Further publications point to a multifaceted role of USP9x in

the brain.25,26 The diverse effects of USP9x could be signaled
through different proteins targeted by USP9x. In addition to
Mcl-1, USP9x also stabilizes β-Catenin and ubiquitin ligase
Itch.27,28 High β-catenin levels were correlated with increased
radioresistance in pancreatic cancer cells,29 whereas Itch
regulates the internalization of epidermal growth factor
receptor, a growth receptor that mediates radioresistance in
glioblastoma tumors.30,31 Moreover, stabilization of Foxo3A by
USP9x resulted in decreased cyclin D1 levels and cell cycle
arrest.32 Although the three USP9x interaction partners have
not been examined in our glioblastoma cells, it is possible that
USP9x modulates the response to IR in Ln229 and A172 cells
through these and other effector proteins.

Dependency on Bcl-2/Bcl-xL. The antiapoptotic family
members Bcl-2, Bcl-xL, and Mcl-1 are often overexpressed in
glioblastoma.33 Successful targeting of the protective
proteins alone or in combination with other therapies has
been repeatedly described.5,14,34–36 Generally, the more
antiapoptotic proteins can be neutralized, the better is
apoptosis induction. Among the best described inhibitors

targeting antiapoptotic Bcl-2 family members is the
Bad-mimicking compound ABT737 and its orally available
analog ABT263, both of which were shown to inhibit Bcl-2
and Bcl-xL.7,37 We have shown that A172 and Ln229 cells
that hardly induced apoptosis after irradiation were also very
resistant to ABT737-induced apoptosis, whereas U373 and
T98G cells that induced apoptosis after irradiation reacted
more sensitively to Bcl-2/Bcl-xL inhibition. The differences
between the cell lines could be explained by different capacity
to sequester pro-apoptotic Bcl-2 family members. Mcl-1
contributes to the neutralizing capacity, as downregulation
of Mcl-1 sensitized all four glioblastoma cells to ABT737-
induced apoptosis.
Interestingly, all cell lines could also be sensitized to

ABT737-induced apoptosis by irradiation, suggesting addi-
tional sensitizing events by IR. Following irradiation, an
upregulation of pro-apoptotic Bax was observed in Ln229
cells, whereas BH3-only protein Bim levels were increased in
Ln229 and WKI cells in response to IR. Moreover, irradiation
increased Noxa levels especially in T98G and WKI cells. Bim
can antagonize all three antiapoptotic proteins and directly
activate Bax and Bak.38 Noxa was described to specifically
antagonize Mcl-1 but not Bcl-2 and Bcl-xL.38 In addition, a
recent publication showed that Noxa is also able to directly
activate Bax and Bak.39 All three proteins can shift the balance
between anti- and pro-apoptotic Bcl-2 family members toward
cell death. Interestingly, Bax and Noxa can be transcriptionally
upregulated by p53, a tumor suppressor that is upregulated in
response to IR.40–42 Alterations of p53 are commonly
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observed in glioblastoma.43 We found that p53 levels were
already elevated in non-irradiated T98G, U373, andWKI cells,
suggesting that p53 was mutated in these cell lines
(Supplementary Figure S2). Moreover, none of the other
glioblastoma cell lines induced p53 after irradiation, implicat-
ing an impaired p53 response following irradiation, thus,
excluding any p53-dependent regulation of pro-apoptotic
Bcl-2 family members.
Taken together, downregulation of Mcl-1 in response to IR is

an important step in IR-induced apoptosis in glioblastoma
cells. Furthermore, USP9x can act as a radioprotective protein
either by maintaining high Mcl-1 levels or by regulating
alternative mechanisms.

Material and Methods
Reagents and antibodies. Cycloheximide was purchased from Sigma
(Deisenhofen, Germany). ABT737 was obtained from Active Biochemicals (Bonn,
Germany).
Following antibodies were used for western blotting: rabbit-anti Bak from Upstate

(distributed by Millipore, Schwalbach, Germany), rabbit- anti caspase-3, PARP, Mcl-1,
Bcl-xL, Bax, Puma, Bim, Tubulin, and mouse anti-Ubiquitin (clone P4D1) from Cell
Signaling (distributed by NEB, Frankfurt, Germany), mouse anti–Mcl-1 from
Pharmingen and mouse anti-Bad from Transduction Laboratories (distributed by
Becton Dickinson, Heidelberg, Germany), mouse-anti Bcl-2 from Santa Cruz
Biotechnology (Heidelberg, Germany), mouse anti-Noxa from Calbiochem
(distributed by Merck, Darmstadt, Germany), rabbit-anti-USP9x from Novus

Biologicals (distributed by Acris, Herford, Germany), and mouse-anti β-actin was
obtained from Sigma.

Cells and cell culture. A172, Ln229, U373, and T98G glioblastoma cell lines
as well as Jurkat T-lymphoma cells were from ATCC (Bethesda, MA, USA).
According to ATCC, U373 cells used in the present work show genetic similarities to
U251 glioblastoma cells. LKI cells were established from primary glioblastoma and
provided by the Department of Radiation Oncology, University of Tuebingen,
Germany, with patient’s consent and approved by the local ethic committee
(579/2015BO2), whereas WKI cells were provided by Dr. Mike Fay from Genesis
CancerCare (New South Wales, Australia). Cells were grown in RPMI 1640 medium
supplemented with 10% fetal bovine serum (Gibco Life Technologies, Eggenstein,
Germany). Cells were maintained in a humidified incubator at 37 °C and 5% CO2.
Cells were irradiated at room temperature with 6 MV photons using a linear

accelerator (LINAC SL25 Philips, DA Best, the Netherlands) at a dose rate of
4 Gy/min.

Transfection with siRNA. In total, 3–4 × 105 cells were seeded in 2 ml
complete medium (RPMI 1640+10% fetal bovine serum) in a six-well plate. After
24 h, cells were transfected with 50–100 nM of the respective siRNA using Trans-IT
siQuest transfection reagent (Mirus, Madison, WI, USA) according to the
manufacturers protocol. Mcl-1 and USP9x ON-TARGET SMARTpools, and
siCONTROL NON-TARGETING pool were purchased from Dharmacon (Chicago,
IL, USA).

Flow cytometric analysis. The mitochondrial membrane potential (ΔΨm)
was analyzed using the ΔΨm-specific dye tetramethylrhodamine ethyl ester
(TMRE, Molecular Probes, distributed by Thermo Fisher Scientific, Grand Island,
NY, USA). At the indicated time points, cells were stained for 30 min in PBS
containing 25 nM TMRE. To examine DNA fragmentation, cells were incubated with
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PBS containing 0.1% sodium citrate, 0.1% Triton X-100, and 10 μg/ml propidium
iodide. Cells were detected in fluorescence channel 2 employing a FACS Calibur
flow cytometer (Becton Dickinson) and analyzed with the FCS Express 3 software
(De Novo Software, Los Angeles, CA, USA). Data show mean values± S.D. of at
least six independent experiments.

Colony-formation assay. Clonogenic survival was analyzed as described
before.44 In brief, 3000 cells were seeded in six-well plates and transfected with
100 nM USP9x or non-targeting siRNA the next day. After 24 h of transfection, cells
were irradiated with 0–5 Gy. The cells were incubated as described above for
6–10 days (depending on the cell line) to allow growth of single colonies. After that,
cells were fixed with 3.7% formaldehyde and 70% ethanol and subsequently stained
with 0.05% Coomassie Brilliant Blue. Colonies (450 cells/colony) were counted. To
determine the SF, the ratio of colonies counted/seeded cells was calculated and
normalized to that of untreated control cells. The fitting of the curves was performed
using Excel software. Error bars indicate the mean values± S.D. Two independent
experiments were performed.

Western blot analysis. Cells were lysed in 200 μl lysis buffer containing
50 mM HEPES pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA, 10 mM
sodium pyrophosphate, 10 mM NaF, 2 mM Na3VO4, 100 mM PMSF, 5 μg/ml
Aprotinin, 5 μg/ml Leupeptin, and 3 μg/ml Pepstatin A. Protein was separated by
SDS-PAGE under reducing conditions and transferred onto PVDF membranes
(Roth, Karlsruhe, Germany). Blots were blocked in TBS buffer containing 0.05%
Tween 20 and 5% non-fat dry milk for 1 h at room temperature. The membrane was
incubated overnight at 4 °C with the respective primary antibodies. The secondary
antibody was incubated for 1 h at room temperature. Detection of antibody binding
was performed by enhanced chemoluminescence (ECL Western blotting analysis
system from GE Healthcare, Freiburg, Germany). Equal loading was verified by
antibodies against β-actin or Tubulin. Where indicated protein levels were quantified
by densitometry using ImageJ software (ImageJ 1.40 g NIH, USA). At least two
independent western blot experiments were performed.

Mcl-1 degradation assay. Cells were treated with 2 μM cycloheximide for
0–3 h. At indicated time points, cells were lysed, and lysates were separated as
described above. Mcl-1 protein levels were detected by western blot. Several blots
were made from the same lysates. Protein levels were quantified by densitometry
using ImageJ software (ImageJ 1.40 g NIH, USA) and normalized to the β-actin
levels. After that, Mcl-1 levels were normalized to the initial level (0 min
cycloheximide). Monoexponential decay was fitted using Origin 6.0 software and
included in further analysis when correlation coefficient R2 was higher than 0.8. At
least five western blots were analyzed of each experiment and the median was
calculated. Three independent experiments were performed.

Immunoprecipitation. Cells were lysed as described above using 1%
CHAPS as detergent. The protein concentration was adjusted to 2 mg/ml. Two
micrograms mouse anti-USP9x antibody (H00008239-M01, Abnova, Acris) or five
rabbit anti-Mcl-1 (S19, Santa Cruz Biotechnology) and 50 μl slurry Dynabeads
suspension (Dynal/Invitrogen, Karlsruhe, Germany) were added to 750 μl lysate.
After the precipitation for 3 h at 4 °C, the beads were washed thrice with 300 μl
lysis buffer containing 0.2% of the respective detergent. Proteins were eluted
by boiling the beads for 10 min in 60 μl SDS sample buffer containing 2.5%
β-mercaptoethanol. 30 μl of the eluate were separated by SDS gel electrophoresis
before transfer to PVDF membrane and detection by chemoluminescence as
described above. Precipitations were performed twice in two independent
experiments.

Immunohistochemistry. Human tissue samples were obtained from the
department of Neurosurgery, University of Tuebingen, with patients’ consent
approved by the local ethic committee (163/2012B02). Formalin-fixed, paraffin-
embedded human tumor specimens (astrocytoma WHO grade III, n= 42;
glioblastoma, WHO grade IV, n= 45) were placed on tissue microarrays (TMA,
two cores, 1000 μm each) under supervision of a neuropathologist. TMA blocks
were cut to 4mm slides and deparaffinized. Immunohistochemical stainings were
performed using mouse anti-USP9x from Abnova (H00008239-M01, Acris, 1 : 800
dilution) and rabbit anti-Mcl-1 (S19, Santa Cruz Biotechnology, 1 : 1600 dilution)
antibodies on the automated Benchmark immunohistochemistry system (Ventana
Medical Systems, distributed by Roche Diagnostics, Mannheim, Germany).
Heat-induced antigen retrieval was performed with CC1 cell conditioning solution

(Tris-based EDTA buffer, Ventana) for 30 min for USP9x and no pretreatment for
Mcl-1. Visualization of the specific antibody binding was achieved using the
UltraView Universal DAB kit (Ventana). Human tonsils served as positive controls.
Appropriate negative controls (omission of the first antibody) were processed in
parallel with each batch of staining.

Staining evaluation: cytoplasmic and nuclear staining were evaluated together.
Tumors were considered positive when41% of the tumor cells exhibited a detectable
immunoreactivity. The staining intensity was semiquantitatively recorded as absent,
weak, moderate, and strong positive. The percentage of stained tumor cells was
counted as 0 (negative), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%).
Staining intensity score and the score indicating the amount of positive cells were
multiplied to obtain the IRS ranging from 0 to 12. The median± S.D. and the 95
percentile were calculated for each grade and each antibody staining. To analyze the
correlation between Mcl-1 IRS and USP9x IRS, Spearman correlation coefficient
ρ was calculated after generating contingency tables for each WHO grade (JMP 11,
Cary, NJ, USA).

Data analysis. Statistical significance was calculated by student t-test or one-
way ANOVA test followed by a Bonferroni post-test where appropriate using
GraphPad Software (San Diego, CA, USA).
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