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Abstract

Rationale—Elevated dopamine function is thought to play a key role in both the rewarding 

effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating 

epidemiological evidence indicates that cannabis use is a risk factor for the development of 

schizophrenia. However, human neurochemical imaging studies that examined the impact of Δ9-

tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine 

release have provided inconsistent results.

Objectives—To assess the effect of a THC challenge on human striatal dopamine release in a 

large sample of healthy participants.

Methods—We combined human neurochemical imaging data from two previous studies that 

used [11C]raclopride positron emission tomography (PET) (n=7 and n=13, respectively) to 

examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were 

re-analysed to overcome differences in PET data analysis.

Results—THC administration induced a significant reduction in [11C]raclopride binding in the 

limbic striatum (−3.65%, from 2.39±0.26 to 2.30±0.23, p=0.023). This is consistent with increased 

dopamine levels in this region. No significant differences between THC and placebo were found in 

other striatal subdivisions.
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Conclusions—In the largest data set of healthy participants so far, we provide evidence for a 

modest increase in human striatal dopamine transmission after administration of THC compared to 

other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in 

regulating human striatal dopamine release, and thereby challenges the hypothesis that an increase 

in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the 

associated higher risk of schizophrenia.
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Introduction

Many abused drugs that can lead to addiction increase synaptic dopamine levels in the 

human limbic striatum. Most likely, this rapid increase in dopamine release is associated 

with drug-induced reward, which together with subsequent conditioned responses may lead 

to changes in incentive motivation and ultimately in drug-seeking behaviour (Volkow et al. 

2011; Wise 2009). Indeed, with the use of neuroimaging techniques such as Positron 

Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) 

in combination with radioactive tracers that bind to striatal dopamine receptors, increased 

dopamine concentrations have been demonstrated in the human limbic striatum after the 

administration of amphetamine (Martinez et al. 2003; Martinez et al. 2007; Oswald et al. 

2005; Wand et al. 2007), alcohol (Boileau et al. 2003; Urban et al. 2010) and nicotine 

(Brody et al. 2009; Takahashi et al. 2008). This was indicated by significant reductions in 

radiotracer binding in the limbic striatum, which were in the range of 10 - 15% after 

administration of amphetamine (Martinez et al. 2003; Martinez et al. 2007; Oswald et al. 

2005; Wand et al. 2007) and alcohol (Boileau et al. 2003; Urban et al. 2010), and around 

10% after nicotine administration (Brody et al. 2009; Takahashi et al. 2008).

Increased striatal dopamine release associated with the use of abused drugs is relevant to 

psychotic disorders such as schizophrenia as elevated striatal dopamine function is one of 

the most robust pathophysiological features of the disorder (for review see Howes and Kapur 

2014). Accumulating epidemiological evidence indicates that cannabis use during 

adolescence is a risk factor for the development of schizophrenia (Arseneault et al. 2004; 

Moore et al. 2007). Therefore, elevated striatal dopamine release after the use of cannabis 

may explain how cannabis use contributes to the development and pathophysiology of 

schizophrenia. Indeed, in animals, it has been demonstrated that cannabinoid substances 

such as Δ9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis and 

partial agonist of the cannabinoid CB1 receptor, stimulate striatal dopamine signalling (see 

for reviews El Khoury et al. 2012; Gardner 2005). For example, in vivo single-neuron 

electrophysiological recordings have shown that cannabinoid agonists are able to enhance 

neuronal firing of mesolimbic dopamine neurons (French 1997; French et al. 1997; Gessa et 

al. 1998) and in vivo microdialysis techniques revealed an elevation of striatal dopamine 

levels following cannabinoid administration (Chen et al. 1990; Fadda et al. 2006; Malone 

and Taylor 1999; Ng Cheong Ton et al. 1988; Tanda et al. 1997). These effects appear to 
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depend on activation of CB1 receptors as they were blocked by the selective CB1 receptor 

antagonist SR-141716A (French 1997; French et al. 1997; Gessa et al. 1998; Malone and 

Taylor 1999; Tanda et al. 1997).

Results of human neuroimaging studies on the effects of THC on striatal dopamine release 

have been inconclusive. Using PET and the dopamine D2/D3 receptor tracer [11C]raclopride 

in seven healthy participants, Bossong et al. (2009) found that inhaled THC (8 mg) induced 

a relatively modest but significant reduction in [11C]raclopride binding in the limbic striatum 

and precommissural dorsal putamen (3.4% and 3.9%, respectively), consistent with an 

increase in dopamine levels in these regions (Bossong et al. 2009). Stokes and colleagues 

(2009) imaged thirteen healthy participants using the same PET methodology, but did not 

find significant effects of oral THC administration (10 mg) on [11C]raclopride binding, 

despite an increase in psychotic-like symptoms (Stokes et al. 2009). Finally, using SPECT 

and [123I]IBZM, Barkus et al. (2011) found that intravenously administered THC (2.5 mg) 

had no effect on striatal dopamine release in nine healthy participants, despite inducing 

transient psychotic symptoms (Barkus et al. 2011).

In the current study, we re-analysed the [11C]raclopride PET images of Bossong et al. (2009) 

according to the methods described in Stokes et al. (2009) in order to overcome differences 

in PET data analysis between the two studies. This re-analysis included the assessment of 

[11C]raclopride binding in regions of interest (ROIs) that were automatically defined using 

an atlas comprised of three functional subdivisions of the striatum and the cerebellum as a 

reference region. Subsequently, both data sets were combined to test the hypothesis that 

THC induces dopamine release in the human striatum in a large sample of healthy 

participants with previous experience of cannabis use. This approach allows new and better 

powered analyses to be conducted, such as an interaction test between striatal subdivision 

and THC effect.

Methods

Both the studies of Bossong et al. (2009) and Stokes et al. (2009) were approved by an 

independent ethics committee and were conducted in accordance with the Declaration of 

Helsinki 2008. All participants gave written informed consent before entry into the study. 

Participant recruitment, study design, drug administration, PET methodology and 

assessment of THC plasma concentrations are fully described for each study in Bossong et 

al. (2009) and Stokes et al. (2009), respectively.

Participants

Twenty healthy volunteers (thirteen from the study by Stokes and colleagues and seven from 

that by Bossong and colleagues) with previous experience of cannabis use without 

significant adverse effects were recruited to the study through public advertisements. All 

participants underwent an extensive screening performed by a clinician before they were 

included in either study. Subjects were in good physical health, and subjects with a current 

or previous psychiatric disorder including alcohol or drug dependence were excluded from 

participation. Use of medication at the time of the study and past use of psychiatric 

medication was not allowed. On study days, volunteers underwent urine drug screen analysis 
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for use of recreational drugs including cannabis, amphetamine, cocaine and opiates. Any 

volunteer with a positive drug screen was excluded from the study. In addition, participants 

needed to abstain from alcohol for 24 hours before each study day.

Study design and drug administration

Using a randomised, placebo-controlled, crossover design, volunteers underwent two 

[11C]raclopride PET scans: one with placebo and one with THC administration. Study days 

were scheduled at least 2 weeks apart to allow for complete clearance of drugs. Stokes et al. 

(2009) administered a capsule containing either 10 mg dronabinol (a synthetic form of THC) 

or placebo 90 minutes before each scan. In the study of Bossong and colleagues (2009), 

either 8 mg of THC or placebo was inhaled 45 minutes before each scan using a Volcano 

vaporizer (Storz-Bickel GmbH, Tuttlingen).

Positron Emission Tomography

All PET scans were performed on an ECAT HR+ scanner (Siemens/CTI, Knoxville, TN, 

USA) with an axial field of 15.5 cm. For each scan, [11C]raclopride was given as a bolus 

plus constant infusion, providing a state of constant equilibrium (Carson et al. 1997). A 10 

minute transmission scan was performed to correct for photon attenuation.

Plasma THC measurements

Venous blood samples were collected 10 minutes into the PET scan, which was 100 minutes 

(Stokes et al. 2009) and 55 minutes (Bossong et al. 2009) after administration of medication, 

respectively.

Regions of Interest

Individual PET frames obtained during steady state (from 40 and 38 minutes post-injection 

onwards for the study of Bossong et al. and Stokes et al., respectively) were realigned to the 

first frame obtained at equilibrium to correct for motion, and summed over all frames. 

Striatal and cerebellar ROIs were automatically defined on each PET scan using an atlas 

comprised of the three functional subdivisions of the striatum (limbic, associative and 

sensorimotor striatum) as well as the cerebellum as a reference region. Striatal subdivisions 

are anatomically analogous to the ventral striatum (limbic striatum), precommissural dorsal 

putamen, precommissural dorsal caudate and postcommissural dorsal caudate (associative 

striatum) and postcommissural putamen (sensorimotor striatum) (Martinez et al. 2003). The 

atlas was coregistered to individual summed PET images in SPM5 (Wellcome Trust Centre 

for Neuroimaging, London, UK) using an [11C]raclopride template. Activity was assessed 

for each ROI as the volume weighted average of left and right regions using Analyze 

software (www.analyzedirect.com). Activity in the overall striatum was calculated as the 

volume weighted average of all three striatal ROIs.

Outcome Measures

Nondisplaceable binding potential (BPND; Innis et al. 2007) was used as measure of 

dopamine D2/D3 receptor availability. BPND was defined as the distribution volume ratio 

(DVR) minus 1 (Lammertsma et al. 1996). As scans were performed during steady state, 
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DVR could be obtained using the average activity concentration in a striatal ROI divided by 

that of the cerebellum ROI, which was used as reference. Using this method, BPND was 

calculated for all striatal subdivisions as well as overall striatum for both placebo and THC 

sessions in twenty participants.

Statistical Analysis

Group differences in BPND between placebo and THC were analysed using repeated 

measures ANOVA with factors drug (placebo and THC) and striatal subdivision (limbic, 

associative and sensorimotor striatum). Both post hoc analyses for individual subdivisions 

and statistical analyses for PET scan parameters were performed using paired t-tests. 

Correlation between [11C]raclopride binding in the overall striatum and THC plasma 

concentration was assessed with Pearson’s r. A p value less than 0.05 was considered 

statistically significant, which was tested two-sided for all outcomes except the correlation 

analysis. Cohen’s d effect sizes were calculated using pooled standard deviations. All 

statistical analyses were performed using SPSS 20.0 (SPSS, Chicago, Illinois) and all data 

are presented as mean±SD.

Results

Results are reported on nineteen subjects as one participant was identified as being a 

significant outlier according to Chauvenet's criterion (Taylor, 1997) (see Supplementary 

Results S1). Thirteen male and four female participants were included, with a mean age of 

27.9±7.7 years (range 20 - 44).

PET scan parameters

There were no significant differences between placebo and THC sessions for either mean 

injected dose of [11C[raclopride (539±175 and 559±197 MBq, respectively; p=0.237) or the 

mean total mass of administered raclopride (3.72±2.38 and 3.46±1.46 μg, respectively; 

p=0.577).

Dopamine D2/D3 receptor availability

Repeated measures ANOVA revealed a significant interaction effect between drug and 

striatal subdivision (F(2,36)=6.01, p=0.015), indicating that the effect of THC differs 

between subdivisions. Post hoc analysis showed that the BPND of [11C]raclopride, reflecting 

dopamine D2/D3 availability, was significantly reduced in the limbic striatum after THC 

administration compared to placebo by 3.65% (from 2.39±0.26 to 2.30±0.23; p=0.023). No 

significant differences between THC and placebo were found in other striatal subdivisions 

(Fig. 1a and 1b).

Plasma THC levels

Mean THC plasma concentration during the PET scan was 4.41±4.04 ng/ml. THC plasma 

concentration showed a significant negative correlation with the percentage change in 

[11C]raclopride binding in the overall striatum (r=−0.50, p=0.015) (Fig. 1c).
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Discussion

In the largest study to date, we have found a significant reduction in [11C]raclopride binding 

after THC administration in the limbic striatum of healthy participants with previous 

experience of cannabis use. This result is consistent with a THC-induced increase in limbic 

striatal dopamine levels, and concords with animal studies which found increased striatal 

dopamine neurotransmission after administration of cannabinoid agonists (Gardner 2005; El 

Khoury et al. 2012). Furthermore, although the original Stokes et al. study (2009) found no 

significant association between THC administration and limbic striatal dopamine release, the 

addition of further participants from the Bossong et al. (2009) study (analysed using the 

same protocol as Stokes et al. (2009)) resulted in a significant association of THC 

administration with limbic striatal dopamine release. One possible explanation for the 

discrepant findings of the current analysis and the original study of Stokes et al. (2009) is 

that the original study with thirteen participants may not have been statistically powered to 

detect small changes in [11C]raclopride binding after oral administration of 10 mg of THC. 

This idea is further supported by the fact that in the study by Stokes et al. (2009) THC 

administration was associated with a radiotracer displacement of 1.6% and 3.2% in the right 

and left limbic striatum, respectively, which is non-significant but in the same direction as 

that reported in the current analysis.

These findings should be interpreted in the context of results from studies of human striatal 

dopamine release produced by other recreational drugs. Amphetamine, which 

pharmacologically directly targets the dopamine system, as well as alcohol have been shown 

to cause reductions in limbic striatal dopamine D2/D3 receptor availability in the range of 10 

- 15% (Boileau et al. 2003; Martinez et al. 2003; Martinez et al. 2007; Oswald et al. 2005; 

Urban et al. 2010; Wand et al. 2007). Nicotine produces reductions in limbic striatal 

availability of around 10% (Brody et al. 2009; Takahashi et al. 2008), whereas we found a 

relatively modest decrease of 3.7% in the limbic striatum after THC administration.

Interestingly, this decrease in [11C]raclopride binding is consistent with animal findings. 

Assuming a ratio between the increase in dopamine levels and reduction in [11C]raclopride 

binding of approximately 40 : 1 (Breier et al. 1997; Laruelle et al. 1997), the 25 - 100% 

increase in striatal dopamine levels measured with microdialysis techniques after THC 

administration to animals (Chen et al. 1990; Malone and Taylor 1999; Tanda et al. 1997) 

indicates a reduction in [11C]raclopride binding of 0.6 - 2.5%, which is even lower than the 

3.7% decrease demonstrated in this study. Since this modest effect of THC on striatal 

dopamine release is accompanied by robust behavioural effects (Bossong et al. 2009; Stokes 

et al. 2009), it seems unlikely that this impact of THC is exclusively mediated by the striatal 

dopamine system. This view is supported by two studies which found that pre-treatment 

with the dopamine D2 receptor antagonist haloperidol did not completely reduce the acute 

psychotic effects of THC (D’Souza et al. 2008; Liem-Molenaar et al. 2010). This implies 

that the acute behavioural effects of THC may be partially mediated via direct activation of 

the endocannabinoid system, and thus suggests a principal role for the endocannabinoid 

system in the association between cannabis use and the increased risk of schizophrenia.
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The relatively modest reduction in [11C]raclopride binding after THC administration in the 

limbic striatum of healthy participants is consistent with findings of PET studies that 

examined striatal dopamine function in the context of cannabis abuse. Contrary to other 

substance abusers (e.g. cocaine, methamphetamine, alcohol; see Volkow et al. 2004 for 

review), no significant differences in dopamine D2/D3 receptor availability nor striatal 

dopamine release have been demonstrated between chronic cannabis users and controls 

(Sevy et al. 2008; Stokes et al. 2012; Urban et al. 2012; Volkow et al. 2014). The only study 

that investigated presynaptic dopamine function found reduced dopamine synthesis capacity 

in cannabis users, which was not associated with psychotic-like experiences (Bloomfield et 

al., 2014).

This study has several limitations. First, the two data sets were obtained after THC 

administration with different delivery methods. Whereas Bossong et al. (2009) used 

pulmonary THC administration with a Volcano vaporizer, Stokes and colleagues 

administered THC orally. Generally, oral consumption leads to slower absorption and lower 

bioavailability of THC, and a delay in the onset of acute behavioural effects compared to 

inhalation (Agurell et al. 1986). It is unlikely, however, that this has affected our 

[11C]raclopride PET results, as the THC plasma concentration during the PET scan was 

significantly correlated with the percentage change in overall striatal [11C]raclopride binding 

(Figure 1C). Second, as in the study of Bossong et al. (2009) the PET scan was performed 

45-85 min after inhalation of THC, it could be argued that most of the effect of THC on 

dopamine release had dissipated at the time of the scan. However, this is highly unlikely, as 

application of advanced pharmacokinetic/pharmacodynamic (PK/PD) models to these data 

showed that 84.5-95.9% of the maximum CNS effects were still present during acquisition 

of the PET scan (Strougo et al. 2008). Moreover, it has been shown that drug-induced effects 

on striatal dopamine release can be detected for a long time after administration (Breier et al. 

1997; Cardenas et al. 2004; Laruelle et al. 1997). Third, although the correlation between 

THC plasma concentration during the PET scan and the percentage change in overall striatal 

[11C]raclopride binding is presented as a linear relationship, there is a possibility that in fact 

THC produces a biphasic dopaminergic response, with lower levels of THC concentrations 

associated with increased striatal [11C]raclopride binding (Figure 1C). Indeed, biphasic 

responses have been demonstrated in behavioural animal studies with acute cannabinoid 

administration (Sulcova et al. 1998). Fourth, information about the participants’ history of 

recreational drug use is not presented in this paper as this data is lacking for the study of 

Bossong and colleagues. Although a within-subject design was used in this study, this could 

be important in the interpretation of our results as long-term changes in the dopamine 

system can be observed following prolonged abstinence from drug use (Nader et al. 2006). 

Finally, effects of THC on striatal dopamine release could not be related to acute behavioural 

effects as these were assessed differently in the studies of Bossong et al. (2009) and Stokes 

et al. (2009), and, unfortunately, could thus not be pooled.

Conclusion

The present analysis provides further human evidence for a comparatively modest increase 

in striatal dopamine transmission after administration of THC. This finding suggests limited 

involvement of the endocannabinoid system in regulating striatal dopamine release, and 
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thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis 

use is the primary biological mechanism underlying the associated higher risk of 

schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BPND non-displaceable binding potential

DVR distribution volume ratio

PET positron emission tomography

ROI region of interest

SPECT single photon emission computed tomography

THC Δ9-tetrahydrocannabinol
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Fig 1. 
Effects of Δ9-tetrahydrocannabinol (THC) on [11C]raclopride Nondisplaceable Binding 

Potential (BPND), reflecting dopamine D2/D3 receptor availability, in (1a) striatal functional 

subdivisions and overall striatum (mean±SD), and (1b) limbic striatum of healthy subjects 

(n=19). (1c) Correlation between percentage change in [11C]raclopride binding in the overall 

striatum and THC plasma concentration during PET scan (Pearson’s r, one-sided).

* Significant difference between placebo and THC.
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