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Abstract

Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American
prairie, has several distinctive characteristics that potentially make it a model crop for pro-
duction in stressful environments. However, little is known about the transcriptome dynam-
ics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose
of this work was to explore the transcriptome dynamics of prairie cordgrass in response to
freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assem-
ble the S. pectinata leaf transcriptome and performed gene-expression profiling of the tran-
scripts under freezing treatment. Six differentially expressed gene (DEG) groups were
categorized from the profiling. In addition, two major consecutive orders of gene expression
were observed in response to freezing; the first being the acute up-regulation of genes
involved in plasma membrane modification, calcium-mediated signaling, proteasome-
related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and
second response was of genes involved in encoding the putative anti-freezing protein and
the previously known DNA and cell-damage-repair proteins. Moreover, we identified the
genes involved in epigenetic regulation and circadian-clock expression. Our results indicate
that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as
well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

Introduction

Prairie cordgrass (Spartina pectinata Link) is a perennial, rhizomatous, C, grass native to the
North American prairie [1,2]. It commonly grows in wet tallgrass prairies, is salt tolerant, and
is successfully used in riparian plantings and stream-bank stabilization [3,4]. In addition, it is
being considered as a dedicated energy crop for marginal lands due to its abiotic environmental
stress tolerances and high biomass yield potential [5-10].

Prairie cordgrass may be a model crop for studying tolerances to stressful environments. It
performs well when grown in cold, wet, and saline soils [6,11,12]. Moreover, as the most
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northerly distributed C, grass species, prairie cordgrass performs comparably to cold-accli-
mated C; grasses [8]. Even though prairie cordgrass has not been considered to be a major
crop until recently, it could have significant impact on crop production in the future because it
can grow on marginal land and may provide important information on freezing tolerances of
warm-season energy- and food-crop grasses.

Undoubtedly, abiotic stresses have great influence on food production in many areas of the
world and also threaten crop-production sustainability [13-15]. Abiotic stresses have caused
extensive reductions in plant growth and production and have reduced the value of most major
plants and crops by more than 50% [16-18]. Only 10% of the world’s arable land is classified as
free of stress [19], while 20% of land is under some kind of mineral stress, 26% is affected by
drought stress, and 15% by freezing stress [17]. To increase crop productivity and mitigate
food crisis without expanding cultivated lands, it is fundamental to understand the effects of
abiotic stress on plants and crops tolerant of stressful environments.

While improving crop yields using conventional plant breeding techniques has been suc-
cessful [15,20], this approach may now be too slow to meet the demands of an increasing
world population given that global climate change exacerbates the frequency and severity of
abiotic constraints [21]. Consequently, the detection and exploitation of traits that control the
adaptive response of crops to abiotic stresses is a prerequisite for cost-effective applications of
genomic-based approaches to breeding for sustainable and stabile yields under adverse condi-
tions [21]. In addition, the development of next-generation sequencing technologies makes it
possible to re-sequence entire plant genomes more efficiently and to estimate gene expression
at the transcriptome level [22]. Understanding transcriptome dynamics is critical for identify-
ing gene function and phenotypic variations that result from the combination of genotypic and
environmental factors.

In previous transcriptomic studies, Arabidopsis thaliana (mouseear cress), Oryza sativa
(rice), Triticum aestivum (wheat), Brassica juncea (brown mustard), and Lilium lancifolium
(wild lily) were exposed to cold or sub-zero temperature for several hours to several days to
investigate changes in gene expression levels [23-28]. Hundreds to thousands of genes were
up- and down-regulated in response to low temperature. Included in these studies were differ-
entially expressed genes involved in signal transduction (receptor kinase, protein kinase/phos-
phatase, Ca**-binding protein) and transcription factors (TFs) (MYB, WRKY, AP/ERBEP,
CRF) that control gene expression and effector molecules (e.g., osmolytes, anti-freezing pro-
tein, dehydrin, chaperone, ROS-scavenger enzyme, and ice recrystallization inhibition protein)
[29-31]. Some of these genes were successfully transferred to cold or freezing-sensitive crops,
such as rice, to improve yields under adverse growing condition [32-34].

Although many low-temperature stress tolerance studies have been conducted, greater
understanding of the molecular mechanisms that occur at very early stages of stress are needed
to identify stress-perceiving or other molecular components (e.g., epigenetic-related compo-
nents). Even though prairie cordgrass has unique freezing stress tolerance, little is known about
its stress-tolerance mechanisms and transcriptome dynamics. In this analysis, we exposed prai-
rie cordgrass to freezing stress for 5 min and 30 min to investigate its gene expression
dynamics.

Materials and Methods
Ethics statement

No specific permits were required for the described field study. No specific permissions were
required for this location and activities. The location is not privately owned or protected in any
way. The field studies did not involve endangered or protected species.
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Plant material

A natural tetraploid (2n = 4x = 40) prairie cordgrass population, PC17-109, was chosen for this
research because of its [35] early spring emergence and higher freezing and salt tolerances com-
pared with other cordgrass populations [10]. In addition, the PC17-109 population is late-flow-
ering, develops a phalanx-type rhizome system, and has biomass yields comparable Kanlow
switchgrass (Panicum virgatum ‘Kanlow’), a high-yielding cultivar [10,36].

Rhizomes from a PC17-109 prairie cordgrass population were collected from a field nursery
at the University of Illinois Urbana-Champaign (UTUC) Energy Farm (Urbana, IL, USA) in
2013, and planted into pots to mature. After a year of greenhouse growth, the 5-cm tall plants
were transplanted into pots (9x9x12 cm) using Sunshine Metro-Mix™'950 (Sun Gro Horticul-
ture Distribution Inc., MA, USA) as the growing medium. The grasses were grown in a UTUC
greenhouse maintained at 27°C/16°C day/night temperature with 14 h photoperiod providing
400umol ms™! photon flux at the plant canopy level. Before the freezing test, 4-week old plants
having the first leaf fully expanded were transferred into a controlled-environment chamber
(Conviron E15; Controlled Environments, Winnipeg, Manitoba, Canada) under 400pumol m-
2s-1 photon flux, 70% humidity, and 27°C/16°C day/night temperature to avoid confounding
of any undetected effects from different environment. After 2 weeks, the whole plants were
exposed to freezing temperatures.

Freezing treatments and electrolyte leakage assay

The freezing experiment was conducted using a method described by Friesen et al. [8] with lit-
tle modification. In order to determine a target freezing temperature and duration tolerance of
cordgrass compared to other C, species, seeds from two cordgrass populations (‘1L102” and
‘PC17-109), two switchgrass cultivars (‘Kanlow’ and ‘Alamo’), and a commercial corn hybrid
(Zea may ‘VT3’) were tested. All seeds were surface sterilized using commercial bleach (5.25%
hypochlorite) for 20 min, and then rinsed three times with distilled water. After sterilization,
seeds were placed on petri dishes. Three seedlings were transplanted into a pot (9x9x12 cm)
filled with Sunshine Metro-Mix™950 (Sun Gro Horticulture Distribution Inc., MA, USA) and
grown in a UIUC greenhouse at 16h day length with light supplementation and 27°C/16°C
day/night temperature. When 2-3 fully expended leaves were present, the potted seedlings
were placed in a growth chamber (Conviron E15; Controlled Environments, Winnipeg, Mani-
toba, Canada) under 400umol ms™ photon flux, 70% humidity, and 27°C/16°C day/night
temperatures for 2 weeks of acclimation. The freezing experiments were conducted at -3°C,
-5°C, and -7°C for 0 min, 30 min, 60 min, 90 min, 120 min, 150 min, and 180 min, with three
replications.

Based on the results of this preliminary work, the freezing temperature and sampling time
were optimized (S1 Fig). When exposed to -7°C, the prairie cordgrass exhibited severe leaf tis-
sue damage within 5 min and death within 30 min, while at -5°C, there was no of significant
freezing damage until 60 min when electrolyte leakage started. Therefore, we selected the -5°C
exposure for 0, 5 and 30 min with three biological replicates. For each test temperature and
time, one replicate consisted of three plants in a pot and the experiment was repeated three
times. At each time point, leaf tissues were collected, immediately submerged in liquid nitro-
gen, and stored at -80°C for later RNA extraction.

After exposure to the freezing temperature, fully expanded leaf tissue was collected from
each plant at the time described and assayed for electrolyte leakage. Two cm” of leaf tissue was
incubated for 24 hours in 15ml distilled H,O at room temperature, and then initial electrolyte
leakage (Ig;) was measured. Total electrolyte leakage (Tg;) was calculated after autoclaving the
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vials at 120°C for 30 min. The tissue was then allowed to cool to room temperature. The per-
centage electrolyte leakage (EL%) was evaluated as EL% = Ig;, / Tgy, x 100%.

Total RNA isolation, library construction, and sequencing

Total RNA was extracted from the leaf tissues using the RNeasy Plant Mini kit (Qiagen, Valen-
cia, CA, USA), following the manufacturer's recommended protocols. The quality and integrity
of RNA samples were checked using Pico bioanalyzer chips (Agilent 2100 Bioanalyzer, Santa
Clara, CA, USA) at the Keck Center for Comparative and Functional Genomic, UIUC. Librar-
ies of cDNA for RNA-seq were constructed using TruSeq Standard RNA-seq Sample Prep Kit
(Illumina, San Diego, CA, USA) according to the manufacturer’s protocol. These cDNA librar-
ies were then sequenced via Illumina HiSeq 2500 platform by the Keck Center. All sequencing
reads were deposited in the National Center for Biotechnology Information (NCBI) (8600
Rockville Pike, Bethesda, MD USA 20894) under the SRA accession of SRP066155 (BioProject
ID of PRJNA301660; Run ID of SRR2890259).

De novo assembly, expression quantification, and annotation

The overall bioinformatics process was described in S2 Fig. Sequence quality was verified using
FastQC v0.10.0. (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmed reads
were assembled using the Trinity program (https://github.com/trinityrnaseq/trinityrnaseq/),
which was also used for the de novo transcriptome assembly that combined read sequences of a
certain amount of overlap to form longer fragments without N gaps, called contigs. For elimi-
nation of redundancy, these contigs were clustered based on contig-sequence similarities using
CDhit-est (http://weizhongli-lab.org/cd-hit/) with sequence identity cutoff 0.8. To determine
the number of high quality reads (Q>30) that are mapped back to assembled contigs, Bowtie2
(version 2.2.5; http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.5/) was used. Next,
cDNA prediction was performed using TransDecoder (https://transdecoder.github.io/), which
obtained a total of 44,465 contigs as ORF-containing transcripts and translated peptide
sequences. Using the 44,465 contigs, annotation was performed using protein databases from
Arabidopsis thaliana (TAIR10_pep_20101214; https://www.arabidopsis.org/download/), as a
dicot model plant, Oryza sativa (Rice pseudo-molecules version 7; ftp://ftp.plantbiology.msu.
edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/), as a monocot model plant, Sor-
ghum bicolor (Sorghum bicolor version 3.1 DOE-JGI; https://phytozome.jgi.doe.gov/pz/) as a
grass known to be a close phylogenetic relative of prairie cordgrass [37], and Plant Protein
RefSeq Database (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/plant/) using BLASTX with e-

value < E'°. Gene ontology analysis was performed using DAVID (https://david.ncifcrf.gov/)
with Fisher's exact test (p<<0.05) to assign the contigs to three GO terms, "cellular component,"
"molecular function," and "biological process."

FPKM estimation and DEG analysis

The contigs were processed for read alignment and abundance estimation with Bowtie (http://
bowtie-bio.sourceforge.net/index.shtml) and RSEM (RNA-Seq by Expectation Maximization,
http://deweylab.github.io/RSEM/). The expression level of each contig was calculated using the
fragments per kilo base of exon per million mapped fragments (FPKM) method, which
excluded sequencing discrepancies in the calculation of gene expression and the influence of
different gene lengths. The FPKM values of all unigene contigs were measured using the RSEM
package. For identification of differentially expressed genes (DEGs) among the three time
courses using the log,FPKM value, a one-way ANOVA was performed at P<0.05 using JMP
11 (SAS Institute, Cary, NC, USA). After the first round of DEG identification, FDR of < 0.05
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and the absolute value of log, (fold change) >1 was used for thresholds to determine signifi-
cantly different gene expression for the final DEG set. Based on expression patterns, DEGs
were categorized using JMP 11(SAS Institute, Cary, NC, USA). The comparison of mRNA
expression levels between RNA-Seq and qRT-PCR was evaluated using Pearson correlations
computed by SAS (SAS Institute, Cary, NC, USA).

Quantitative real time PCR analysis

The mRNAs extracted from the same leaf tissues used for RNA-sequencing were used for
qRT-PCR validation. First-strand cDNA was synthesized from one microgram of total RNA
and oligo(dT) primer using SuperScript™ II reverse transcriptase (Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s instructions. The qRT-PCR was performed using a StepO-
nePlus real-time PCR system (Applied Biosystems, Forster City, CA, USA) in a final volume of
20yl including 1pl of cDNA 5ul of H,O, 2ul of forward and reverse primers, and 10pl of Power
SYBR green PCR master mix (Applied Biosystems, Forster City, CA, USA). Power SYBR green
PCR master mix was used to detect the expression of selected genes amplified with primers (S1
Table) designed using Primer 3 software (http://simgene.com/Primer3). The PCR cycling con-
ditions were conducted by incubation at 95°C for 1 min followed by 40 cycles of 95°C for 15
sec and 60°C for 1 min. Dissociation-curve analysis was carried out after the program was com-
pleted to confirm the amplification specificity. Three technical replicates were performed for
each biological sample. A relative mRNA level was calculated by the relative quantification
method (AACr), using the Actin gene as an endogenous control.

Results
Physiological effect of sub-zero treatment across time course

To estimate the physiological damage resulting from sub-zero treatment, electrolyte leakage
was measured and showed that as temperature decreased, freezing damage increased and small
changes occurred depending on the plant species. Compared to controls (S3A Fig), leaf electro-
lyte leakage between prairie cordgrass and switchgrass differed under 2 hr exposure at -3°C,
-5°C, and -7°C (S3B Fig). Both prairie cordgrass and switchgrass had less leakage than maize at
-3°C. Electrolyte leakage to -5°C in switchgrass differed from that of prairie cordgrass. Electro-
lyte leakage rapidly increased to 60% in switchgrass, but did not change in prairie cordgrass
and maintained the 30% level. Under -7°C treatment, electrolyte leakage increased in both prai-
rie cordgrass and switchgrass (54 Fig).

De novo assembly, annotation, and GO categorization

Using a total of 385,173,502 Illumina raw reads from the control and freeze-treated leaf tissues,
169,169 contigs were initially assembled. To validate the de novo assembly, we mapped high
quality (Q>30) reads to the assembled contigs. Of the initial 385,173,502 raw reads,
305,565,748 reads were mapped back to the assembled contigs with mismatch ratios of less
than 2%, resulting in 79.3% of the mapping ratios. Of these, there were 44,465 contigs with vali-
dated open reading frames that we used for further analysis. The average contig length was
859.50bp, and N50 length was 1,098bp (Table 1).

To estimate the number of contigs that matched known protein databases, we performed
BLASTX against the dicot, C; monocot, C, monocot models, and the total Plant Protein RefSeq
database from NCBI. The 44,465 contigs in Spartina pectinata transcriptome were translated
and blasted against four protein databases: 74.5% (33,146 contigs) against the dicot model
(Arabidopsis thaliana) protein database; 76.2% (33,885 contigs) against the C; monocot model
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Table 1. Assembly statistics of S. pectinata leaf transcriptome.

Total number of reads 385,173,502
Total number of contigs 44,465
Maximum contig length (bp) 16,176
Average contig length (bp) 859.5
Median contig length (bp) 627
N50 length (bp) 1,098

+T)s 7.5
(A+T): 47.51
(G+C)s 52.49

doi:10.1371/journal.pone.0152294.t001

(Oryza sativa) protein database; 78.0% (34,694 contigs) against the C, monocot model (Sor-
ghum bicolor) protein database; and 78.6% (34,939 contigs) against the total Plant RefSeq data-
base using BLASTX with e-value < E™'* (Fig 1 and S2 Table), suggesting that the majority of
Spartina pectinata transcriptome was homologous to pre-existing protein databases.

Gene ontology categorization

To investigate the transcriptome composition, the annotated contigs were subjected to gene
ontology (GO) for three categories (cellular process, molecular process, and biological process)
(Fig 2). The top six GO terms in the cellular process were ‘nucleus’ (16.83%), ‘other cyto-
plasmic components’ (15.85%), ‘other intracellular components’ (13.98%), ‘other membranes’
(9.45%), ‘chloroplast’ (9.28%), and ‘plasma membrane’ (6.70%). Next, the top six GO terms in
the molecular process were ‘other binding’ (17.29%), ‘unknown molecular functions’ (12.11%),
‘protein binding’ (10.04%), ‘transferase activity’ (9.74%), ‘hydrolase activity’ (9.27%), and
‘DNA or RNA binding’ (8.85%). Finally, the top six GO terms in the biological process were
‘other cellular processes’ (22.22%), ‘other metabolic processes’ (21.02%), ‘unknown biological
processes’ (8.99%), ‘protein metabolism’ (7.35%), ‘response to stress’ (5.86%), and ‘develop-
mental processes’ (5.44%).

Six groups of DEGs in response to freezing treatment

To investigate gene expression changes, we calculated the normalized FPKM (Fragments per
kilobase per million) value and performed hierarchical clustering using Pearson's correlation.
There were 322 significant DEGs (q < 0.05 and |log, (fold change)| > 1) in the freezing treat-
ments (Fig 3A and S3 Table). The pair-wise comparisons among the three time courses (0-5
min; 5-30 min; 0-30 min) are shown in Fig 3B. Of these, the 0-5 min comparison showed a
similar number of up- and down-regulated genes (152 up-regulated and 170 down-regulated
in 5 min) compared to the 0-30 min (231 up-regulated and 91 down-regulated in 30 min) and
5-30 min (214 up-regulated and 108 down-regulated in 30 min) treatments.

We divided the expression change patterns into six major groups based on regulation and
log, fold change: (i) up-regulation in 5 min and no significant change (|log, (fold change)| < 1)
until 30 min, (ii) up-regulation in 5 min followed by down-regulation in 30 min, (iii) no signifi-
cant change by 5 min, but up-regulation in 30 min, (iv) no significant change by 5 min and
down-regulation in 30 min, (v) down-regulation in 5 min followed by up-regulation in 30 min,
and (vi) down-regulation in 5 min with no significant change until 30 min (Fig 4). Our investi-
gation focused on regulatory genes encoding transcription factors (TFs) and chromatin-modi-
fication proteins, as well as on abiotic stress-related genes, including signal transduction
components.
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- Matched
- Unmatched

Plant RefSeq

S. bicolor

O. sativa 76.2% 23.8%
A. thaliana 74.5% 25.5%
0% 20% 40% 60% 80% 100%

Fig 1. Percentage of homologs in Spartina pectinata leaf transcriptome after BLASTX search against the protein databases of Arabidopsis
thaliana, Oryza sativa, Sorghum bicolor, and NCBI Plant RefSeq protein with e-value < E™°,

doi:10.1371/journal.pone.0152294.g001

Group I: Group I was characterized by an acute up-regulation response within 5 min and
no significant increase afterward. This group was composed of 65 genes (S3 Table), including
seven TF genes with homologs in Oryza sativa, encoding MYB42 (0s09g0532900), WRKY74
(0s09g0334500), GATA21 (0s02g0220400), AP/EREBP (Os05g0121600), MYC-related bHLH
(0s07g0143200), and two zinc finger-related TFs (Os12g0581900, Os05g0102200). In addition
to TFs, the non-TF homologs of calmodulin (Os03g0743500), B-glucosidase 11
(0s09g0511600), three heatshock proteins (one homolog of Os03g0271350 and two homologs
of 0s02g0128400) were detected.

Group II: Group II was also characterized by acute response, showing up-regulation in 5
min followed by down-regulation in 30 min. Group II was composed of 33 genes (S3 Table),
including three MYB domain proteins (one homolog of Os02g0194000 and two homologs of
0s07g0119300). Additionally, as non-TF homologs, calcium-binding EF-hand family protein
(0s09g0412300), phospholipase C (0s09g0535900), and LOW EXPRESSION OF OSMOTI-
CALLY RESPONSIVE GENES 1 (LOS1; Os04g0118400), a known translation elongation factor
2-like protein [38].

Group III: Group III had no significant expression changes in 5 min before up-regulation
occurred at 30 min. Composed of 96 genes (S3 Table), this was the largest group. It included
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seven TFs, including the KANADI family of putative TF (Os08g0160300), basic helix-loop-
helix 105 (0s02g0116600), GATA transcription factor 24 (Os03g0684000), DHHC-type zinc
finger family (Os01g0844400), homeodomain-leucine zipper TF (Os03g0109400), B-box type
zinc finger TF (Os07g0667300), and basic helix-loop-helix TF (Os01g0108600). In addition,
the homologs of two pathogen-related genes (PR proteins Os01g0899800 and Os04g0593400)
and cell damage protection and recovery related genes (e.g., BAX INHIBITOR 1 (BI1)
(0s02g0125300) [39], ACCELERATED CELL DEATH 5 (ACD5) (Os02g0656200) [40],
RECOVERY PROTEIN 3 (REV3) (Os11g0186400) [41], and ASYNAPTIC 1 (ASY1)
(0s03g0202800) [42]). Also, a known epigenetic regulator, REPRESSOR OF SCILENCING 3
(ROS3) [43], was detected in Group III.

Group IV: Group IV had no significant change in 5 min, but down-regulation of expression
occurred in 30 min, and formed 22 genes (S3 Table). Of them, two TFs (AUXIN RESPONSIVE
FACTOR (0s02g0628600) [44] and DNA binding TF-encoding gene (Os03g0174900)) were
identified.

Group V: Group V exhibited down-regulation in 5 min, followed by up-regulation in 30
min. It included 71 genes (S3 Table) with one TF (zinc-knuckle family (Os01g0715000)) five
protein kinases (one homolog of Os01g0917500, one homolog of Os10g0562500, two homo-
logs of Os06g0168800, and one homolog of Os04g0598800). This group also contained two
epigenetic-related genes HISTONE DEACETYLASE 3 (0s05g0597100) [45] and chromatin-
related (Os11g0545600), and a circadian clock gene, TOCI (0s02g0618200) [46].

Group VI: Group VI exhibited initial down-regulation in 5 min and no significant changes
until 30 min. This group includes 29 genes (S3 Table) with six TFs, AGL19 (Os10g0536100),
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doi:10.1371/journal.pone.0152294.9003

two WRKY3 (Os01g0665500) homologs, zinc-finger protein (Os08g0471900), bHLH TF
(Os11g0601650), ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR 2
(Os06g0211200) that encodes ABA binding TF [47]. A histone modification gene encoding
H3K4-specific methyltransferase SET7/9 family protein (Os09g0453900) is also in this
group [48].

Acute and follow-up responses and their compositions

Based on GO categories of DEGs in six groups (Fig 2), several of the biological process groups
(response to stress, signal transduction, transcription, metabolic process, and DNA and RNA
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Fig 4. Six groups of relative gene expression change of 322 DEGs. The gene expression pattern change between two phases, 0-5 min and 5-30 min,
were classified into six groups (I, I, ll, 1V, V, and VI).

doi:10.1371/journal.pone.0152294.9004

metabolism) were extensively analyzed (S4 Table). The expression patterns of the majority of
these genes featured (1) acute response (up-regulated within 5 min; Group I and II), and (2)
follow-up response (up-regulated from 5 min to 30 min; Group III and V). The annotation
data showed that genes belonging to the these groups were very diverse and included those that
encode abiotic stress- responsive TFs, receptor kinases, stress proteins, ubiquitin-mediated
proteases, hormone-responsive proteins, metabolism-related proteins, and chromatin modifi-
cation-related proteins. Interestingly, the expression dynamics of these groups based on time-
course reflected a logical overview of freezing signal transduction cascade: initiation of lipid
metabolic and osmotic responsive genes, calmodulin, MYB TF (which affects ABA-signaling),
WRKY (which affects AFP-expression), B-glucosidase at initial stage (0-5 min), followed by
heat-shock protein (HSP), proteasome-related, PR protein, and cell/ DNA damage repair gene
expression at the following stage (5-30 min). We also detected chromatin-modification genes
and circadian clock genes with dynamic expression pattern. Based on our result, we displayed a
tentative gene expression order and reported genes involved in early response to freezing expo-
sure (Fig 5).

Validation of DEGs by real-time RT-PCR

We validated 11 genes from RNA-sequencing using real-time RT-PCR analysis with actin as
the reference gene that strongly correlated with those from RNA-sequencing data (Pearson
correlation coefficients r = 0. 8829) (S5 Fig and S5 Table). Of these genes, 6 were TFs [bZIP TF
(c50577_g3_i1), WRKY74 TF (c54917_g3_i2), GATA TF (c50857_gl_i2), MYB
(c54594_gl1_i6), ARF10 (c50942_g5_i5), and bHLH TF (c49095_g1_i2)] (S3 Table), and 5
were non-TFs [phosphatidate cytidylyltransferase (c57374_g2_i12), hydrolase (c27630_g3_il),
zinc-binding peroxisomal integral membrane protein (c56664_gl_i2), mRNA splicing factor
(c57957_gl1_i4), and unknown protein (c56318_gl_i6)] (S3 Table). Five out of 6 TF-encoding
genes showed rapid up-regulation in 5 to 30 min (Fig 6A), while 5 non-TF-encoding genes
were up-regulated in later stages (e.g., 30 min) (Fig 6B).
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Discussion

It is expected that freezing tolerance at the cellular level should be initiated by rapid signaling
so that the cell can take immediate action. In this regard, we examined the freezing responsive
gene expression in prairie cordgrass based on hierarchical clustering of expression pattern
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changes from 0 to 5 min and 5 to 30 min. Because we were unable to determine that down-reg-
ulation or negatively regulated signaling had a damaging effect, we mainly focused on up-
regulated gene expression patterns. We could detect the potential components that responsive
to freezing stress and the elaborate coordination between DEGs from two major responded se
groups (acute and follow-up) and the signal transduction pathway.

Acute response group is characterized by metabolic, transcriptional, and
post-translational components of signal transduction

The acute response is critical for cell survival under extremely low temperatures. Interestingly,
early responses were characterized by the acute reaction of rapid gene up-regulation without
significant changes or downshifting until 30 min (Group I and II). This implies that their
immediate upstream action is in signal perception and/or transduction. First, we detected
genes that encode plasma membrane-localized components (lipid metabolism-related
enzymes), phospholipase C (PLC), and osmotically responsive proteins (LOS1)). When
exposed to freezing, a low temperature signal has to be perceived and transmitted to the
nucleus. In this aspect, the components located in the cell membrane must first detect and
amplify the signal. Phospholipase C, a major lipid hydrolyzing enzyme, is involved in lipid-
mediated signaling [49],is known to be an ABA-related protein, and considered as an ABA
receptor within the ABA signaling pathway [50,51]. It has been reported that in cold-treated
Arabidopsis, the PLC pathway was activated and served as an upstream cold response signal
[52]. The cold-treated transcriptome changes were investigated using the agents that modified
PLC and revealed that the expression of many genes was modified during the cold response,
particularly through the CBF-mediated pathway [52]. In Arabidopsis thaliana and Vigna radi-
ate (mungbean), most PLC paralogs were highly up-regulated in response to several different
abiotic stresses, such as cold, drought, and salt [49,53]. In Oryza sativa, transcript profiling
using microarray showed that most of the PLC paralogs were expressed differentially under
cold, drought, and salt stresses at various developmental stages [54]. LOS1 is a translation elon-
gation factor 2-like protein. It is involved in cold-responsive translation which plays an impor-
tant role in freezing signal transduction [38]. Previous findings showed that losI-I mutants
failed to acclimate to cold stress and became freezing-sensitive [55]. Therefore, the significant
up-regulation of components in cell membrane occurs at an early stage because it serves as an
important signal transducer and is known to be inducible in response to ABA and ROS, salt,
and drought stresses [29]. Moreover, significant up-regulation of cell membrane components
resulting in acute responses may play initial roles in signal perception and transduction at the
early stages of freezing.

B-glucosidase is known to be membrane-associated and is the key enzyme that mediates the
conversion of cellobiose to glucose during cellulose hydrolysis [30, 56], There has been little
study of B-glucosidase related to abiotic stress, but the constitutive up-regulation of f-glucosi-
dase in a flood-tolerant Echinochloa accession [57] and freezing tolerance in Arabidopsis trans-
genic lines of SRF2 (SENSITIVE TO FREEZING?2), which encodes B-glucosidase [58], have
been reported.

Transcription factors, particularly MYB and WRKY family members, play pivotal roles in
early response in tolerance signal cascade. The MYB gene is involved in a wide range of abi-
otic stresses and ABA signaling [59,60]; in Arabidopsis, MYB is involved in cold stress, regu-
lates ABA-responsive genes, and plays an important role in the upstream step of cold stress
signal transduction. In addition to MYB, it has also been reported that under severe osmotic/
salt stress, the over-expression of WRKY46 in Arabidopsis mediated later root development
through regulation of ABA signaling [61]. The WRKY gene family is involved in multiple
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stresses [62], playing important roles in abiotic stress tolerance and ABA-signaling [63]. Spe-
cifically, WRKY is known to promote the expression of PR-protein or anti-freezing protein
(AFP) in response to abiotic stress [64,65]. PR-protein is also known to act as an AFP, arrest-
ing ice-crystallization in apoplasts [64]. Once water molecules located in the apoplast start to
freeze, which leads to drought or osmotic stress condition, the intracellular water will leak
through the cell membrane, resulting in the removal of water from inside the cells [64].
WRKY plays an important role in increasing up-regulation of PR gene expression [66,67],
and in fact, we detected PR gene expression in the follow-up response stage, after WRKY
expression in acute stage. WRKY is also known to be involved in cold, heat, drought, and salt
stress responses [68]. Moreover, it was shown that over-expression of one of WRKY family
members, WRKY44 acquired multiple abiotic stress tolerance [62] in tobacco. Our data
showed that WRKY acts as a potential upstream regulator in freezing or may be involved in
tolerances to multiple stresses.

We also detected the calcium-signaling components, calmodulin 1 homolog, which acts as
an intracellular calcium sensor in cold, drought, and salt [69] stresses. The up-regulation of
camodulin indicates that calcium-mediated signaling is involved in freezing tolerance. Cal-
cium-binding EF-hand family protein is also known to be involved in salt and drought-stress
tolerance mechanisms [70,71]. The up-regulation of these genes indicates that calcium signal-
ing is also important in freezing signal transduction.

The presence of an ubiquitin-mediated proteasome component indicates that post-transla-
tional regulation was also actively involved in abiotic stress tolerance [72,73]. For example, the
target of a negative regulator for degradation under abiotic stress by ubiquitin ligase may initi-
ate the action of signaling for stress tolerance. Alternately, ubiquitin-mediated degradation of
positive regulators may repress the action for tolerance until the stress signal is received. Regu-
lation of the ubiquitination pathway for abiotic stress tolerance in rice, implied that its applica-
tion to crops may improve stress tolerance [74]. Although we did not identify the target of
ubiquitin-mediated proteolysis, we recognize the importance of protein degradation as a regu-
latory mechanism of freezing response.

Follow-up response components consist of genes involved in cell
protection and DNA recovery mechanism

The follow-up response group was characterized by genes that encoded PR-proteins and
DNA-damage repair proteins. Pathogen-Related genes (PR-protein) can play dual roles in
biotic and abiotic stress tolerance. This PR-protein may serve as a stress protein by attaching to
ice crystals in order to inhibit increase of ice crystal formation, as a role of anti-freezing protein
(AFP). At low temperatures, apoplastic AFP in winter rye had sequences and function similar
to PR protein [64]. Griffith et al. [65] also reported that plant AFPs carry multiple domains for
ice-binding and these AFPs are homologous to PR proteins that protect plants against patho-
gen. In addition, the follow-up response group was characterized by several genes that encode
DNA repair proteins (RECOVERY PROTEIN 3 (REV3)). This is a catalytic subunit of DNA
polymerase that following mutation, exhibited sensitivity to UV-B radiation and is involved in
damage-tolerance mechanisms through translesion synthesis [41,75]. Acting as an attenuator
of biotic and abiotic stress-causing programmed cell death is BAX-INHIBITOR 1 (BI1)
[39,76]; NON-INTRINSIC ABC PROTEIN 7 is involved in biogenesis and/or repair of oxida-
tively damaged Fe-S clusters [77] and ASYNAPTIC 1 is involved in DNA repair during meio-
sis [42]. Therefore, it appears that cell protection and DNA repair mechanisms were highly
activated at follow-up stages.
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Epigenetic-related and clock genes were responsive to freezing stress

In Groups I, I11, V, and VI, we found 5 chromatin modification-related genes and a clock gene,
indicating dynamic action of chromatin modification in response to freezing. In Group I,
SWIRM expression was found as an acute response. SWIRM is a component of the SWI/SNF
and RSC chromatin remodeling complexes and known to be responsive to abiotic stress [78].
In rice, the genes encoding SWIRM domain proteins were induced by heat stress and reduced
by cold stress. Chromatin modification in response to abiotic stress (drought, heat, cold, and
salt) was recently studied, and showed increased involvement in stress tolerance mechanism
[79]. Considering that Group I is characterized by acute up-regulation, an immediate SWIRM
response may play an important role in freezing response. REPRESSOR OF SCILENCING 3
(ROS3), a RNA-binding protein required for DNA demethylation that leads to transcriptional
gene activating in Arabidopsis [43] and was detected in Group III, indicating that this gene
acted in follow-up response via transcriptional regulation of downstream genes. In Group V, a
recessive mutation of HDA19, HISTONE DEACETYLASE, was hypersensitive to ABA and salt
stress in Arabidopsis [45,80]. The initial down-regulation of HDA can be as rapid as 5 min and
the damaged cell repressed HDA’s negative role in gene expression, possibly due to enhanced
stress sensitivity. Conversely, while up-regulation of HDA after 5 min restored negative
actions, identifying the HAD target genes could provide clarity. In Group VI, H3K4-specific
methyltransferase was detected; its over-expression increased salt tolerance in Arabidopsis
[81]. Moreover, it was reported that ABA or abiotic stress treatments enhanced H3K4 tri-
methylation of stress-responsive genes [48]. In our study, the H3K4-specific methyltransferase
gene was down-regulated within 5 min. Its target genes need identification to explain this pat-
tern. In Group V, we identified TIMING OF CAB EXPRESSION 1 (T'OC1), a major compo-
nent of the circadian clock and known to be regulated by chromatin modification. Because it
can also bind to the promoter region of ABA-related genes (ABAR, CHLH, GUN5) and control
circadian expression [46], TOC1 appears to be related to abiotic stress tolerance. It was
reported that TOC1 and ABAR were over-expressed and that RN Ai plants had defective
responses to drought, implying the importance of clock-dependent ABA function in drought
stress [46]. In fact, many ABA-related genes regulated by the circadian clock have been
reported [82-84].

DEGs and abiotic stress signaling pathway

We also found that acute-response DEGs corresponded with genes for signal perception and
transduction, while follow-up response DEGs corresponded strongly with signal-response
genes (Fig 5). According to Winfield [29], the perception of cold stimulus may be sensed
through membrane modification such as fluidity or rigidity [85-87]. For example, a mem-
brane-bound kinase, such as the receptor-like kinase (RLK) in our analysis, may be responsible
for upstream signaling cascade as a consequence of the mechanical modification of plasma
membrane or other factors. The perceived signal is then transmitted to next step via second
messengers, calcium-binding proteins (CBPs) for example, followed by the activation of
kinases and/or phosphatases, which in turn regulate the transcription of TFs in the nucleus.
We also found the calcium-binding proteins, calmodulin and Ca®*-binding EF hand, which are
known to act as second messengers. Calcium-signaling appears to be important in freezing tol-
erance response. Once the signal is transferred to nucleus, TFs that regulate stress-responsive
proteins are activated. These TFs include WRKY, an activator of genes that encode AFPs;
MYB, an activator of sugar/SOD pathway; and ICE1, an activator of stress proteins such as
COR/LEA [87,88]. We did not find many of the cold-stress responsive genes, (e.g., CBF,
CDPK, COR, ERD, or RD) [87-91], suggesting that the freezing-response pathway may be
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different than the cold response pathway. Instead, we found MYB, WRKY, GATA, bHLH, and
AP2/EREBP, which are known to be related to abiotic stress responses such as cold, drought,
and salt. Thus, these TFs share in freezing stress tolerance. In fact, we found up-regulation of
the PR gene after the acute response of WRKY expression, indicating that WRKY-controlled
AFP (PR) genes in response to freezing. We also detected the signal-response genes, ASYNAP-
TIC I, BAX-INHIBITOR 1, RECOVERY PROTEIN 3, ACCELERATED CELL DEATH 5, and
NON-INTRINSIC ABC PROTEIN 7, known to be cell and DNA repair genes. In this work, we
detected the rapid and well-coordinated serial induction of DEGs that exhibited induction of
signal perception and transduction-related gene expression changes, followed by signal-
response gene expression change, which reflects the process of signal-transduction cascade in
response to abiotic stress. In addition to signaling components, we found metabolic and epige-
netic components that may play important roles in early responses to freezing, which require
further study. Freezing-responsive DEGs discovered from S. pectinata transcriptomes can facil-
itate the identification of freezing-tolerance genes and serve as useful sources for future func-
tional studies and improving the freezing tolerances of crop varieties.
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