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Abstract
Erroneous behavior usually elicits a distinct pattern in neural waveforms. In particular,

inspection of the concurrent recorded electroencephalograms (EEG) typically reveals a

negative potential at fronto-central electrodes shortly following a response error (Ne or

ERN) as well as an error-awareness-related positivity (Pe). Seemingly, the brain signal con-

tains information about the occurrence of an error. Assuming a general error evaluation sys-

tem, the question arises whether this information can be utilized in order to classify

behavioral performance within or even across different cognitive tasks. In the present study,

a machine learning approach was employed to investigate the outlined issue. Ne as well as

Pe were extracted from the single-trial EEG signals of participants conducting a flanker and

a mental rotation task and subjected to a machine learning classification scheme (via a sup-

port vector machine, SVM). Overall, individual performance in the flanker task was classi-

fied more accurately, with accuracy rates of above 85%. Most importantly, it was even

feasible to classify responses across both tasks. In particular, an SVM trained on the flanker

task could identify erroneous behavior with almost 70% accuracy in the EEG data recorded

during the rotation task, and vice versa. Summed up, we replicate that the response-related

EEG signal can be used to identify erroneous behavior within a particular task. Going

beyond this, it was possible to classify response types across functionally different tasks.

Therefore, the outlined methodological approach appears promising with respect to future

applications.

Introduction
In order to adjust behavior rapidly to environmental and one’s own demands it is necessary to
carry out action-monitoring permanently. Especially the detection and compensation of erro-
neous (or undesired) outcomes play an important role in this regard. One neurophysiological
correlate of such a response monitoring system can be measured in the electroencephalogram.
Shortly following response errors (about 60 ms) a negative potential can be observed at fronto-
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central electrode positions: the error negativity (Ne [1]) or error-related negativity (ERN [2]).
On the neurophysiological level, the anterior cingulate cortex (ACC) seems to be the main
structure that is involved in the generation of the Ne, although the supplemental motor area
has also been shown to be involved [3–6].

The Ne is being followed by another correlate of such a response monitoring system which
is also related to error processing: the error positivity (Pe [1,7]). Typically, the Pe peaks about
200–400 ms following response onset at centro-parietal electrode positions and is assumed to
reflect error awareness and evaluation, such that the Pe can be observed, whenever subjects are
aware of a recently committed error [7,8]. With respect to the neurophysiological implementa-
tion of the Pe, source-localization indicated that the neural regions (e.g. rostral ACC) generat-
ing Ne and Pe partly overlap [9]. However, additionally activation of the insula is related to
error awareness, indicating an increased awareness with respect to the autonomic reaction to
errors [10]. Since the Ne does not vary with error awareness, both components might reflect
distinct aspects of error processing [11]. In sum, it is well accepted that both ERP components
seem to be closely related to behavioral adaptation.

Indeed, actions are not only adapted via detection and compensation of errors: correct
responses are being monitored as well, for example in order to increase motor precision.
Accordingly, even after correct responses there is a prominent fronto-central negativity, the
correct-related negativity (CRN, see e.g. [12]). Recent evidence pointed to a general response
monitoring system (as reflected in Ne and CRN) that is central to the adaptation of actions
[13,14]. However, for convenience we use the term Ne throughout the manuscript and specify
whether it is referred to correct or incorrect responses. Further evidence for a general response
monitoring system can be derived from the finding that CRN and/or Ne both are observable in
various types of speeded or simple response tasks [8,13,15–19]. Moreover, seemingly the
response modality does not matter, since the Ne is present for example in tasks requiring vocal
responses [20].

One theoretical explanation regarding the functional implementation of the Ne is the rein-
forcement-learning hypothesis (RFL [21]) which is supported by a huge amount of empirical
findings (for an overview compare [22]). The RFL proposes that the Ne is triggered whenever
an outcome, irrespective of being a response or an event, is worse than expected. Accordingly,
the function of the neurophysiologic mechanisms generating the Ne is to initiate remedial
action to control errors or undesired outcomes. The RFL is thereby not restricted to errors: it is
a general theory about the compensation and adaptation to unexpected outcomes implicating a
general functional network linked to the learning and monitoring of stimulus response contin-
gencies [23,24]. However, more recent models and studies provide evidence, that the ACC
does not code solely events being worse than expected, but rather the expectancy of events (i.e.
if events are expected or not [25]).

Given the accuracy-differentiating character of CRN, Ne, and Pe, the practical question
arises, whether this activity (from a statistical point of view) is specific for certain (cognitive)
tasks, or can be used as a general classification feature across tasks. If such an adaptive response
monitoring system is part of task processing in any task consisting of providing a ‘to-be-evalu-
ated-response’ to some stimuli, classifications across different types of tasks should be feasible.
Hence, the first hypothesis of the present study is that the response-related EEG signal can be
utilized for the classification of the subject’s current response state, more specifically, whether
the current response is correct or not (via classification of Ne and Pe). This idea appears prom-
ising as especially the Ne is prominent in the single-trial EEG, and has been shown to be a very
reliable ERP, with reliabilities>.85 within subjects [26]. Indeed, a huge number of studies
already revealed that it is possible to classify response correctness by utilizing the single-trial
Ne (see e.g. [27–29]). In the present study it is aimed to replicate this finding. Going beyond
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the question whether the Ne can be utilized to classify response correctness, previous research
revealed that information about upcoming events can be derived from the individual EEG [30–
33]. However, the latter studies were limited to correlates of attentional or perceptual mal-
adaptations, not yielding classifications, but rather correlative dependencies. In a recent study a
pattern recognition framework has been implemented in order to classify correct and incorrect
responses via extraction of EEG features in the time window of Ne and Pe [34] and from these
results it has been concluded that the Pe does not contribute much to classification perfor-
mance. However, in their study the authors did not use the single-trial Ne or Pe, but their algo-
rithm selected automatically the best feature for classification irrespective of electrode position,
that is, the whole electrode array was fed into the learning phase and the best predictor was
selected. This led to the situation, that sometimes even temporal or lateral electrodes were
included, thus it is not clear, whether really the Pe or Ne were selected but rather statistically
relevant features [34].

In addition, the core aim of the present study is to test whether the supposed classification
of response correctness is stable across tasks. There is much evidence indicating that the mech-
anisms involved in error processing constitute a general evaluation system [6,12–
14,22,23,35,36]. Consequently, it should be possible to use the error-related EEG activity to
classify responses accurately across tasks, even if the mechanisms that lead to an error in both
tasks are quite different. Indeed, in a previous study it has been shown that the Ne correlates
considerably across tasks [19].

To test the assumption that Ne, as well as Pe can be used as general classification features,
two different cognitive tasks, namely a mental rotation and a flanker task were conducted and
it was investigated whether the response-related activity of one task can be employed to assess
behavioral performance in the other. In both experimental tasks actually different types of
errors can be assumed; in the flanker task errors are due to lapses of attention [37,38], whereas
in the rotation task errors are more likely “mistakes” (i.e. inappropriate target processing).
Given that there is a common response, i.e. error monitoring system which is reflected in the
Ne, and that error awareness as reflected in the Pe is involved as well, it can be hypothesized
that the identification of errors and correct responses should be above chance, despite the fact
that in both tasks errors arise due to different cognitive and neural mechanisms [22].

Methods
The data herein were taken from a previous experimental series [13]. Thus, the standard behav-
ioral and ERP results must not contribute to any meta-analysis. However, we describe the cor-
responding methods again in order to circumvent cross reading for the reader. Furthermore,
the data were re-analyzed, leading to slightly different statistics (but not inferences), which is
due to fact that in the previous study the statistics were related to the independent components
derived by independent component analysis (ICA) related to the error negativity. In the pres-
ent study the “pure” ERP was analyzed, since the ICA analysis scheme would go far beyond the
scope of the manuscript.

Participants
The sample consisted of 20 healthy young participants (11 women). Participants were aged
between 21 and 27 years (mean = 23.8; SD = 1.9), gave written informed consent prior to par-
ticipation and received 10, - €/h payment for participation. The local ethics committee of the
Leibniz Research Centre for Working Environment and Human Factors approved the study.
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General procedure and experimental design
Participants were seated in an ergonomic seat in front of a 19”-CRT monitor (100 Hz).
Responses were given by a button press of the left or right thumb of a force measuring device.
The experiment consisted of two tasks each consisting of eight blocks (one training block).
Each block consisted of 80 trials. Following each block a break of 20 seconds and after half of
the experimental blocks a break of 120 seconds was provided. The initial experiment consisted
of a mixed 2 (group) x 2 (task) design with the between subjects factor group (accuracy, speed
instruction) and the within subjects factor task (flanker, rotation). The design was fully bal-
anced with respect to group, sequence of tasks, and response side for mirrored/non-mirrored
letters. We did not analyze the speed-accuracy manipulation since it was beyond the scope of
the present manuscript and, more important, did not lead to any differences with respect to Ne
amplitude due to the adaptive deadline (for details compare [13]).

The first task was a modified flanker task [39]. In the center of the screen an arrowhead
indicated the button that had to be pressed. This arrowhead was accompanied by two distract-
ing arrowheads below and above which appeared 100 ms prior to target occurrence, which is
known to induce maximal distraction [38,40]. These flankers could be congruent (pointing to

Fig 1. The left panel shows the error negativity at FCz [A] and the error positivity at Cz [B] for errors (-err) and correct (-corr) responses in the
flanker task (F-) and rotation task (R-), respectively. The right panel shows the corresponding topographic maps (spherical spline interpolation) for the Ne
(70 ms) and Pe peak (220 ms) as well as the difference topography (error-correct) for all conditions (flanker and rotation, correct and errors, respectively).

doi:10.1371/journal.pone.0152864.g001
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the same direction) or incongruent (opposite direction). The probability for congruent and
incongruent flankers was 50%, respectively.

The second task was a mental rotation task. One out of two letters (F,R) was presented to
the participants. This letter was either rotated, mirrored across the main axis or both. Partici-
pants had to indicate with a left or right button press of the corresponding thumb if the letter
was mirrored or not. The letters were rotated by 0°, 45°,135°, 225° or 315°, resulting in 20 possi-
ble stimuli which were presented in random order. Thus, the rotation task was not only much
more difficult than the flanker task, it also differed with respect to the degree of stimulus-
response mapping.

In both tasks the participants received post-response feedback indicating whether they
responded within an appropriate time interval. The feedback consisted of two pictograms: If the
participants responded fast enough a yellow pictogram of a smiling face (“smiley”) appeared in
the center of the screen. A red angry looking pictogram appeared if they responded too fast or
too slow. The deadline for the feedback was adapted block wise. If the error rate in one block (80
trials) was below 8%, the deadline was decreased subtracting one standard deviation from the
mean RT of the previous block. In contrast, an error rate above 12% led to an increase of the
deadline by adding four standard deviations to the mean RT of the previous block.

Behavioral data analysis
Error rates of both tasks were compared with each other by means of bootstrap t-tests [41].
Observed t-values (tobs), adjusted bootstrap p-values (pboot), and Cohen’s d for repeated mea-
sures indicating effect sizes are reported [42].

The reaction times (RTs) were analyzed by means of a repeated measures ANOVA with the
within subject factors task (flanker, rotation) and response (error, correct), with RTs faster

Fig 2. ERP images of the single-trial activity at FCz for trials of all subjects, tasks and accuracy conditions. Note that the single-trial data was
normalized and scaled to a range of [-1,1] for each subject prior to concatenating all single-trials. Further, a moving average window (MA) of MA = 40 was
applied across trials. The vertical line indicates stimulus onset; the sinusoid line indicates the response. All data were sorted by response time.

doi:10.1371/journal.pone.0152864.g002
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than 100 and slower than 1000 ms being excluded from the analysis. Resulting F-values, p-val-
ues, and partial eta squared are ηp

2 reported. Whenever necessary, multiple comparisons were
conducted via post-hoc t-tests, while the corresponding p-values were FDR-adjusted according
to the method of Benjamini and Yekutieli [43]. Cohen’s d is reported for effect sizes [42].

EEG data: pre-processing and ERPs
EEG was recorded monopolar (via a QuickAmp, Brain Products, Gilching) from 63-electrodes
(FPz, FP1, FP2, AFz, AF7, AF3, AF4, AF8, Fz, F7, F3, F4, F8, FCz, FT7, FC5, FC3, FC1, FC2, FC4,
FC6, FT8, T7, C5, C3, Cz, C1, C2, C4, C6, T8, TP7, TP8, CPz, CP5, CP3, CP1, CP2, CP4, CP6, Pz,
P7, P3, P1, P2, P4, P8, POz, PO9, PO7, PO3, PO4, PO8, PO10, Oz, O1, O2, M1, M2) with a sam-
pling rate of 500 Hz. The EOGwas recorded from the outer canthi and from above and below the
right eye (SO2, IO2, LO1, LO2). Data were re-referenced off-line relative to linked mastoids. The
EEG was filtered offline using a short non-linear FIR filter (high pass 0.5 Hz, low pass 25 Hz).

Subsequently, the data for each participant were segmented into 1000 ms epochs yielding a
temporal data set to which an automated artifact rejection procedure [44] was applied, followed
by the ICA AMICA algorithm [45,46]. The automated artifact rejection procedure basically
calculates the empirical distribution of all data points across all trials and time points and
rejects statistical outliers that are trials consisting of data points exceeding a criterion of 3

Table 1. Results Flanker Task Cross-Validation.

Subject Accuracy (mean) Accuracy (min) Accuracy (max) p (mean) p (min) p (max)

1 83.088 79.412 86.765 0 0 0

2 88.712 86.364 90.909 0 0 0

3 96.064 94.681 97.872 0 0 0

4 91.966 90.449 93.258 0 0 0

5 80.43 78.146 84.106 0 0 0

6 88.708 87.079 89.888 0 0 0

7 93.152 89.13 95.652 0 0 0

8 95.891 95.05 97.525 0 0 0

9 94 92.593 95.926 0 0 0

10 78.75 70.833 95.833 0.012 0 0.031

11 87.474 85.567 89.691 0 0 0

12 75.485 74.262 78.059 0 0 0

13 82.336 79.918 84.426 0 0 0

14 77.747 75.549 81.868 0 0 0

15 76.039 72.078 81.169 0 0 0

16 73.05 71.631 75.532 0 0 0

17 93.525 91.803 94.672 0 0 0

18 92.059 88.824 95.294 0 0 0

19 76.991 74.537 81.019 0 0 0

20 91.587 87.302 93.651 0 0 0

Bold numbers indicate significance.

Accuracy (mean): indicates the mean accuracy rate derived from 10 analyses

Accuracy (min): indicates the lowest accuracy rate across 10 analyses

Accuracy (max): indicates the highest accuracy rate across 10 analyses

p (mean): mean p-value derived from 10 analyses

p (min): lowest p-value observed across 10 analyses (corresponds to Accuracy (max))

p (max): highest p-value observed across 10 analyses (corresponds to Accuracy (min))

doi:10.1371/journal.pone.0152864.t001
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standard deviations. The amount of maximal rejected trials was set to 5%. The derived ICA-
weights were submitted to the previous continuous data set, and independent components rep-
resenting ocular artifacts were removed by projecting back the mixing matrix with artifact
components set to zero [47–49]. Now the pruned data sets were segmented relative to stimulus
onset and a second time relative to response onset. Finally, labels coding errors and correct tri-
als were added in order to yield conditional vectors for the machine learning analysis.

For calculation of the ERPs, the data were submitted to the before mentioned automated
artifact procedure [44] and the data were averaged for both tasks and response types (errors,
correct). The Ne was quantified as a mean voltage (20–100 ms following button press) at FCz,
since topographic maps (spherical splines) indicated a maximum at this time point and chan-
nel location. The Pe was quantified as mean voltage in the time range 180–250 ms following
button press at Cz.

The statistical analysis of task (flanker vs. rotation) and accuracy (correct vs. incorrect)
effects on this mean amplitudes consisted of a repeated measures ANOVAs. Due to the 2x2 fac-
torial design the degrees of freedom were 1 for all ANOVAs. Thus, no sphericity correction
was applied. We report F-values, p-values and effects sizes by means of ηp

2. If post-hoc t-tests
were conducted due to significant interactions, we report t-values, alpha-adjusted p-values [43]
and effect sizes by means of Cohens’s d for repeated measures [42].

EEG data: machine learning
The EEG in the present study was analyzed by means of a machine learning approach, i.e. a
support vector machine (SVM) was implemented and optimized for classification of single-
trial EEG data. SVMs are supervised learning algorithms that aim towards an optimal

Table 2. Results Flanker Task Ne Cross-Validation.

Subject Accuracy (mean) Accuracy (min) Accuracy (max) p (mean) p (min) p (max)

1 75.294 72.059 79.412 0 0 0

2 81.894 78.788 84.091 0 0 0

3 94.894 92.553 97.872 0 0 0

4 88.202 85.955 91.011 0 0 0

5 76.755 74.503 79.801 0 0 0

6 82.64 80.337 84.27 0 0 0

7 92.935 89.13 96.739 0 0 0

8 88.02 86.634 90.099 0 0 0

9 84.741 83.333 85.926 0 0 0

10 80.833 70.833 87.5 0.002 0 0.012

11 81.082 78.351 84.536 0 0 0

12 63.903 61.181 66.456 0 0 0

13 72.049 69.672 75.82 0 0 0

14 60.604 57.967 63.462 0.001 0 0.004

15 67.727 64.935 70.13 0 0 0

16 66.773 64.184 69.149 0 0 0

17 91.721 89.754 93.033 0 0 0

18 85.824 83.529 88.235 0 0 0

19 67.083 62.5 71.296 0.001 0 0.001

20 73.651 69.841 76.984 0 0 0

Bold numbers indicate significance. See Table 1 for further captions.

doi:10.1371/journal.pone.0152864.t002
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separation of distinct classes. For that purpose input data is projected into high-dimensional
feature space in order to determine a hyperplane which is able separate this data. An SVM
trained this way is subsequently able to apply this “knowledge” to new data and hence able to
classify it [50,51]. SVMs are used in a wide variety of scientific fields and recently received pro-
gressing popularity in classifying brain activation. They were even successfully employed to
investigate common neural mechanisms between different tasks. For instance, a shared neural
basis for perceptual guesses and free decisions [52] or an involvement of spatial coding in men-
tal arithmetic [53] was investigated this way.

Basic analysis scheme. In the analysis EEG data were analyzed separately for both experi-
ments via machine learning in order to classify errors and correct responses. More specifically,
there were two analyses: the initial analysis consisted of a classification of errors and correct
responses within task. The second analysis tested whether it is feasible to identify errors and
correct responses across tasks.

Pattern recognition analysis scheme. Initially, the segmented EEG data was subjected to
a feature extraction procedure. According to the hypotheses, feature sets for Ne, Pe, or a combi-
nation of both components were constituted for both tasks, resulting in six individual feature
sets for each participant. Based on the results of the EEG data five electrodes were selected
around the peak position of Ne (i.e. Fz, FCz, FC1, FC2, Cz) and Pe (i.e. Cz, FCz, CPz, C1, C2),
respectively. Thus, the Ne and Pe feature set comprised 5 features each. Specifically, the mean
voltage on each of the selected electrodes (i.e. average of the EEG signal on that site) was calcu-
lated within a time window of 20–100 ms (Ne) and 180–250 ms (Pe). The combined feature set
comprised both, Ne and Pe feature set (i.e.10 features). Subsequently, these feature sets are uti-
lized for the classification process by means of a support vector machine (SVM). Therefore, the

Table 3. Results Flanker Task Pe Cross-Validation.

Subject Accuracy (mean) Accuracy (min) Accuracy (max) p (mean) p (min) p (max)

1 75.196 73.039 76.961 0 0 0

2 73.712 71.97 75.758 0 0 0

3 78.83 75.532 82.979 0 0 0

4 83.652 80.899 85.955 0 0 0

5 73.841 71.854 75.828 0 0 0

6 84.382 83.146 85.955 0 0 0

7 71.957 67.391 75 0.001 0 0.004

8 93.812 92.079 95.05 0 0 0

9 86.815 85.556 88.519 0 0 0

10 76.25 66.667 83.333 0.013 0.001 0.058

11 81.907 78.866 84.536 0 0 0

12 74.473 73.84 75.738 0 0 0

13 76.639 73.77 79.918 0 0 0

14 78.462 75 81.593 0 0 0

15 74.61 71.429 77.273 0 0 0

16 69.22 66.667 72.34 0 0 0

17 84.385 81.967 86.066 0 0 0

18 87.294 84.118 88.824 0 0 0

19 74.306 71.296 77.315 0 0 0

20 90.952 88.889 92.857 0 0 0

Bold numbers indicate significance. See Table 1 for further captions.

doi:10.1371/journal.pone.0152864.t003
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extracted features of all individual feature sets were linearly scaled in a range between 0 and 1
[54].

In both experimental tasks, errors were less likely to occur than correct responses. Thus, the
individual number of errors ranged between 12 and 237 (mean ~104) in the flanker task and
52 and 268 (mean ~128) in the rotation task, respectively. For each participant a corresponding
(equal) number of correct response trials was randomly selected for further processing steps.
For instance, 100 errors would be matched with 100 (randomly selected) correct responses.
Accordingly, the classifier’s accuracy rate is defined as the number of correct classification inci-
dents divided by the total number of classification incidents (i.e. selected trials).

The actual classification procedure was performed using the freely available toolbox libsvm
[55] as implemented for MATLAB1. An SVMwith radial basis function (RBF) kernel was
employed, since it offers the flexibility to handle linear and nonlinear relations between features
and target classes [54,56]. Using a RBF-SVM the penalty parameter C (controlling the cost of
misclassifications) and the free parameter of the RBF-kernel γ (determining the shape of the ker-
nel) have to be chosen. Therefore, both parameters were individually determined by successive
iteration using a nested grid search approach, i.e. following an initial coarse search a second, finer
search is conducted [54]. For within task classification the selected features were subjected to a
10-fold cross validation. In other words, the dataset is subdivided into ten parts from which nine
parts serve to train the SVMwhile the remaining part is tested on. This procedure is repeated ten
times for each iteration-level of the grid search and results in a mean accuracy rate. More impor-
tantly, the selected parameters (C and γ) determine the SVMmodel that is employed to perform
across task classifications. For that purpose the SVMwas trained on the flanker task data with the
previously established parameters and then tested on the rotation task data, and vice versa.

Table 4. Results Rotation Task Cross-Validation.

Subject Accuracy (mean) Accuracy (min) Accuracy (max) p (mean) p (min) p (max)

1 74 70.8 76.4 0 0 0

2 81.429 77.273 85.065 0 0 0

3 83.162 80.882 86.765 0 0 0

4 71.681 67.672 76.293 0 0 0

5 74.029 71.471 76.176 0 0 0

6 84.545 81.061 87.121 0 0 0

7 83.654 78.846 87.5 0 0 0

8 76.176 73.529 78.992 0 0 0

9 85.13 83.043 87.826 0 0 0

10 72.05 67.5 74 0 0 0

11 67.047 64.961 68.504 0 0 0

12 60.97 59.328 62.5 0 0 0

13 66.667 63.333 70.303 0 0 0

14 72.637 68.681 75.549 0 0 0

15 81.833 78.889 84.444 0 0 0

16 78.333 74.667 81.333 0 0 0

17 67.462 64.583 69.508 0 0 0

18 84.747 81.818 88.384 0 0 0

19 57.62 55.529 58.654 0.008 0 0.039

20 83.462 80.128 88.462 0 0 0

Bold numbers indicate significance. See Table 1 for further captions.

doi:10.1371/journal.pone.0152864.t004
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The reliability of cross-validation (within task) and across task classification was tested
using a randomization test procedure [57,58] with 1000 permutations. To ensure that the
results are not based on a biased selection of correct trial, the outlined analysis scheme was
repeated 10 times using randomly selected samples of correct trials. The accuracy rates associ-
ated with the best-found parameters observed in the cross-validation (within task) as well as
the across task classification accuracy rates were used to determine a mean value across these
10 analyses (see above). The resulting mean values are subsequently reported in the results
section.

Results

Behavioral data
Participants committed significantly fewer errors in the flanker task (13.87%) compared to the
rotation task (17.67%, tobs = 2.16, pboot = .002, d = .48). Also, the reaction times were signifi-
cantly shorter for the flanker task (277 ms, collapsed across correct and erroneous responses)
than for the rotation task (441 ms, F(1,19) = 77.38, p< .001, ηp

2 = 0.80). Additionally, subjects
responded faster for incorrect (339 ms) than for correct responses (379 ms, F(1,19) = 73.68,
p< .001, ηp

2 = 0.80), while there was also a significant interaction of task and response
(F(1,19) = 43.72, p< .001, ηp

2 = 0.70).
Multiple comparisons by means of one-sided t-tests revealed that in the flanker task

responses were significantly faster for incorrect (242 ms) than for correct responses (311 ms,
t(19) = 22.06, p< .001, d = 4.93). However, this difference was not significant in the rotation
task (436 vs. 446 ms, t(19) = 1.15, p = .27, d = 0.25). Further, incorrect responses in the rotation
task took longer compared to incorrect responses in the flanker task (t(19) = 8.83, p< .001, d =

Table 5. Results Flanker Task Ne Cross-Validation.

Subject Accuracy (mean) Accuracy (min) Accuracy (max) p (mean) p (min) p (max)

1 66.16 62.8 68.4 0 0 0

2 76.948 74.026 79.87 0 0 0

3 79.559 76.471 82.353 0 0 0

4 68.707 65.517 74.569 0 0 0

5 66.853 63.529 68.824 0 0 0

6 73.864 65.909 78.788 0 0 0

7 75 69.231 79.808 0 0 0

8 69.664 66.807 72.689 0 0 0

9 73.609 70.87 78.696 0 0 0

10 71.95 66.5 76 0 0 0

11 66.89 63.78 70.866 0 0 0

12 54.086 52.612 56.716 0.074 0.004 0.152

13 63.515 60.909 66.061 0.001 0 0.001

14 63.819 61.538 66.209 0.001 0 0.001

15 78.389 75 81.111 0 0 0

16 68.933 65.333 76.667 0.001 0 0.002

17 62.67 61.174 64.015 0 0 0

18 72.727 69.192 75.253 0 0 0

19 58.558 55.048 61.058 0.008 0 0.031

20 65.641 62.821 69.231 0.001 0 0.002

Bold numbers indicate significance. See Table 1 for further captions.

doi:10.1371/journal.pone.0152864.t005
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.97). This was also true for the correct responses, being slower in the rotation task (t(19) = 8.41,
p< .001, d = 1.88).

EEG data: ERPs
With respect to the ERP (Ne/CRN) at FCz in the time range from 20–100 ms following button
press, there was an significant accuracy effect: it was more negative for erroneous compared to
correct responses (mean difference = 10.15 μV, F(1,19) = 53.42, p< .001, ηp

2 = 0.74).
Furthermore, there was a significant interaction of task (flanker, rotation) and accuracy

(error, correct), F(1,19) = 14.69, p = .013, ηp
2 = 0.44. Accordingly, post-hoc t-tests revealed that

the difference between correct and erroneous response was more pronounced in the flanker
task compared to the rotation task (t(19) = 3.83, p = .004, d = 0.86). Overall, the Ne was more
pronounced for the flanker compared to the rotation task (t(19) = 2.69, p = .012, d = 0.60).

With respect to the Pe there was a significant accuracy effect as well (mean
difference = 3.97 μV, F(1,19) = 8.88, p = .007, ηp

2 = 0.32). Also, the Pe was more pronounced
for the flanker task, compared to the rotation task (mean difference = 1.53 μV, F(1,19) = 5.05,
p = .03, ηp

2 = 0.21). However, there was a significant interaction of task and accuracy, F(1,19) =
24.12, p< .001, ηp

2 = 0.56. Post-hoc tests revealed that the difference between errors and
correct responses was more pronounced for the flanker task compared to the rotation task
(t(19) = 3.158, p = .007, d = 0.71). Overall, the Pe was more pronounced in the flanker task
compared to the rotation task (t(19) = 4.21, p = .001, d = 0.94). Figs 1 and 2 summarize the
results of the ERP analysis: the ERPs as well as the single-trial signal clearly differ between cor-
rect and erroneous responses in both tasks and there is clearly Ne/CRN and Pe activity present
in the single-trials.

Table 6. Results Rotation Task Pe Cross-Validation.

Subject Accuracy (mean) Accuracy (min) Accuracy (max) p (mean) p (min) p (max)

1 71.36 68 73.6 0 0 0

2 69.156 64.935 74.026 0.001 0 0.001

3 79.779 75.735 85.294 0 0 0

4 69.181 67.241 70.259 0 0 0

5 71 68.529 72.941 0 0 0

6 78.333 75 83.333 0 0 0

7 78.269 75.962 81.731 0 0 0

8 73.908 68.908 76.05 0 0 0

9 79.391 76.087 82.609 0 0 0

10 61.85 56.5 65.5 0.009 0 0.07

11 60.079 54.331 64.567 0.019 0 0.11

12 61.045 59.515 63.06 0 0 0

13 64.818 62.121 70 0 0 0

14 71.071 68.956 73.352 0 0 0

15 76.611 71.667 80.556 0 0 0

16 73.6 71.333 80 0 0 0

17 59.451 57.386 61.553 0.001 0 0.004

18 84.747 82.828 88.384 0 0 0

19 58.317 55.769 61.538 0.006 0 0.027

20 84.487 78.846 87.821 0 0 0

Bold numbers indicate significance. See Table 1 for further captions.

doi:10.1371/journal.pone.0152864.t006

Classifying Correct Responses and Errors across Task Sets

PLOS ONE | DOI:10.1371/journal.pone.0152864 March 31, 2016 11 / 20



EEG data: response classification via machine learning
Within task classification. The classification of responses within task using an SVM

approach was based on 10-fold cross-validation (see methods) and resulted in above chance
performance (see Table 1). Trials from the flanker task were correctly classified in about 86%
across participants (75–96%, all p< 0.05) when both feature sets where employed. Classifier
performance slightly decreased when Ne or Pe feature sets were utilized separately. Using only
Ne or Pe features resulted in a mean accuracy rate of about 79% (Ne: 61–95%, all p< 0.01; Pe:
69–94%, all p< 0.05, Tables 2 and 3). A further investigation of the results from the individual
subjects indicates however, that there are differences related to the feature sets across partici-
pants: Classifiers performance in some participants was clearly driven by Pe features while in
other participants the usage of Ne features was beneficial (Table 2 and Table 3).

A similar pattern of results was observed for rotation task classification, even though the
overall accuracy was slightly worse 75% (58–85%, all p< .01, Table 4). Again, classifier perfor-
mance was diminished using Ne features (69%: 54–80%, all p< .01; except of one participant
p = .074, Table 5) and Pe features (71%: 58–85%, all p< .05, Table 6) separately. As observed
for the flanker task classification, in some individuals the classifier was more accurate using Ne
features, while in others Pe features led to better results. Thus, data derived from both tasks
indicate, that there is no advantage for either feature set on its own but the combination leads
to a general improvement.

Table 7. Results Across Task: Train Flanker, Classify Rotation.

Subject Accuracy
(mean)

Accuracy
(min)

Accuracy
(max)

p
(mean)

p
(min)

p
(max)

trials correct
(mean)

trials correct
(min)

trials correct
(max)

trials
(total)

1 68 65.6 71.6 0.006 0 0.032 170 164 179 250

2 74.416 71.429 77.273 0.015 0 0.052 114.6 110 119 154

3 79.779 72.059 83.088 0.007 0 0.030 108.5 98 113 136

4 62.069 59.914 65.086 0.081 0.043 0.125 144 139 151 232

5 66.441 59.706 69.706 0.005 0 0.014 225.9 203 237 340

6 79.015 72.727 83.333 0.006 0 0.019 104.3 96 110 132

7 70.673 63.462 75.962 0.072 0.004 0.321 73.5 66 79 104

8 68.361 63.866 71.429 0.043 0 0.208 162.7 152 170 238

9 75.783 73.478 77.826 0.012 0 0.056 174.3 169 179 230

10 61.65 54.5 66 0.120 0.039 0.372 123.3 109 132 200

11 60.63 58.661 63.386 0.078 0.002 0.327 154 149 161 254

12 57.593 56.716 58.396 0.080 0.005 0.144 308.7 304 313 536

13 58.303 56.667 61.212 0.069 0.004 0.129 192.4 187 202 330

14 61.593 57.967 65.11 0.082 0.018 0.224 224.2 211 237 364

15 67.333 56.667 73.333 0.038 0 0.126 121.2 102 132 180

16 60.533 53.333 68 0.105 0.015 0.331 90.8 80 102 150

17 56.307 54.356 59.091 0.115 0.039 0.217 297.3 287 312 528

18 77.374 74.242 81.313 0.017 0 0.056 153.2 147 161 198

19 54.543 51.923 56.01 0.144 0.043 0.259 226.9 216 233 416

20 77.436 73.077 82.051 0.013 0 0.073 120.8 114 128 156

Bold numbers indicate significance.

Trials correct (mean): mean number of correctly classified trials across 10 analyses

Trails correct (min): lowest number of correctly classified trials in 10 analyses

Trials correct (max): highest number of correctly classified trials in 10 analyses

Trials (total): Number of instances (i.e. error trials + (equal) number of correct trial)

See Table 1 for further captions.

doi:10.1371/journal.pone.0152864.t007
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Across task classification. In case that there are generalizable neural patterns between
flanker and rotation task a classification across tasks should be feasible. Indeed, the SVM classi-
fier was still able to classify responses above chance level across tasks in most cases. An SVM
trained on flanker task data correctly classified responses from the rotation task in about 67%
(55–80%, Table 7). The permutation test indicated significance for ten participants (p< .05)
and strong trends in additional seven participants (p< .11), while less reliable accuracy was
only observed for 3 participants (i.e., p = .12; p = .12; p = .14). In cases the SVM was trained
with Ne features only, the classifier’s performance drops to about 61% (50–74%, see p-values in
Table 8) and training with Pe features only slightly improves results to 64% (49–82%, see p-val-
ues in Table 9).

Reversing the train-test order of the SVM (train on rotation task data, test flanker task data)
resulted in a mean accuracy rate of about 75% (58–88%, Table 10). Performance was significant
for 13 participants (p< .05), with a trend towards significance in 6 participants (p< .11),
while responses were not reliably classified in a remaining participant (p = .14). Training the
classifier on Ne and Pe features only yielded similar accuracy rates (Ne: 68% (50–87%); Pe:
68% (58–90%), see p-values in Tables 11 and 12). Again, in both types of analysis it became evi-
dent that Ne and Pe do not have the same predictability within individual participants.

Discussion
The present study addressed the question whether it is possible to classify response correctness
(i.e. separating correct from erroneous responses) within and across two different cognitive
tasks using a machine learning approach. For this purpose, data were re-analyzed from another

Table 8. Results Across Task Ne: Train Flanker, Classify Rotation.

Subject Accuracy
(mean)

Accuracy
(min)

Accuracy
(max)

p
(mean)

p
(min)

p
(max)

trials correct
(mean)

trials correct
(min)

trials correct
(max)

trials
(total)

1 61.92 58.8 65.6 0.029 0.001 0.125 154.8 147 164 250

2 72.208 68.182 75.325 0.018 0.003 0.044 111.2 105 116 154

3 73.603 59.559 80.147 0.023 0 0.200 100.1 81 109 136

4 59.914 56.897 63.793 0.230 0.16 0.398 139 132 148 232

5 63.824 61.176 65 0.020 0.001 0.047 217 208 221 340

6 65.606 59.091 74.242 0.072 0.004 0.223 86.6 78 98 132

7 64.038 60.577 67.308 0.138 0.002 0.25 66.6 63 70 104

8 69.328 65.546 72.689 0.002 0 0.007 165 156 173 238

9 64.043 61.304 65.652 0.088 0.012 0.206 147.3 141 151 230

10 63 50 70 0.162 0.013 0.498 126 100 140 200

11 61.535 56.299 65.748 0.070 0 0.186 156.3 143 167 254

12 52.817 51.493 54.104 0.071 0.012 0.147 283.1 276 290 536

13 57.242 54.848 60.303 0.050 0.002 0.129 188.9 181 199 330

14 49.423 45.604 53.846 0.501 0.165 0.786 179.9 166 196 364

15 64.778 56.667 70 0.074 0.015 0.222 116.6 102 126 180

16 55.6 48 62 0.263 0.022 0.618 83.4 72 93 150

17 53.277 51.894 54.735 0.271 0.195 0.39 281.3 274 289 528

18 64.293 62.121 66.667 0.168 0.025 0.292 127.3 123 132 198

19 51.827 48.798 54.567 0.268 0.032 0.615 215.6 203 227 416

20 60.128 53.846 66.667 0.092 0 0.24 93.8 84 104 156

Bold numbers indicate significance. See Tables 1 and 7 for further captions.

doi:10.1371/journal.pone.0152864.t008
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study [13]. In this study, participants conducted a flanker and a mental rotation task. The re-
analysis revealed the same data pattern with respect to the behavioral data like in the previous
publication [13].

This behavioral result pattern was accompanied by a significant Pe and Ne component in
erroneous trials: both were clearly discernable, even though the difference between correct and
incorrect trials was much more elaborated within the flanker task condition. Thus, both com-
ponents (Ne and Pe) subsequently served as features for the SVM. Overall, the SVM yielded
high accuracy rates up to over 80%. As expected, responses were identified most accurately
within particular task sets, whereby responses could be classified with higher precision in the
flanker task. More importantly, it was possible to train an SVM with data from one task and to
classify responses across tasks. In both cases (within and across tasks) accuracy classification
was most precise using a combination of Ne and Pe features.

It has previously been demonstrated that EEG signal can be utilized to classify response cor-
rectness utilizing single-trial Ne and Pe (e.g. [27–29] and also to derive predictions about
upcoming behavior and errors [30,32,33,52]. Thus, the present study replicates some findings
in this regard. However, there is information besides the Ne that can enhance the separation of
correct from erroneous responses. Indeed, it has recently been shown that the signal as
reflected in the Ne is constituted by at least two processes: a centrally distributed error-sensitive
factor and an outcome-independent factor contributing to both Ne and CRN [59]. Further-
more, the neural mechanisms involved in generating the Pe seem to differentiate between per-
ceived and unperceived errors [60]. In this regard, this is the first time it is shown that the Pe
appears to be stable across tasks as well (despite the fact that the degree of error awareness dif-
fers in both tasks). Thus, though being modulated by task features, the Pe can be utilized to

Table 9. Results Across Task Pe: Train Flanker, Classify Rotation.

Subject Accuracy
(mean)

Accuracy
(min)

Accuracy
(max)

p
(mean)

p
(min)

p
(max)

trials correct
(mean)

trials correct
(min)

trials correct
(max)

trials
(total)

1 65.32 63.6 67.2 0.056 0.012 0.109 163.3 159 168 250

2 61.234 55.195 66.234 0.101 0.007 0.247 94.3 85 102 154

3 69.485 62.5 77.941 0.064 0.003 0.216 94.5 85 106 136

4 61.466 58.621 66.379 0.064 0.004 0.149 142.6 136 154 232

5 66.706 64.412 69.412 0.018 0.003 0.044 226.8 219 236 340

6 73.485 67.424 76.515 0.048 0.004 0.116 97 89 101 132

7 62.019 56.731 67.308 0.194 0.042 0.511 64.5 59 70 104

8 67.815 65.546 71.008 0.013 0 0.044 161.4 156 169 238

9 73.261 69.565 75.217 0.034 0 0.106 168.5 160 173 230

10 52.9 44.5 57.5 0.329 0.05 0.806 105.8 89 115 200

11 52.48 48.031 55.118 0.246 0.016 0.692 133.3 122 140 254

12 57.239 55.037 60.448 0.145 0.025 0.286 306.8 295 324 536

13 56.273 53.333 57.576 0.181 0.039 0.379 185.7 176 190 330

14 65.055 61.538 67.308 0.039 0 0.093 236.8 224 245 364

15 65.667 60 75 0.088 0.001 0.207 118.2 108 135 180

16 63.6 59.333 67.333 0.041 0.002 0.085 95.4 89 101 150

17 48.712 47.159 50.758 0.613 0.384 0.818 257.2 249 268 528

18 82.475 80.303 84.848 0.001 0 0.003 163.3 159 168 198

19 55.072 52.885 56.731 0.159 0.046 0.388 229.1 220 236 416

20 77.821 67.308 85.897 0.029 0 0.230 121.4 105 134 156

Bold numbers indicate significance. See Tables 1 and 7 for further captions.

doi:10.1371/journal.pone.0152864.t009
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classify effects of error awareness across tasks. In sum, the present results strengthen the notion,
that both, Ne and Pe, provide error related information, usable for precise classifications.

Furthermore, the SVM trained on the rotation task and tested on the flanker tasks was more
accurate compared to the opposite case (i.e. the SVM trained on the flanker task and tested on
the rotation task). This adds evidence to the assumption that the rotation task per se is more
difficult, most likely conveyed by attenuated response monitoring [4,61]. However, as
responses in the flanker task condition are classified with higher accuracy, the supposed error-
monitoring process might as well reflect the classifiers’ capability to better distinguish correct
from erroneous responses in the “easier” flanker task.

With respect to the assumption of Ne and Pe reflecting a general response evaluation sys-
tem, a recent investigation on convergent validity of error-related brain activity [19] revealed
that there was overlapping variation in error-related brain activity across three different tasks
(i.e. flanker, stroop, Go/No-Go task). However, in their study Riesel and colleagues used corre-
lational measures whereas in the present investigation a classification approach was utilized.
This offers the advantage, that if the SVM is being trained on one task, the derived classifier
can be used in another task to identify correct erroneous and correct responses. Apparently, Ne
and Pe constitute informative features with respect to response behavior within a particular
task setting but also across tasks that might be utilized as a general classifier. The latter might
have important implications, for example it could be tested whether the Ne as well as Pe can be
employed with respect to clinical applications [31].

Also, the results of the present study partly challenge the finding of Ventouras and col-
leagues [34], who concluded from their finding that the Pe does not improve classification per-
formance. This competing result might be due to the different classification scheme: the Pe as

Table 10. Results Across Task: Train Rotation, Classify Flanker.

Subject Accuracy
(mean)

Accuracy
(min)

Accuracy
(max)

p
(mean)

p
(min)

p
(max)

trials correct
(mean)

trials correct
(min)

trials correct
(max)

trials
(total)

1 70.294 67.647 72.549 0.078 0.01 0.211 143.4 138 148 204

2 79.545 74.242 85.606 0.006 0 0.036 105 98 113 132

3 84.255 73.404 94.681 0.026 0 0.114 79.2 69 89 94

4 67.247 50.562 76.404 0.106 0 0.467 119.7 90 136 178

5 73.874 66.556 76.49 0.022 0.001 0.090 223.1 201 231 302

6 68.596 50.562 78.09 0.100 0 0.487 122.1 90 139 178

7 86.196 80.435 92.391 0.017 0 0.072 79.3 74 85 92

8 86.782 76.733 91.584 0.018 0.001 0.081 175.3 155 185 202

9 88.444 82.222 92.593 0.001 0 0.006 238.8 222 250 270

10 74.583 62.5 83.333 0.051 0 0.248 17.9 15 20 24

11 78.969 74.227 84.536 0.021 0 0.069 153.2 144 164 194

12 67.975 60.97 72.574 0.024 0 0.090 322.2 289 344 474

13 69.057 50 77.869 0.087 0.005 0.549 168.5 122 190 244

14 69.835 67.582 73.352 0.007 0 0.026 254.2 246 267 364

15 68.182 61.688 72.727 0.030 0 0.072 105 95 112 154

16 58.05 52.128 60.638 0.102 0.047 0.312 163.7 147 171 282

17 72.459 60.246 79.918 0.137 0.005 0.303 176.8 147 195 244

18 83.412 79.412 88.235 0.020 0 0.079 141.8 135 150 170

19 69.167 61.574 75.926 0.043 0 0.160 149.4 133 164 216

20 86.825 83.333 91.27 0.018 0 0.133 109.4 105 115 126

Bold numbers indicate significance. See Tables 1 and 7 for further captions.

doi:10.1371/journal.pone.0152864.t010
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well as Ne were selected a priori and fed into the learning phase, whereas in the work of Ven-
touras and colleagues [34] the most relevant statistical feature was selected, irrespective of elec-
trode position. Thus, it is questionable, whether actually the Pe was selected for classification.
Furthermore, in their study a flanker task was utilized. Typically, in this kind of task partici-
pants have a clear impression of committing an error. Since the Pe has often been related to
error awareness [7,8], this notion is unexpected and not in line with the present results. In con-
trast, we found a discernable Pe in single trials (compare Fig 2) that improved classification
accuracy.

However, the suggested approach has also some limitation. The performance of the classifi-
cation is likely due to the fact that both experiments were conducted in a successive order, and
thus the EEG signal is relatively stable. It is well known that the EEG signal is quite sensitive to
noise, biorhythms, arousal and many other factors. Thus, the features derived for instance on
one day might be not as predictive if the second task was conducted on another day, even if
exact the same experimental setup was used. Thus, it has yet to be tested, whether these signals
can even be utilized not only to classify across tasks, but also to predict behavior if the tasks are
not conducted immediately following each other.

In sum, the present findings replicate the role of Ne and Pe as reflections of basic error mon-
itoring processes. What is more, those monitoring processes obviously apply across different
cognitive tasks, even though a reliable classification was not observed in all participants. How-
ever, what goes beyond classification is that the features of one task are predictive with respect
to the performance in a following task. Thus, the error related EEG signal might be used to pre-
dict behavior in interleaved, i.e. subsequent conducted tasks. Accordingly, the outlined
approach is also promising with respect towards an application oriented perspective, for

Table 11. Results Across Task Ne: Train Rotation, Classify Flanker.

Subject Accuracy
(mean)

Accuracy
(min)

Accuracy
(max)

p
(mean)

p
(min)

p
(max)

trials correct
(mean)

trials correct
(min)

trials correct
(max)

trials
(total)

1 60.686 55.392 67.647 0.195 0.07 0.398 123.8 113 138 204

2 73.939 70.455 78.03 0.043 0.002 0.171 97.6 93 103 132

3 86.809 81.915 93.617 0.067 0 0.220 81.6 77 88 94

4 70 53.371 75.843 0.169 0.006 0.366 124.6 95 135 178

5 73.046 68.874 76.821 0.036 0 0.153 220.6 208 232 302

6 65.281 53.371 78.652 0.162 0.005 0.425 116.2 95 140 178

7 80 71.739 90.217 0.139 0.028 0.285 73.6 66 83 92

8 83.267 80.198 87.624 0.049 0 0.210 168.2 162 177 202

9 76.593 73.704 80.37 0.041 0 0.133 206.8 199 217 270

10 73.333 62.5 83.333 0.063 0 0.174 17.6 15 20 24

11 75.773 73.196 79.897 0.048 0 0.255 147 142 155 194

12 59.093 51.477 62.236 0.123 0.004 0.303 280.1 244 295 474

13 62.705 58.607 68.033 0.058 0.011 0.134 153 143 166 244

14 50.824 45.879 56.044 0.461 0.115 0.864 185 167 204 364

15 64.351 57.792 68.831 0.022 0 0.087 99.1 89 106 154

16 49.645 43.617 55.319 0.513 0.096 0.947 140 123 156 282

17 76.025 69.672 80.738 0.112 0.017 0.302 185.5 170 197 244

18 73.412 67.647 77.647 0.182 0.098 0.298 124.8 115 132 170

19 49.861 45.37 58.333 0.515 0.084 0.890 107.7 98 126 216

20 63.492 52.381 69.048 0.103 0.014 0.475 80 66 87 126

Bold numbers indicate significance. See Tables 1 and 7 for further captions.

doi:10.1371/journal.pone.0152864.t011
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instance within a brain-computer interface framework. Based on the present results it appears
at least possible that upcoming errors might be detected even before they were committed, if
tasks are conducted subsequently. Finally, the applied machine learning approach was success-
ful in demonstrating that a functional mechanism of one task can be identified in another task.
Moreover, the combination of advanced data mining strategies and EEG analysis provides the
opportunity to test whether different cognitive tasks depend on similar neural mechanisms.
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Bold numbers indicate significance. See Tables 1 and 7 for further captions.

doi:10.1371/journal.pone.0152864.t012
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