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ABSTRACT Tracking single molecules in living cells provides invaluable information on their environment and on the interac-
tions that underlie their motion. New experimental techniques now permit the recording of large amounts of individual trajec-
tories, enabling the implementation of advanced statistical tools for data analysis. In this primer, we present a Bayesian
approach toward treating these data, and we discuss how it can be fruitfully employed to infer physical and biochemical param-
eters from single-molecule trajectories.
In the past years, single-molecule measurements have
become a tool of choice for the study of biological systems.
In particular, single-molecule tracking techniques play an
important role for probing the processes regulating the
mobility of biomolecules in living cells. They have been
successfully used to investigate the motion of, among
others, membrane proteins, molecular motors, mRNAs,
and transcription factors (1,2). In practice, single-molecule
tracking experiments involve capturing a sequence of
images of biomolecules tagged with a fluorescent probe
(usually fluorescent proteins, organic dyes, or nanopar-
ticles). Fluorescent probes are then imaged on a sensitive
camera and spatially localized (e.g., with a fitting algo-
rithm). The positions are then connected between frames
to construct individual molecule trajectories (3). From
these trajectories, it is then possible to obtain information
on the physical and biological parameters controlling the
movement.

The throughput of single-molecule tracking experiments
have long been limited to a few tens or hundreds of trajec-
tories. However, the advent of high-density tracking
methods, such as sptPALM (4) or uPAINT (5), has changed
the scale at which individual motions can be recorded and
made it possible to capture hundreds of thousands or even
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millions of individual trajectories. Importantly, it enables
more advanced statistical methods to infer the motion pa-
rameters. Moreover, it means that sufficient data are avail-
able to determine these parameters in a spatially resolved
manner.

In this primer, we discuss the use of Bayesian inference
methods to analyze single-molecule trajectories. First, we
recall the basic principles of Bayesian inference. Next, we
detail its implementation for the analysis and mapping of
the stochastic motion of proteins in living cells. Finally,
we illustrate the Bayesian approach with experimental re-
sults on the dynamics of transmembrane proteins.
Bayesian framework

A general goal in data analysis is the determination of the
parameters of a model (e.g., the diffusion coefficient in
the case of Brownian particles) given a set of experimental
observations (e.g., individual trajectories from single-mole-
cule tracking experiments). Bayesian approaches provide a
consistent and reliable framework for extracting informa-
tion from experimental measurements (6–11). As illustrated
in this primer, a great benefit of Bayesian methods is that
they easily incorporate hypotheses on the physical and bio-
logical properties of the system, as well as on experimental
conditions. Classically, Bayesian inference features two
steps: the derivation of the posterior probability distribution
of the model parameters and sampling from the posterior
distribution to estimate the parameters.
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The starting point is Bayes’ law that reads as follows:

PðfUgjfTg;MÞ ¼ PðfTgjfUg;MÞPðfUgjMÞ
PðfTgjMÞ ; (1)

where fTg is the set of experimental observations, fUg
is the set of model parameters (to be evaluated), and M
is the model chosen to describe the data. In standard
terminology, PðfUgjfTg;MÞ is the posterior distribution,
PðfTgjfUg;MÞ is the likelihood, PðfUgjMÞ is the prior dis-
tribution, and PðfTgjMÞ is the evidence of the model.

The likelihood embodies the physical model and hypoth-
eses regarding the acquisition of data. In the context of
tracking experiments, it encodes the model used to describe
the motion of the molecules (including the presence of drift,
or the Markovian/non-Markovian nature of the process), the
positioning noise induced by the experimental conditions,
and various hypotheses regarding characteristic scales of
the environment.

Prior probability distributions are critical to Bayesian
analysis (6,7,9,10,12). They represent knowledge on the pa-
rameters before any measurements, including various phys-
ical constraints that may not be present in the likelihood.
Furthermore, they can impose that the posterior distribution
is invariant under reparametrization (i.e., Jeffreys prior), and
they can ensure that the posterior distribution is a well-
behaved function. Finally, priors can be used to regularize
the inferred parameters as discussed below.

The evidence allows access to the probability of a model.
It is mostly used in the context of Bayesian model compar-
ison (6,7,9,10,12) as follows:

gij ¼
PðfTg;MiÞ
P
�
fTg;Mj

� ¼ PðfTgjMiÞPðMiÞ
P
�
fTg

��Mj

�
P
�
Mj

�; (2)

where PðMiÞ is the prior probability of the model Mi and
where the model with the highest evidence is chosen. In
the context of single-molecule analysis, proper model selec-
tion is made semi-empirically with the use of numerical
simulations and various statistical estimators (13,14).

The final task of the Bayesian approach is sampling the
posterior distribution. The most common estimator of the
inferred parameters is the maximum a posteriori (MAP),
i.e., the highest-probability parameter value from the poste-
rior. It is usually accessed through direct optimization of the
posterior distribution. In low dimensions, posterior sam-
pling can be done by direct integration (9,10). Otherwise,
it is commonly performed using Monte Carlo sampling
(7,9,10,12,15). Fine tuning of the Monte Carlo parameters
is often required to obtain efficient sampling in large dimen-
sions. Numerous discussions on Monte Carlo sampling can
be found in (7,9,10,12). It is worth noting that in the
following and under most relevant assumptions (discussed
in the next section), the posterior distributions, in our
case, are well-behaved functions with well-defined maxima
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(usually not unique but with a main one). Hence, a common
approximate method for posterior sampling (allowing faster
computation than Monte Carlo sampling) is the Laplace
approximation (12) of the posterior distribution at the
MAP value of the parameters. It provides a Gaussian
approximation of the posterior distribution (11,16,17). In
most relevant hypotheses, it leads to overestimation of the
error in parameter estimation, which stems from asymmetry
of the diffusion posterior distribution that is imperfectly
approximated by a Gaussian.
Mapping the parameters of single-molecule
motion

As indicated above, a unique benefit of Bayesian approaches
is that the likelihood and prior distributions can be used to
account for noise and variability in experiments. Hence,
before explicitly constructing the different terms required
for Bayesian inference, it is important to note a few specific
features of single-molecule tracking measurements in living
cells. Different sources of noise and variability may be iden-
tified in single-molecule experiments. First, the dynamics of
individual molecules in cells is primarily driven by thermal
noise, leading to Brownian motion. Next, the cellular envi-
ronment is highly heterogeneous. For example, this is the
case of the plasma membrane where lipid microdomains,
scaffold proteins, and molecular crowding (among other
factors) contribute to variability in diffusive properties.
Finally, single-molecule experiments are inherently single-
cell experiments, meaning that they are subject to pheno-
typic variabilities between cells.

Given the vast spatial heterogeneity in the dynamics of
molecules, it is natural to map the parameters controlling
their motion rather than provide a single value averaged
over the entire cell. There are a few implicit assumptions
in the mapping procedure. First, it is necessary to mesh
the cellular environment, meaning that there are scales at
which the physical parameters can be considered approxi-
mately constant. In turn, the number of trajectories must
be large enough so that sufficient information is gathered
to infer the parameters in each zone of the mesh. A second
assumption is that the cellular system does not significantly
evolve over the durations of the measurements (note that
slow evolutions may still be analyzed as in (18)). Experi-
mental constraints associated with these assumptions have
largely been alleviated with the advent of high-density sin-
gle-particle tracking techniques that permit rapid recording
of a large number of data points (up to several thousands per
mm2 in a few minutes).
Likelihood

We start our Bayesian analysis by constructing the likelihood.
The dynamics of molecules, the characteristic scales of mo-
tion, the relaxation time of the velocity (10�18 � 10�10 s),
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and the heterogeneity of the environment suggest that the
overdamped Langevin equation (19–21) can be used tomodel
various kinds of motion. It reads as follows:

dr

dt
¼ FðrÞ

gðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðrÞ

p
xðtÞ; (3)

where DðrÞ is the diffusion, gðrÞ is the friction, FðrÞ is the
force, and xðtÞ is a zero-averaged Gaussian noise. Equation
3 describes the time evolution of the molecule in a heteroge-
neous environment where the diffusion, friction, and forces
vary with space. If the force field is conservative, i.e., the
energy is conserved, it can be written as the derivative of
a potential FðrÞ ¼ �VVðrÞ. The analysis is not limited
to conservative force fields. Before analysis there is no in-
formation on the various scales at which these fields
vary or even if they are present. Furthermore, the heteroge-
neous spatial diffusion potentially leads to the well-known
(Itô-Stratonovich-Hänggi) dilemma (19–26). The dilemma
stems from the dependence of the results of stochastic inte-
grals on the hypothesis made to evaluate them. In the case of
the Langevin equation, it leads to the ‘‘spurious force’’
induced by diffusion gradients (as shown in Eq. 4).

The Fokker-Planck equation governing the time evolution
of the transition probability of a molecule displacement
associated to Eq. 3 reads (20) as follows:

vPðr; t j r0; t0Þ
vt

¼ �V

��
FðrÞ
gðrÞ þ lVDðrÞ

�
Pðr; t j r0; t0Þ

	

þ V½DðrÞVPðr; t j r0; t0Þ�;
(4)

where r0 is the position of the molecule at time t0; r is the
position of the molecule at time t; and l is a constant equal
to l ¼ 0 if Eq. 3 is interpreted by the Itô definition, l ¼ 1=2
if it is interpreted by the Stratonovich definition, and l ¼ 1

if it is interpreted by the Hänggi (isothermal) definition.
We can now compute the full likelihood. The motion

being Markovian (or at least approximated as such),
the probability of a trajectory of length N reads
Pðfri; tigi¼1::NÞ ¼

QN�1
i¼1 Pðriþ1; tiþ1jri; tiÞ. It follows from

Eq. 4 that the probability P can be expressed as a path inte-
gral (27,28) over all paths rðsÞ connecting r0 to r as follows:

Pðr; tjr0; t0Þf
Z

DrðsÞ e�
R

ds QðrðsÞÞ
; (5)

where

QðrðsÞÞh 1

4DðrðsÞÞ

�
drðsÞ
ds

� FðrðsÞÞ
gðrðsÞÞ þ lVDðrðsÞÞ

�2

þ lV
FðrðsÞÞ
gðrðsÞÞ
is the classic Gaussian weight governing the probability of
displacements over an infinitesimal time interval.

We now use the mapping hypothesis suggesting that tra-
jectories close in space share the same properties. Hence,
our analysis is performed in a spatially partitioned space:
a mesh. We have recently described three methods of mesh-
ing in the context of single-molecule trajectories: square
(11,14), quad-tree (hierarchical), and Voronoi tessellation
(via unsupervised clustering) (29). The goal of the mesh is
to balance multiple constraints: local densities of transloca-
tions, characteristic sizes of motion heterogeneities, and
local domain size scaling. A common property is that the
size of the mesh is (at best) on the order of

ffiffiffiffiffiffiffiffiffi
DDt

p
where

D is the local diffusion coefficient and Dt is the time be-
tween frames.

Thus, the solution of Eq. 5 can be approximated in mesh
subdomains by the Laplace approximation with locally
DðrÞzDðrcÞ, gðrÞzgðrcÞ, FðrÞzFðrcÞ and if the force
field is conservative VVðrÞzVVðrcÞ with rc the centroid
of the mesh domain. Finally, events happening at smaller
scales than the one imposed by the local diffusivity,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðrÞDt
p

, cannot be directly analyzed without earlier
knowledge (30). Note that these approximations collapse
the three definitions of stochastic integrals previously
mentioned onto the same value.

Depending on the physical modeling, on the character-
istic scales of the fields and on the statistical properties of
the data, many different likelihoods may be formulated
(11,13,14,16–18,29,31,32). In this primer, we discuss the
likelihood to infer heterogeneous diffusion in a potential
field, thus with FðrÞ ¼ �VVðrÞ. The full likelihood reads
as follows:

P
�
fTkgðk˛T Þ

��fVVlgðl˛MÞ; fDlgðl˛MÞ
�
f

Y
ðl˛MÞ

0
BBBBBBBBBB@

Y
k˛T

Y
m:rkm˛Sl

exp

0
BB@� ðrkmþ1

�rkm�DlVVlDt=kBTÞ2

4

�
Dlþs2

Dt

�
Dt

1
CCA

�
4p

�
Dl þ s2

Dt

�
Dt

�d
2

1
CCCCCCCCCCA
;

(6)

where M is the mesh, Sl is a subdomain in the mesh, T is
the set or subset of trajectories, k is the superscript index
of a trajectory in T , m is the subscript time index of a point
in the trajectory, s is the positioning noise modeled as a
Gaussian process, and d the spatial dimensionality
ðd˛f1; 2; 3gÞ. The local fluctuation-dissipation relation,
Dl ¼ kBT=gl is enforced directly in this likelihood. Note
that, for a large number of points, the potential inferred
converges onto the Boltzman equilibrium distribution
(11,13,14,16–18,20,21,29,31,32).
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Priors

To perform the analysis, we use as a prior the product of two
priors: the Jeffreys prior and the field prior. In our case, the
Jeffreys prior reads as follows:

PðDl;VÞf
D2

l

ðDlDt þ s2Þ2
: (7)

In a practical manner, the Jeffreys prior prevents from infer-
ring negative diffusion in local confinement domains
because of positioning noise (31). The field prior is used
to penalize strong gradients of the diffusive and potential
fields. This prior reads as follows:

PðDðrÞ;VðrÞÞfexp

�
� m

Z
drkVDðrÞ k 2

� l

Z
drkVVðrÞ k 2

�
;

(8)

where m and l are weighting coefficients optimized using
simulations matching experimental conditions. Note that
the parameters ðm; lÞ can also be accessed directly from
the experimental trajectories using the parametric empirical
Bayesian approach (12,33). This approach is an approxi-
mate Bayesian procedure in which the parameters of the
prior are estimate directly from the data using Bayes law.
The field prior encodes physical constraints on the medium
properties and effectively reinforces the robustness of the
parameter estimation. Among other things, it can impede
the consequences of misconnected single-molecule trajec-
tories. It damps the propagation during optimization of local
region of high diffusion or potential that are induced by
improper linking between two separate biomolecules.

Finally, the robustness of the results regarding misevalu-
ation of the positioning noise should be tested. To this end,
an empirical noise prior is introduced as follows:

PðsÞ ¼ 1

s0

exp

�
� s

s0

�
; (9)

where s0 is the experimentally measured positioning noise.
It is worth noting here that s0 includes all sources of noise,
i.e., camera shot noise, single-molecule motion blur (34),
localization algorithm, etc. The posterior distribution is
then computed by numerically integrating the likelihood
over all the possible values of s as follows:

PðfUgjfTg;MÞf
Z

PðfTgjfUg; s;MÞPðfUgjMÞPðsÞds:

(10)

Note that in both the likelihood and the prior, the physical
model of the environment and the experimental conditions
(acquisition time, number of translocations, localization
1212 Biophysical Journal 110, 1209–1215, March 29, 2016
error) are mixed allowing a full probabilistic view of the
experiments.

Posterior distribution sampling

Estimators of parameters are linked to the Bayesian proce-
dure (6,7,9,10,12). When numerous localizations are avail-
able, the posterior distribution is bound to be narrow.
Thus, we use the MAP values as estimators. The MAP is
evaluated by optimizing the posterior distribution using sim-
plex or quasi-Newton methods in multiple dimensions (35)
(other optimization procedures work also efficiently). When
the analysis is performed with independent mesh domains,
local posterior distributions of diffusivity and forces are
evaluated by direct integration. When the analysis is per-
formed on large-scale domains (or full cell surface) with
coupling between mesh domains (either in the likelihood
or the prior), approximate methods are often employed.
As interaction and diffusivity fields are limited in their
spatial extension, the posterior distribution sampling was
performed by setting all the parameter values outside the
area of interest to their MAP values. This procedure was
used to perform direct integration of diffusion and force pos-
terior distribution on local areas and also to evaluate
confinement energy. Furthermore, a common approximation
used when evaluating the posterior distribution of parame-
ters in local domains is the Laplace approximation. This
approximation leads to a Gaussian shape of the posterior
distribution. The main effect in the case of single-molecule
analysis is an overestimation of the error in diffusion anal-
ysis, which stems from the asymmetry of the diffusion dis-
tribution imperfectly approximated by a Gaussian.

Quantitative elements

The efficiency of the scheme regarding convergence, reli-
ability of the maps, quality of the posterior distribution,
and effect of the prior are discussed in great detail in
(11,13,14,16–18,29,31,32). A few common rules can be
shortly described. Numerous properties are problem depen-
dent, however, generating a mesh withz20 points per zone
ensures a well-behaved posterior distribution and reliably
inferred maps. When handling various levels of single-
molecule confinement, the Jeffreys prior ensures that no
area will have a negative diffusivity induced by the com-
bined effect of the positioning error and confinement.
Finally, field priors have a useful property beyond smooth-
ing. Numerous experiments and single-molecule tracking
algorithms lead to trajectory misconnections during tracking
that can have significant consequences on analyzed proper-
ties. Coupling mesh domains together with the field prior
ensures that these events have limited statistical weight.

Globally, when handling any new problem, the inference
procedure is optimized on numerical simulations. Trajec-
tories are numerically generated in media mimicking
both the biological system and the recording properties.
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Parameters are then optimized to infer the fields used to
generate the trajectories. It is worth noting that single-mole-
cule experiments enjoy a useful property: most possible
configurations can be simply and efficiently simulated.
A biological example: dynamics of membrane
proteins

We illustrate the application of our Bayesian approach in the
case the dynamics of glycine receptors (GlyR) in living
cells. The analysis was performed by means of Inference-
MAP (29), an open source Cþþ software that implements
the method discussed above. GlyR diffuses on the postsyn-
aptic membrane of neurons and interacts with the scaffold
protein gephyrin via an intracellular b-loop. The GlyR-ge-
phyrin interaction is thought to be a key molecular mecha-
nism of synaptic formation and plasticity in the inhibitory
neuronal synapse (31,36,37). Gephryin scaffolds are stable
on the timescale of a few minutes and, as previously shown
(31), they can be described as potential wells in which re-
ceptors are transiently trapped.

To reconstitute the interaction in a nonneuronal system,
we used HeLa cells cotransfected with gephyrin and a trans-
membrane domain possessing the intracellular b-loop (38)
and fused to an extracellular photoactivatable fluorescent
probe (dendra2). Using sptPALM in total internal reflection
fluorescence illumination, we recorded more than 160,000
FIGURE 1 Bayesian approach to mapping single-molecule dynamics of a tran

b-loop inside a HeLa cell: (A) phase contrast image of a HeLa cell; (B) fluoresc

sivity; (D) force norm; and (E) potential energy. (F) Example of posterior distr

labeled arrows in (C) and (E). To see this figure in color, go online.
individual trajectories in a 300 s acquisition. With the
described mapping approach, we generated diffusion, force,
and potential energy maps spanning the whole cell (Fig. 1).
The map is based on an adaptive mesh, generated with an
unsupervised clustering technique described in (29). There
are more than 4,000 zones in the mesh, with the minimal
spatial resolution being ~120 nm. The full analysis required
z30 min. Analysis of individual clusters only requires a
few tens of seconds. The main time-consuming step is the
optimization of the potential field, which strongly depends
on the number of variables. Approximate methods to opti-
mize large-scale fields, such as randomized optimization
of mesh subsets (implemented in InferenceMAP (29)),
reduce computation time and efficiently converges to the
MAP values of the parameters.

The maps display important features. For the diffusion,
values range from 0.06 to 0.32 mm2 � s�1. The spatial vari-
ation of diffusivities is likely the result (among other things)
of variations in lipid content of the membrane, local changes
in membrane composition, crowding, and nonspecific inter-
action with the environment. Importantly, we verify that the
posterior distribution of the low- and high-diffusivity re-
gions are disjoint (Fig. 1 F), indicating that the measured
differences are statistically significant. The map of the force
norms reveals small regions of strong directional bias,
which corresponds to potential wells of different depths in
the potential energy map (Fig. 1 E). Importantly, the sites
smembrane protein that interacts with gephyrin clusters via an intracellular

ent image of gephyrin clusters, visible as bright spots; (C) whole-cell diffu-

ibutions of the diffusion and potential is shown. Positions are indicated by
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of these interaction regions are correlated to the location of
gephyrin clusters inside the cell, seen in the gephyrin fluo-
rescence image (Fig. 1 B). Outside the gephyrin clusters,
the force and potential landscape is mostly flat meaning
that the motion is predominantly diffusive. We can quantify
the depths of the potential wells by sampling the posterior
distribution of the potential energy inside and outside of
the interaction region (Fig. 1 F). The potential energy differ-
ence of roughly ~4 kT is evidence of a transient interaction,
in which receptors are temporarily confined at the site of a
gephyrin cluster.
CONCLUSION

To conclude, Bayesian inference constitutes a natural frame-
work for single biomolecule trajectory analysis. It combines
physical modeling of single-molecule motion with hypoth-
eses on data recording into a full probabilistic framework.
In future developments, it will be interesting to adapt the
Bayesian approach described above to include the internal
dynamics of the biomolecule (switching between different
diffusive states), the multiscale nature of the environments,
non-Markovian processes and, from a computational stand-
point, adaptation of the methods to large data sets.
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