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Although counteracting innate defenses allows oncolytic viruses (OVs) to better replicate and spread within
tumors, CD8+ T-cells restrict their capacity to trigger systemic anti-tumor immune responses. Herpes simplex
virus-1 (HSV-1) evades CD8+ T-cells by producing ICP47, which limits immune recognition of infected cells by
inhibiting the transporter associated with antigen processing (TAP). Surprisingly, removing ICP47 was assumed
to benefit OV immuno-therapy, but the impact of inhibiting TAP remains unknown because human HSV-1 ICP47
is not effective in rodents. Here, we engineer an HSV-1 OV to produce bovine herpesvirus UL49.5, which unlike
ICP47, antagonizes rodent and human TAP. Significantly, UL49.5-expressing OVs showed superior efficacy
treating bladder and breast cancer in murine models that was dependent upon CD8+ T-cells. Besides injected
subcutaneous tumors, UL49.5-OV reduced untreated, contralateral tumor size and metastases. These findings
establish TAP inhibitor-armed OVs that evade CD8+ T-cells as an immunotherapy strategy to elicit potent local
and systemic anti-tumor responses.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Oncolytic virus
Immunotherapy
TAP inhibitor
CD8+ T-cell immune evasion
1. Introduction

Emergent biological therapies may command tremendous advan-
tages over traditional cancer chemotherapy and radiation,whose effica-
cies are restricted by toxicity and resistance. Besides reduced toxicity
and greater selectivity for tumor cells, new therapies reliant onmultiple
methods of cell killing distinct from conventional antineoplastic agents
and capable of eliciting systemic anti-tumor immune responses promise
durable cures and overall survival benefits (Liu et al., 2007). Capitalizing
on their inherent ability to invade cells, reprogram them to produce
infectious progeny, and spread, viruses can be tailored to selectively
destroy tumor cells by modifying their genomes (Bell and McFadden,
2014; Lichty et al., 2014; Chiocca and Rabkin, 2014; Brown et al.,
2014). The resulting engineered viruses are attenuated due to deletion
of key virulence genes, yet retain the ability to replicate productively
in and destroy cancer cells. Such variants, which do not cause disease
but are selectively virulent in tumors are termed oncolytic viruses
(OVs). Tumor destruction driven, in part, by active viral replication
within cancer cells is referred to as viral oncolysis (Bell and McFadden,
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2014; Lichty et al., 2014; Chiocca and Rabkin, 2014; Brown et al.,
2014). In addition to direct oncolytic action, OVs stimulate systemic,
anti-tumor immune responses and are likewise potent immuno-
therapeutic agents (Lichty et al., 2014; Chiocca and Rabkin, 2014;
Brown et al., 2014; Dharmadhikari et al., 2015; Kaufman et al., 2015).

OV platforms using herpes simplex virus-1 (HSV-1) are particularly
encour-aging in part because the virus replicates in a range of tumors
and is effectively attenuated by deleting the γ134.5 neuropathogenesis
genes (Chou et al., 1990). Furthermore, independent γ134.5-deficient
(Δ34.5) HSV-1 strains have proven safe in human clinical trials
(Rampling et al., 2000; Markert et al., 2000; Hu et al., 2006; Senzer
et al., 2009; Harrington et al., 2010; Andtbacka et al., 2015). Along
with viral oncolysis, HSV-1 OVs generate systemic anti-tumor immune
responses upon local administration (Toda et al., 1999; Liu et al.,
2003). Nevertheless, serious deficiencies in the design of present gener-
ation OVs remain, many of which lack functions to evade host innate or
acquired immune defenses (Ikeda et al., 1999; Wang et al., 2003; Fulci
et al., 2006; Haralambieva et al., 2007; Nguyên et al., 2008; Zamarin
et al., 2009; Altomonte et al., 2009; Le Bœuf et al., 2013). Notably,
although wild-type HSV-1 replicates in hosts and naturally evades
pre-existing innate and acquired immune responses (Posvad and
Rosenthal, 1992; Koelle et al., 1993; York et al., 1994), a key immune
evasion gene was deleted in some modified Δ34.5 OVs (Taneja et al.,
2001; Todo et al., 2001; Liu et al., 2003) and deleting γ134.5 genes
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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results in OVs unable to counteract innate defenses (Mohr and
Gluzman, 1996; Mulvey et al., 1999, 2004), severely restricting direct
OV cell-killing (Taneja et al., 2001; Todo et al., 2001; Liu et al., 2003)
and potentially impairing indirect induction of systemic antitumor
immune responses.

To counteract innate, cell intrinsic host defenses that limit Δ34.5
OV replication within tumors, variants were isolated that expressed
the HSV-1 Us11 protein, normally produced late in the lifecycle,
at immediate-early (IE) times (Mohr and Gluzman, 1996; Mulvey
et al., 1999). Remarkably, Δ34.5 OVs expressing IE Us11 remained
neuroattenuated (Mohr et al., 2001), but effectively countered
interferon-induced, cell-intrinsic anti-viral responses (Mulvey et al.,
1999, 2004), replicated substantially better within tumors, and were
more effective anti-tumor agents in pre-clinical studies (Taneja et al.,
2001; Todo et al., 2001; Liu et al., 2003). Indeed, a related Δ34.5,
IE Us11-expressing HSV-1 has completed US phase III trials (Andtbacka
et al., 2015; Dolgin, 2015) and a biologics license application recently
approved by the FDA (http://www.fda.gov./BiologicsBloodVaccines/
CellularGeneTherapyProducts/ApprovedProducts/ucm469411.htm).
However, the genetic alteration enabling IE-Us11 expression also deleted
the neighboring HSV1 gene encoding the ICP47 immunomodulator
(Mohr and Gluzman, 1996; He et al., 1997; Mulvey et al., 1999; Taneja
et al., 2001; Todo et al., 2001; Liu et al., 2003). By inhibiting TAP, ICP47
down-regulates cell surface MHC class I expression and allows HSV-1
to complete its productive growth program despite the presence of
host anti-HSV-1 CD8+T-cells (Früh et al., 1995;Hill et al., 1995).Without
ICP47, increased clearance of infected cells by CD8+ T-cells could severe-
ly restrict OV spread through the tumor impacting both direct oncolysis
and anti-tumor immune response development. This limitation is likely
critical given the prevalence of HSV-1 seropositive individuals, the
rapid seroconversion of sero-negative patients after HSV-1 OV exposure
(Hu et al., 2006), and the finding that evading CD8+ T-cells facilitates
herpesvirus super-infection of seropositive hosts (Hansen et al., 2010).
Surprisingly, both the role of CD8+ T-cell evasion and how viral
immuno-modulators impact OV therapy remain unknown in part be-
cause human HSV-1 ICP47 has a low affinity for rodent TAP, impairing
proper assessment of its biological function in rodent models (Ahn
et al., 1996; Tomazin et al., 1996). Moreover, while removing the viral
TAP inhibitor was proposed to benefit OV therapy by improving its im-
mune stimulating properties, a direct comparison of how TAP inhibition
impacts OV efficacywas never performed (Liu et al., 2003; Dolgin, 2015).
Here, we address this problem by isolating an HSV-1 OV armed with
the bovine herpesvirus 1 (BHV-1) TAP-inhibitor (UL49.5), which unlike
its HSV-1 analog, antagonizes rodent and human TAP (Koppers-Lalic
et al., 2005; Verweij et al., 2011a). Significantly, UL49.5-expressing OVs
showed superior efficacy treating bladder and breast cancer in murine
pre-clinical models that was dependent upon a CD8+ T-cell response.
In addition to treating directly injected, subcutaneous (sc) tumors,
UL49.5-OV therapy reduced untreated, contralateral sc tumor size and
naturally occurring metastasis. This shows that incorporating a TAP in-
hibitor into an OV induces both local and systemic antitumor responses
following intratumoral administration. Moreover, it establishes arming
OVs to evade CD8+ T-cells as an effective OV immunotherapy strategy
that may applicable across many OV platforms.

2. Material and Methods

2.1. Cells and Virus Production

All cellswere grown andpropagated at 37 °C in 5% CO2 inDMEMplus
penicillin (100 U/ml) and streptomycin (0.1 mg/ml), supplemented
with the indicated amount of serum [4T1 cells (ATCC CRL-2539) and
MBT2 cells (a kind gift from Eva Hernando, NYU School of Medicine):
10% fetal bovine serum (FBS); Vero cells: 5% calf serum; U373 cells: 5%
FBS]. To produce HSV-1 stocks for OV therapy, virus was either grown
in Vero cells (to treat MBT tumors) or 4T1 cells. Cells were infected
(MOI = 0.01 for Vero; MOI = 0.1 for 4T1), incubated at 37 °C, and
monitored for the development of cytopathic effects (CPE). After 3 to
4 days, infected cells and supernatant were collected together and
frozen at −80 °C. After two freeze thaw cycles, particulate debris was
removed by low speed centrifugation (3000 rpm, 5 min, 4 °C). Soluble
supernatants containing virus suspensions were recovered, underlaid
with a 20% D-Sorbitol cushion in 50 mM Tris–HCl pH 7.2, 1 mMMgCl2
in Ultra-clear centrifuge tubes (Beckman Coulter, #344058), and
centrifuged at 18,000 rpm [SW-28 Beckman rotor in Optima L-90 k
ultra-centrifuge], for 90 min at 4 °C. Pelleted viruses were suspended
in 0.5 ml cold PBS and stored at −80 °C. The amount of infectious
virus was quantified by plaque assay on Vero cells. A mock preparation
isolated in an identical manner from uninfected 4T1 cells was used as
a control.

2.2. Mouse In Vivo Models

All animal procedures were performed in accordancewith protocols
approved by the institutional animal care & use committee at NYU
School of Medicine and Noble Life Sciences (Gaithersburg, MD), the an-
imal facility used by BeneVir Biopharm. ARRIVE (Animal Research:
Reporting of In Vivo Experiments) guidelines (Kilkenny et al., 2010)
were followed.

2.2.1. MBT2 Bladder Cancer Model
MBT2 cells (5 × 105) in DPBS (Cellgro, USA) were injected sc into

the left and right flanks of 5–6 week old, female C3H/HeN (MBT2)
mice anesthetized by continuous inhalation of isoflurane (3% Isoflurane;
1 l/min Oxygen). Tumor growth was monitored using an electronic
digital caliper (VWR International, model # 62379–531). Volume was
estimated using the tumor volume formula (width2 × length / 2).
Approximately 10 days post tumor cell inoculation, when tumors
reached approximately 50 mm3, the left flank tumor was directly
injected with virus or PBS. Injections were performed on days 0, 3 and
6 with 3 × 105 pfu of BV49.5, BV49.5-FS or PBS. Tumor size (treated
left-flank and untreated, contralateral right flank) was monitored over
time and animals were euthanized when control-treated tumors
reached 1000mm3. Prior to MBT2 implantation, mice were immunized
as described (Chahlavi et al., 1999) where indicated with 105 pfu of
wild-type HSV-1 (Patton strain) by intraperitoneal injection and
boosted with a second injection at the same dose three weeks later.
Vaccinated mice were HSV-1 seropositive by immunoblotting.

To determine if UL49.5 promotes persistence of BV49.5 in tumors,
C3H/HeN mice with bilateral s.c. MBT-2 tumors were injected over
5 days with three doses of either BV49.5 or BV49.5-FS. Two days after
the final injection, mice were sacrificed and tumors were weighed,
minced, homogenized using Lysing Matrix D tubes (MP Biomedical)
and bead-beating, freeze–thawed three times, sonicated and viral titers
determined by plaque assay on Vero cells.

2.2.2. 4T1 Breast Cancer Model
4T1 cells (1 × 104) in DMEMwithout additives were injected sc into

the right flank of 8 week old, female BALB/c mice anesthetized by ip
injection of Ketamine (100 mg/Kg) and Xylazine (10 mg/Kg). Tumor
growth was monitored every day using an electronic digital caliper
and tumor volume calculated as described (Demaria et al., 2005).
When tumors reached approximately 50mm3 (8–9 days after 4T1 inoc-
ulation), they were directly injected on days 0, 3 and 6 with 106 pfu of
BV49.5, BV49.5-FS or an equivalent virus-free control preparation
from uninfected cells. Lung metastasis reportedly occur rapidly, prior
to the onset of OV therapy, as clonogenic 4T1 cells were detected by
day 7 (Aslakson and Miller, 1992). Tumor size was monitored over
time and animals were euthanized when control-treated tumors
reached approximately 1200 mm3. To deplete CD8+ T-cells, 100 μg
anti-CD8+ antibody in PBS (anti-mouse CD8a clone 2.43, BioXCell,
cat.#BE0061) was injected into each mouse (once daily beginning
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3 days prior to commencingOV treatment, and every 6 days thereafter).
After 32 days, lungswere isolated and immersed in PFA 4% for oneweek
before superficial lung metastases were quantified by counting under a
light microscope. To verify the CD8+ T cell depletion, blood was collect-
ed by cardiac puncture using a heparinized syringe and blood cells
washed and suspended in RBC lysis buffer (eBioscience, cat.# 4333–57)
to eliminate erythrocytes. After a second wash, cells were stained with
anti-mouse CD3, anti-mouse CD4 and a non cross-reactive anti-mouse
CD8 monoclonal antibodies (eBioscience, cat. 11–0032-82, 11–0041-82
and 12–0081-83). Finally, cells were washed and suspended in 4% PFA
for FACS analysis.

2.3. Virus Construction

Recombinant HSV-1 Patton strain derivatives were all isolated by
homologous recombination of targeting plasmids with viral genomes
following co-transfection of viral DNA and plasmid DNA into permissive
Vero cells as described (Goins et al., 2002). To create a targeting plasmid
capable of introducing an IE-Us11 expression cassette into both γ134.5
loci, the plasmid pSP-Δ34.5-flα27P-Us11-PacI was engineered. This
plasmid lacks γ134.5 coding sequences and instead expresses Us11
from the HSV-1 IE ICP27 promoter. It also contains a unique PacI restric-
tion site that can accept a BlpI/PacI fragment containing BHV-1 UL49.5
(WT and FS) coding sequences fused to the HCMV promoter. Us11 and
UL49.5 coding sequences are surrounded by HSV-1 sequences that
normally flank the γ134.5 genes and direct homologous recombination
to the Bam HI SP fragment within the viral genome.

To obtain a viral DNA preparation suitable for recombinant virus
construction, Vero cells were infected with a γ134.5-deficient (Δ34.5)
virus (MOI = 1.0) and the infection was allowed to proceed at 37 °C
until cytopathic effect (CPE) was complete. Cells were harvested by
low speed centrifugation, suspended in lysate buffer (10 mM EDTA,
10 mM Tris–HCl pH 8.0, 0.6% SDS, 0.25 mg/ml Proteinase K) and
agitated overnight at 37 °C. Following phenol/chloroform extraction,
approximately 0.2ml of the aqueous phase was added to 10ml ethanol.
Visible, total DNA (comprised of a mixture of HSV-1 and cellular DNA)
was collected by spooling using a sterile glass Pasteur pipette. Excess
ethanol was allowed to drain before suspending the DNA in sterile
water. The concentration of viral DNA was estimated by plaque assay
following transfection into Vero cells.

Targeting plasmid DNA (1 μg) was mixed with DNA isolated from
Δ34.5 virus-infected cells (~5 μg) and co-transfected into Vero cells
using CaPO4. Once plaques were visible, cell free lysates were prepared
by freeze–thawing and 0.1 ml of a ten-fold dilution used to infect non-
permissive U373 cells. As Δ34.5 viruses replicate poorly in U373 cells,
this step enriches the population for recombinants that express IE
Us11 (Mohr and Gluzman, 1996; Mulvey et al., 1999). After three
sequential passages in U373 cells, individual isolates were purified
three times by limiting dilution in permissive Vero cells. Stocks were
prepared of purified isolates in Vero cells and screened for expression
of BHV-1 UL49.5 by immunoblotting. The physical genome structure
of the recombinants was verified by Southern analysis.

2.4. Antibodies

Antibodies were obtained from the following vendors/individuals:
Monoclonal anti-α-Tubulin antibody (Sigma-Aldrich, T5168); anti-
HSV1 ICP0 antibody [5H7] (Abcam, #6513); anti-UL49.5 sera was a
kind gift from Geoff Letchworth (Univ. Wyoming) and Emmanuel
Wiertz (Univ. Utrecht).

2.5. MHC-I Downregulation Assay

Subconfluent 4T1 cells mock-infected or infected (MOI = 20) with
BV49.5 or BV49.5-FS were collected by gentle pipetting at 12 hpi. Cell
pellets were washed with cold PBS and stained separately for both
MHC-1 alleles expressed by BALB/c mice; PE anti-mouse H-2Dd

(#110607, BioLegend) and PE anti-mouse H-2Kd (#116607, BioLegend).
Isotype control is PE mouse IgG2a, κ (#400211, Biolegend). After a
30 min incubation at 4 °C, cells were washed twice with cold PBS,
fixed in 4% PFA, and subjected to flow cytometric analysis. Samples
were acquired using a LSRII flow cytometer (BD Biosciences) and
analyzed using FlowJo version 8.8.3.

2.6. IFNγ Production by MBT-2 Stimulated CD8+ Enriched Splenocytes

Spleens were harvested according to IACUC guidelines. Splenocytes
were obtained by passing the spleens through a 70 μm mesh, washed
with HBSS, and red blood cells were removed with ACK lysis buffer
(Gibco; cat.# A10492-01). Splenocytes were further subjected, follow-
ing manufacturer's protocol, to a negative selection process to isolate
CD8+ T-cells (Miltenyi Biotec, cat.# 130–095-236). The IFNγ ELISPOT
assay was performed as described in the manufacturer's protocol
(eBioscience, cat.# 88–7384). Briefly, the capture antibody was diluted
in coating buffer, and 100 μl per well were added into 96-well nitro-
cellulose plates (Millipore Corp., cat.#MAIPS4510). Plates were incubat-
ed overnight at 4 °C and thereafter; unbound antibodies were washed
away with wash buffer (1 × PBS/0.05% Tween-20). One hundred
microliters (μL) of media alone or of mitomycin C-treated (100 μg/ml)
MBT2 cells (1 × 105) and 100 μl of the separated CD8+ cells (1 × 105)
were added to each well and the plates were incubated for 48 h at
37 °C/5%CO2. The cells were washed away and 100 μl of biotinylated
detection antibody were added and incubated for two hours at RT.
Thereafter, the plates were washed and incubated for 45 min at RT
with 100 μl Avidin-HRP antibody. Unbound conjugate was removed
by another series of washings and finally 100 μl of AEC substrate
solution (Sigma-Aldrich, cat.# A6926) were added, incubated at RT and
monitored for the detection of spots. Spots were counted by eye using
a dissecting microscope.

2.7. Statistical Analysis

All statistical analysis was carried out using GraphPad Prism 6.0
Software. Significance between treated groups was determined by
analysis of variance (ANOVA) followed by post-hoc analysis. Multiple
t-test (one unpaired t-test per time point) were also used to establish
significance when required. For all analysis, *P b 0.05, **P b 0.01,
***P b 0.005, ****P b 0.001.

3. Results

To produce a neuroattenuated HSV-1 OV that effectively replicates
in tumors and blocks cytosolic peptide display by MHC-I on the surface
of infected mouse and human cells, a recombinant deleted for both
γ134.5 virulence loci (Δ34.5) was engineered to express HSV-1 Us11
as an IE gene and produce the BHV-1 UL49.5 TAP inhibitor (Fig. 1a,
BV49.5). Importantly, while Δ34.5 HSV-1 OVs expressing IE-Us11
counter the limited host defenses in cancer cells and preferentially
replicate in tumors, replication and spread of γ134.5-deficient HSV-1
is highly restricted in normal cells and tissues by potent, cell-intrinsic
antiviral responses that restricts their growth (Chou et al., 1990; Mohr
and Gluzman, 1996; Toda et al., 1999; Rampling et al., 2000; Markert
et al., 2000; Mohr et al., 2001; Taneja et al., 2001; Todo et al., 2001; Liu
et al., 2003; Mulvey et al., 2004; Hu et al., 2006; Harrington et al.,
2010; Senzer et al., 2009; Andtbacka et al., 2015). Furthermore, Δ34.5
OVs expressing IE-Us11 are non-pathogenic in rodents and were also
shown to be safe in human trials (Mohr et al., 2001; Taneja et al.,
2001; Todo et al., 2001; Liu et al., 2003; Hu et al., 2006; Andtbacka
et al., 2015). To avoid introducing additional alterations to the Δ34.5
viral genome, a cassette containing UL49.5 and IE-Us11 genes was
targeted by homologous recombination to replace loci formerly
occupied by γ134.5-encoding genes. Due to a complex mechanism



Fig. 1. Physical structure of recombinant HSV-1 OV genomes. a. The linear full-length HSV-1 genome is depicted. Single-copy, unique long (UL) and short (Us) coding segments are shown
as solid black lines. Internal and terminal repetitive sequences are shown as filled black rectangles. Regions of the viral genome denoted by dotted lines are expanded below for a detailed
view of relevant loci. The γ34.5 gene locus is within a repetitive sequence element and is diploid [Bsu36l terminal fragment a (blue); Bsu36l— BsrG1 fragment c (red)]. In the recombinant
virus BV49.5, both copies of theγ34.5 genewere replacedwith a cassette expressingHSV-1Us11 as an immediate early (IE) gene and the TAP inhibitor encoded by the bovine herpesvirus
1 UL49.5 gene expressed from the human cytomegalovirus (HCMV) promoter. The recombinant BV49.5-FS is identical to BV49.5 except for a single nucleotide (indicated as + 1) that
results in a frameshift mutation within the UL49.5 ORF and precludes production of a functional UL49.5 protein. The location of the 32P-labeled DraI-RsrII probe and its three target
sites in the genome are depicted as stars (nucleotides 48–379 fragment a, 125987–126317 fragment c, 151910–152241 fragment b). b. DNA isolated from virus-infected cells was doubly
digested with BsrGI-Bsu36I, fractionated by electrophoresis on a 1% agarose gel, transferred to a nylon membrane and hybridized to the 32P-labeled DraI-RsrII probe (depicted as a star
in a.) This probe identifies sequences within internal and terminal repetitive genome segments that lie outside of the γ34.5 ORF. Hybridizing fragments (a, b, c delineated in panel a)
from WT, BV49.5, and BV49.5-FS viruses are indicated on the right of the autoradiogram. The mobility of DNA molecular size standards (in Kb) is indicated on the left. Shorter (top
panels) and longer (bottom panels) exposures are shown to facilitate visualization of terminal fragments that are underrepresented in replicating concatameric genomes. Intervening
lanes between WT, BV49.5, and BV49.5-FS have been spliced out. Heterogeneity at the genomic Bsu36l terminal fragments is due to natural variations within a repetitive sequence
component.
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involving both N and C terminal protein domains, it has not been
possible to isolate minimal amino acid substitutions within the UL49.5
ORF that selectively ablate UL49.5 TAP inhibitory activity (Loch et al.,
2008; Verweij et al., 2011b; Wei et al., 2011). Instead, an otherwise
isogenic variant differing by one additional nucleotide within UL49.5
that results in a frameshift (FS) and is unable to produce functional
UL49.5 was constructed (BV49.5-FS). Physical genomic analysis of
viral recombinants was performed using stocks grown up following
three consecutive limiting dilution steps to purify single plaques. The
genome structure was verified by Southern analysis (Fig. 1b) and indi-
cated that the recombinant viruses are genetically stable even after
the extensive amplification associated with three sequential plaque
purifications and subsequent high-titer stock preparation. Note that
while Bsu36l terminal fragments of WT length (Fig. 1b, fragments
marked a-WT) are readily observed in DNA isolated from WT HSV-1-
infected cells, they were not detected in samples from cells infected
with BV49.5 or BV49.5-FS. Instead, Bsu36l terminal fragments in
BV49.5 or BV49.5-FS migrate slower (Fig. 1b, fragments marked
a-BV49.5), consistent with their greater length due to inclusion of
Us11 and UL49.5 ORFs. Likewise, internal BsrGI-Bsu36I fragments of
WT length (Fig. 1b, fragments marked c-WT) are only detected in WT
virus, but not in samples from cells infected with BV49.5 or BV49.5-FS.
Instead, internal BsrGI-Bsu36I fragments in BV49.5 and BV49.5-FSmod-
ified to include Us11 and UL49.5 ORFs migrated slower reflecting their
larger size (Fig. 1b, fragments marked c-BV49.5). As expected, alterations
in the length of terminal BsrGl fragments (Fig. 1b, fragments marked b)
were not detected in WT, BV49.5, or BV49.5-FS viruses. This shows
that BV49.5 andBV49.5-FS recombinants contain the expectedmodified
terminal and internal HSV-1 genome fragments capable of encoding
IE-Us11 and functional or non-functional UL49.5 variants.

To evaluate the capacity of the newly isolated recombinants to
express BHV-1 UL49.5, total protein was isolated from virus-infected
cells and analyzed by immunoblotting. BHV UL49.5 protein only
accumulated in BV49.5-infected cells and was not detected in cells
infected with the BV49.5-FS variant, wild-type (WT) HSV-1, or the pa-
rental Δ34.5 mutant (Fig. 2a). Furthermore, cell surface MHC class I
was significantly reduced in cells infected with BV49.5 compared to
BV49.5-FS (Fig. 2b,c). Finally, BV49.5 and BV49.5-FS replicated to
equivalent levels in murine 4T1 breast cancer cells and MBT2 bladder
cancer cells (Fig. 2d), demonstrating that the FS variant does not
produce a protein that inhibits virus replication in the absence of
innate and acquired immune responses. In addition, both BV49.5 and
BV49.5-FS replicated better than an ICP34.5-deficient virus because
IE-Us11 expression allows Δ34.5 viruses to overcome host innate
immune defenses that restrict protein synthesis and limit viral replica-
tion (Mohr and Gluzman, 1996; Mulvey et al., 1999; Taneja et al.,
2001; Todo et al., 2001).

To evaluate OV therapeutic responses in treated and untreated
tumors in the same animal, bilateral sc MBT2 tumors were established
in the flanks of C3H/HeN mice. Previous studies have shown HSV-1
OV intra-tumoral injection of one tumor induced regression of the
treated and untreated, contralateral tumor, while OVwas only detected
in the treated tumor (Toda et al., 1999). In addition, regression of the
uninjected, contralateral tumor was dependent upon an anti-tumor
CD8+ T-cell response (Toda et al., 1999). Prior to inoculating with
MBT2 cells, mice were vaccinated with HSV-1 according to a published
procedure (45) to ensure that mice could rapidly mount an adaptive
immune response against HSV-1 following OV administration and
model future applicability to the clinic where most patients will have
pre-existing immunity to HSV-1. As prior vaccination with HSV-1 was
not required to observe differences between viruses expressing a func-
tional vs non-functional UL49.5 gene product in rodents (Figs. 4 and 5,
S2 and unpub. obs.), subsequent work was performed in mice that
were not HSV-1 seropositive prior to the onset of the experiment.
Once tumors reached approximately 50 mm3, each left flank tumor
was directly injected with a vehicle control, BV49.5 or BV49.5-FS.



Fig. 2. Developing an HSV-1 OV that evades innate and cell-mediated immune responses.
a. Immunoblot analysis of UL49.5 protein accumulation following high multiplicity
infection (MOI = 20) of murine bladder (MBT2) and breast (4T1) cancer cell lines with
the indicated viruses (18 h post-infection). Antisera specific for HSV-1 ICP0 and tubulin
served as controls. b. UL49.5 expression by BV49.5 functions to down-regulate cell
surface MHC class I expression in 4T1 cells. Cells were mock-infected (solid gray curve)
or infected (MOI = 5) with BV49.5 (solid black line) or BV49.5-FS (broken black line) and
subsequently fixed and stained with the indicated antibody. Left panel: anti-MHC-I H2-
Dd Ab staining, Right panel: anti-MHC-I H2-Kd Ab staining. Staining of infected cells with
non-immune sera is shown by the leftmost solid black curve. c. As in b but bar graphs
show MFI after adjusting for background staining of isotype antibody. Data were
collected from 3 independent experiments +/− SD. d. BV49.5 and BV49.5-FS replicate
equivalently in cultured murine cancer cells. MBT2 (MOI = 0.02) or 4T1 (MOI = 0.5)
cells were infected with the indicated virus and after 3 days (4T1) or 4 days (MBT2), the
amount of infectious virus present in cell free lysates was quantified by plaque assay in
permissive Vero cells. *** P b 0.005 by student's t-test.
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Additional intra-tumoral injections were performed 3 and 6 d after the
first treatment and the volume of treated and untreated, contra-lateral
tumors measured over time. While injecting either BV49.5 or BV49.5-
FS reduced treated-tumor volume compared to vehicle alone, BV49.5
was significantly more effective over 12 d (Fig. 3a; Supplemental table
S1). Furthermore, BV49.5 was more effective treating contra-lateral tu-
mors than BV49.5-FS (Fig. 3b; Table S1). As BV49.5-FS does not express
UL49.5 but is otherwise identical to BV49.5, UL49.5 protein expression
was likely responsible for the superior treatment outcome.

To further rule out any untoward effects of the FS mutation,
BV49.5 anti-tumor activity was compared to three additional HSV-
1 Δ34.5 OVs expressing IE-Us11. Instead of UL49.5, BV-mGMCSF
expresses mouse GMCSF (mGMCSF) based on earlier studies
claiming this improves the activity of Δ34.5 OVs expressing IE-
Us11 (Liu et al., 2003) and the recent biologics licensing application
approval of a Δ34.5 IE-Us11 HSV-1 OV expressing human GMCSF
by the FDA (Dolgin, 2015; http://www.fda.gov/BiologicsBloodVaccines/
CellularGeneTherapyProducts/ApprovedProducts/ucm469411.htm).
Levels of mGMCSF produced by BV-mGMCSF and detected by ELISA
(unpub. obs)were similar to those reported for anotherΔ34.5 IEUs11 ex-
pressing virus (Liu et al., 2003). A variant of BV-mGMCSFwas engineered
that expressed UL49.5 (BV49.5-mGMCSF). The physical structure of
these recombinants was verified by Southern analysis and their compar-
ative growth properties in culturedMBT2 cells evaluated (Fig. S1). As an
additional control, the first Δ34.5 IE Us11 expressing virus (SUP1) to
show efficacy as an HSV-1 OV was included (Taneja et al., 2001). In all
cases, UL49.5-expressing OVs were superior in treating directly injected
and contra-lateral tumors than viruses unable to express UL49.5
(Fig. S2). Thus, arming an HSV-1 OV with a TAP inhibitor stimulated its
anti-tumor activity both in treated primary tumors and in untreated
distal tumors. In addition, GMCSF expression did not detectably alter
the efficacy of an OV expressing the UL49.5 TAP inhibitor under these
conditions (Fig. S2).

To investigate how UL49.5 expression promoted OV anti-tumor
activity, we first determined if UL49.5 expression enabled viral persis-
tence in tumors. After establishing bilateral s.c. MBT2 tumors, left
flank tumors were treated with BV49.5 or the FS variant as in Fig. 3a.
Two days after the final injection, infectious virus load in OV-treated
and untreated (contra-lateral) tumors was determined. BV49.5-treated
tumors contained on average 7-fold more virus than BV49.5-FS-treated
tumors (Fig. 3c) and infectious viruswas not detected in untreated, con-
tralateral tumors (not shown). Thus, functional UL49.5 protein promotes
OV persistence in tumors presumably by inhibiting TAP in infected cells.
Greater OV persistence likely supports more tumor cell oncolysis and
fuels development of CD8+ T-cells that recognize tumor antigens. To
determine if UL49.5 TAP-inhibitor expression influenced development
of anti-tumor, cell-mediated immunity, antigen-stimulated IFNγ
release by CTL isolated from vehicle or OV-treated mice was evaluated.
While IFNγ secretion by CD8+-enriched splenocytes from BV49.5-FS or
vehicle-treated mice in response to mitomycin C-treated MBT2
cell stimulation was not detectable, IFNγ release was significantly
elevated by approximately 5-fold only in splenocytes isolated from
BV49.5-treated mice (Fig. 3d). This finding is consistent with the notion
that UL49.5-mediated TAP inhibition promotes anti-tumor immunity.

To investigate if a TAP inhibitor-armed OV was advantageous in
treating other solid tumors, a mouse mammary cancer model was
tested (4T1). This well-characterized model allows primary tumor
measurements after direct OV delivery and reliably produces readily
quantifiable lung metastases, obviating the need to implant tumors at
a distant site and allowing us to take advantage of the more physiolog-
ically relevant, natural capacity of murine 4T1 breast cancer cells to
metastasize to the lung. Moreover, therapy-induced regression of
metastatic tumors is dependent on CD8+ T-cell responses (Demaria
et al., 2005). Fig. 4a shows that BV49.5 was more effective than
BV49.5-FS at treating primary 4T1 sc tumors. The enhanced anti-
tumor activity of BV49.5 vs BV49.5-FSwas significant by 13d after treat-
ment and improved over time (Fig. 4a; table S2). To determine if the
efficacy of BV49.5 compared to the FS variant was due to therapy-
induced anti-tumor CD8+ T-cells, OV treatment was evaluated
in CD8+ T-cell-depleted mice. Significantly, the greater efficacy of
BV49.5 over BV49.5-FS was abrogated by CD8+ T-cell depletion

http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm469411.htm
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Fig. 3. Stimulation of anti-tumor activity at local and distant sites by arming an OVwith a TAP inhibitor. a. Bilateral, sc MBT2 tumors were established in left and right flanks of C3H/HeN
mice thatwere vaccinatedpreviouslywithHSV-1. Leftflank tumorswere treated on the indicated days (arrows) by intratumoral injection of BV49.5 (●; n=24), BV49.5-FS (■; n=23), or
PBS (▲; n = 20). Tumors were measured on the indicated days and the average normalized values reflecting relative tumor size on each day were plotted. Initial tumor volume
immediately before treatment was normalized to a relative size of 1.0. Error bars reflect the SEM. Control-treated tumors were compared to BV49.5 and BV49.5-FS-treated tumors by
two-way ANOVA followed by Tukey's post-hoc analysis (****P value b 0.001). b. As in (a) except contralateral (right flank), untreated tumors were plotted. ***P value b0.005 by
Two-Way ANOVA. c. After 2 d, tumors were harvested from mice that were not vaccinated and the amount of infectious virus present in cell free lysates quantified by plaque assay in
Vero cells. *P value b 0.05 by student's t-test. d. IFNγ production by splenocytes isolated from mice treated as in (a) and stimulated with either media or mitomycin c-treated MBT2
cells. Splenocytes were isolated on day 10 or ten days after the first virus treatment. *P value b 0.05 by student's t-test.
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(Fig. 4b,c; table S2). Thus, the superior therapeutic activity of BV49.5
was dependent upon: 1) a single nucleotide difference from BV49.5-FS
that enabled TAP inhibitor production; and 2) a host CD8+ T-cell
response. Remarkably, BV49.5 was likewise more effective than
BV49.5-FS in reducing the number of lung metastases, whereas
BV49.5-FS was not detectably better than treatment with vehicle
alone (Fig. 5a,b). Significant differences in the number of lung metasta-
ses were not detected in BV49.5 vs BV49.5-FS vs vehicle alone-treated
mice following CD8+-depletion of BV49.5-treated animals (Fig. 5c).
Similar to our findings treating primary 4T1 tumors, the superiority
of BV49.5 in reducing lung metastases compared to BV49.5-FS was
dependent upon production of the UL49.5 TAP inhibitor and intact
CD8+ T-cell responses. Thus, therapy of primary tumors with a TAP
inhibitor-armed OV effectively treated tumors at distant sites in two
different models, one using a preformed tumor at a contralateral site
(MBT2) and another that undergoes more physiological dissemination
via natural metastases (4T1).

4. Discussion

By restricting OV replication and spread, host CD8+ T cell responses
limit direct tumor oncolysis and the development of a systemic
anti-tumor response.

Althoughmany herpesviruses, includingHSV-1, encode a TAP inhib-
itor to evade CD8+ T-cells and productively replicate in the presence of
CD8+T-cells, the gene encoding theHSV-1 TAP inhibitor ICP47has been
deleted in many OVs (Taneja et al., 2001; Todo et al., 2001; Liu et al.,
2003; Hu et al., 2006; Senzer et al., 2009; Harrington et al., 2010;
Andtbacka et al., 2015). Since ICP47 is species specific and not functional
in rodents (Ahn et al., 1996; Tomazin et al., 1996), its importance
previouslywent unnoticed in preclinical studies. Furthermore, while re-
moving ICP47 has been widely assumed to benefit OV immunotherapy,
a direct comparison of how TAP inhibitor expression might impact OV
therapeutic efficacy was not previously performed in a responsive
model (Lichty et al., 2014). By engineering an HSV-1 OV expressing
the BHV-1 UL49.5 TAP inhibitor, which functions in rodent preclinical
models and humans (Verweij et al., 2011a), we show that this OV pro-
duces superior therapeutic outcomes compared to three independently
isolated OVs unable to produce UL49.5. Not only is a UL49.5-expressing
OV a more effective anti-tumor agent following local administration
into primary tumors, it is also more potent at reducing tumor growth
at distant, untreated sites in two different murine solid tumor cancer
models. Moreover, the benefit of UL49.5 expression on OV therapeutic
efficacy is dependent upon CD8+ T-cells, which may confer long-lived
protection. This establishes inhibiting TAP in infected tumor cells as an
effective mechanism to promote OV immunotherapeutic action.

While precisely how TAP inhibitors like UL49.5 augment OV therapy
and promote CD8+-dependent anti-tumor immune responses are
unknown, evading CTLs is likely important. By shielding infected cells
from elimination, TAP inhibitor armed OVs persist longer (Fig. 2c).
Importantly, BV49.5 was not detectably more pathogenic than BV49.5
and never spread to contralateral, untreated tumors despite replicating
to greater levels in directly-injected, treated tumors. Furthermore, no
adverse effects associated with HSV-1 pathogenesis and virulence
were observed throughout this study in any of the treated mice, even
aftermultiple injections and upon CD8+ T cell depletion. This is consis-
tentwith OV replication being limited to the treated tumor and restrict-
ed OV growth and spread in normal tissue as has been reported for
numerous HSV-1 Δ34.5 OVs (Rampling et al., 2000; Markert et al.,
2000; Taneja et al., 2001; Todo et al., 2001; Hu et al., 2006; Senzer
et al., 2009; Harrington et al., 2010; Andtbacka et al., 2015). Longer OV
persistence within tumors could cause greater oncolysis in the primary
tumor despite preexisting antiviral immunity. This likely generates
more tumor associated antigens (TAA) available for cross-
presentation by dendritic cells (DCs) to anti-tumor CD8+ CTL.
Significantly, downregulating antigen presentation and evading



Fig. 4. CD8+ T cell-dependent anti-tumor responses induced by treatment with an OV
armed with a TAP-inhibitor. a. Mouse mammary sc tumors (4T1) in BALB/c mice were
treated on the indicated days (arrows) by intratumoral injection of BV49.5 (●; n = 9),
BV49.5-FS (□; n = 10), or PBS (▲; n = 10). Tumors were measured on the indicated
days and the average normalized values reflecting relative tumor size on each day
were plotted. Initial tumor volume immediately before treatment was normalized
to a relative size of 1.0. Control-treated tumors were compared to BV49.5 and
BV49.5-FS-treated tumors by two-way ANOVA followed by Tukey's post-hoc analysis
(****P value b 0.001). b. As in (a) except mice (n = 10) were injected with anti-CD8+

antibody to selectively deplete CD8+ T-cells. *P b 0.05; ***P b 0.005 by student's t-test. c.
Splenic T-cell populations before (non-depleted) and after (depleted) CD8+ T-cell
depletion were analyzed by FACS using anti-CD3 and anti-CD8 antibody. Error bars
reflect SEM.

Fig. 5. Reduced lung metastasis induced by immunotherapy with a TAP-inhibitor-armed
OV. BALB/c mice with mouse mammary sc tumors (4T1) were treated on d 1, 3 and 6 as
in Fig. 4. Mice were sacrificed 26 d after the initiation of treatment and lungs were fixed
in formalin. a. Representative lungs showing metastases (arrows) in mice from a treated
with BV49.5, BV49.5-FS, or PBS. b. The number of lung metastases was quantified by
counting under a light microscope. c. Lung metastases were quantified in mice injected
with anti-CD8 antibody to selectively deplete CD8+ T-cells as in Fig. 4b. P b 0.005***;
P b 0.05* using Mann–Whitney statistics.
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anti-viral CD8+ CTLs by a TAP inhibitor-armed OV resembles a
mechanism used by some advanced tumors to evade elimination
by anti-tumor CTL (Leone et al., 2013). Although TAA display is
reduced in tumors with antigen presentation defects, antigen
presentation is not eliminated so long as peptides are processed
and access MHC class I via a TAP-independent manner. Indeed,
TAP-deficient tumors instead display an MHC class I - peptide
antigen repertoire derived from alternative sources, including
signal peptides generated by co-translational cleavage in the ER
lumen or peptides generated in other compartments (trans Golgi,
endosomal) that subsequently enter the ER (reviewed in Oliveira
and van Hall, 2013). Display of an alternate peptide repertoire
in TAP-inhibited cells, including those ectopically expressing
BHV-1 UL49.5, reportedly contributes to immune recognition of
TAP-inhibited cells by CD8+ T-cells (Lampen et al., 2010).
Perhaps remodeling MHC class I — peptide antigen repertoires fol-
lowing TAP-inhibitor armed OV treatment might in part influence
immunotherapeutic, anti-tumor responses (van Hall et al., 2006).

Our findings are also consistent with results showing that evading
T-cell responses is critical for superinfecting monkeys previously
colonized by the related herpesvirus cytomegalovirus (Hansen et al.,
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2010), as HSV-1 OV treatment of HSV-1 positive subjects and initially
HSV-1 negative patients that seroconvert after the first dose can be
considered a form of superinfection. Furthermore, they support a
model where an OV expressing the UL49.5 TAP inhibitor to evade
CD8+ CTLs exerts both local and global effects, facilitating viral
replication and direct oncolysis within a tumor thus stimulating a
global anti-tumor immune response. Finally, they establish that the
systemically-acting, immunotherapeutic power of local OV administra-
tion is effectively enabled by harnessing the natural ability of HSV to
persist in the face of CD8+ T-cell responses. TAP-inhibitor armed OVs
might better synergize with immune checkpoint inhibitors (Zamarin
et al., 2014), or possibly be sufficiently potent as single agents compared
to OVs unable to inhibit TAP.

5. Conclusions

Oncolytic viruses (OVs) offer advantages over traditional cancer
therapies by selectively killing tumor cells and stimulating anti-tumor
immune responses. However, vulnerability to CD8+ T-cell clearance
limits therapeutic responses to OVs. Using a herpes simplex virus-1
OV model, we engineer an OV that evades CD8+ T-cells by expressing
a herpesvirus-encoded inhibitor of TAP (transporter associated with
antigen processing). Our results show OVs that inhibit TAP demonstrate
greater efficacy treating bladder and breast cancer in a manner
dependent upon CD8+ T-cell immune responses in pre-clinical
mouse models. Moreover, they were better able to stimulate systemic
anti-tumor responses that reduced distant, untreated tumors and
natural metastases. This establishes that arming OVs to evade CD8+ T
cells as an effective OV immunotherapy strategy.
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