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Abstract

Diffusion magnetic resonance imaging (MRI) allows for the noninvasive in vivo examination of anatomical connections in the
human brain, which has an important role in understanding brain function. Validation of this technique is vital, but has proved
difficult due to the lack of an adequate gold standard. In this work, the macaque visual system was used as a model as an
extensive body of literature of in vivo and postmortem tracer studies has established a detailed understanding of the underlying
connections. We performed probabilistic tractography on high angular resolution diffusion imaging data of 2 ex vivo, in vitro
macaque brains. Comparisons were made between identified connections at different thresholds of probabilistic connection
“strength,” and with various tracking optimization strategies previously proposed in the literature, and known connections
from the detailed visual system wiring map described by Felleman and Van Essen (1991; FVE91). On average, 74% of connections
that were identified by FVE91 were reproduced by performing the most successfully optimized probabilistic diffusion MRI
tractography. Further comparison with the results of a more recent tracer study (Markov et al. 2012) suggests that the fidelity of
tractography in estimating the presence or absence of interareal connections may be greater than this.
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et al. 2006; Descoteaux et al. 2007; Iturria-Medina et al. 2007;

Introduction Sakaie and Lowe 2007) or physical phantoms (Basser et al. 1994;

Magnetic resonance diffusion images allow in vivo estimation of
cerebral anatomical connectivity patterns using techniques such
as tractography. However, there is still a need for an adequate
gold standard against which such techniques could be validated
(Hubbard and Parker 2009; Johansen-Berg and Rushworth 2009).

One approach to validation is to use computer-generated soft-
ware phantoms (Gossl et al. 2002; Tournier et al. 2002; Lazar and
Alexander 2003; Alexander 2005; Leemans et al. 2005; Watanabe

van Doorn et al. 1996; Van Donkelaar et al. 1999; von dem
Hagen and Henkelman 2002; Lin et al. 2003; Fieremans et al.
2005; Perrin et al. 2005; Yanasak and Allison 2006; Hubbard
etal. 2015). These phantoms are relatively easy to define and ma-
nipulate by the user, but may grossly over-approximate the in
vivo situation that is being simulated, as the complexities of
white matter structures are difficult to reproduce. A priori knowl-
edge of human neuroanatomy (Tournier et al. 2002; Abe et al.
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2004; Campbell et al. 2005; Savadjiev et al. 2006; Behrens et al.
2007) and circumstantial evidence from functional imaging stud-
ies (Guye et al. 2003; Toosy et al. 2004; Powell et al. 2006; Aron et al.
2007; Mao et al. 2007) and lesion (stroke and tumor) studies (Gossl
et al. 2002; Mori et al. 2002; Newton et al. 2006; Schonberg et al.
2006) are also valuable additional forms of validation (Hubbard
and Parker 2009). Comparisons with such studies have high-
lighted the various attributes and pitfalls of different classes of
fiber tracking methodologies.

Animal models provide a third avenue for validation. Within
this context, the quantity and reliability of tracer data derived
from macaque brains, the phylogenetic proximity of macaques
and humans, and the ability to acquire data using a comparable
imaging protocol make macaques a valuable animal model for
validating tractography techniques. Parker et al. (2002) provided
the first diffusion-weighted imaging comparison of the macaque
and the human brains using fast marching tractography, based
on diffusion tensor information. Subsequent comparison work
included use of the g-ball fiber orientation estimation technique
to enable tractography (Tuch et al. 2005), and investigation of ma-
caque brain connectivity patterns (Croxson et al. 2005; Dauguet
et al. 2007). However, although these studies showed to some de-
gree the similarity of tractography output with the expected con-
nection information, they did not explore the influence of the
range of experimental tractography variables, such as trajectory
curvature limits, which restricts the maximum angle through
which paths can propagate, and fractional anisotropy (FA) con-
straints designed to avoid propagation into gray matter. Such
variables have been shown (Jones 2010) to lead to variations in
the extent and strength of derived pathways. Improvements in
MR scanner and computer hardware and processing techniques
in the last decade have also allowed the production of higher
resolution and signal-to-noise data for MRI tractography, and a
resultant need to evaluate the abilities of more recently devel-
oped fiber tracking methodologies (Dyrby et al. 2007).

Many invasive tracer studies have characterized the intercon-
nections of the macaque visual system in detail, making it an
appropriate model with which to assess the accuracy of tracto-
graphy outputs (Van Essen et al. 1992). A detailed wiring map of
the interconnections in the macaque visual system was first de-
scribed by Felleman and Van Essen (1991; FVE91). Hence, via com-
parison with this reference system, diffusion MR images of the
macaque brain can be used as a test-bed to validate the output
of different tractography approaches between visual cortical re-
gions. Therefore, the aim of this work is to quantify the accuracy
of connections identified using MR diffusion-imaging-based trac-
tography in the macaque visual system by comparison with
known connections attained from previous invasive tracer stud-
ies. We use a probabilistic tractography approach to identify
probabilistic connection “strengths” (streamline counts) between
visual cortex regions of interest (ROIs) in 2 postmortem macaque
brains. Comparisons with the anatomical connections of the
FVE91 wiring map allow us to determine the optimum threshold
of acceptance of streamline counts, and the accuracy of the trac-
tography method. We assess the effect of distance correction,
trajectory curvature and FA constraints on accuracy.

Materials and Methods
Image Acquisition

MR high angular resolution diffusion imaging (HARDI) data were
acquired in formalin-fixed postmortem brains of 2 rhesus
macaques.

Dataset 1 (D1)

Imaging data were acquired in a fixed Macaca mulatta brain on a
4.7-T Bruker BIOSPEC vertical bore scanner at the Max Planck In-
stitute for Biological Cybernetics, Tiibingen, Germany. A surface
coil placed over the occipital cortex was used for signal reception.
A 2D spin-echo sequence was implemented with time echo (TE)
=78 ms, time repetition (TR)=9s, Gmax=47 mT/m, isotropic
voxel resolution 0.8 mm, 61 non-collinear diffusion directions
at b=4000 s/mm? (A=39ms, §=31ms), 7 at b=0, number of
averages = 4. Total imaging time was approximately 64 h.

Dataset 2 (D2)

Imaging data were acquired in a fixed Macaca fascicularis brain
on a 4.7-T Bruker Avance horizontal bore scanner at the Athi-
noula A. Martinos Center, Massachusetts General Hospital,
Charlestown, MA, USA. Although the brain was subjected to
middle cerebral artery occlusion for 1 h, there were no visible is-
chemic lesions or other pathology on the diffusion tensor
images. A 3D spin-echo echo-planar imaging sequence was im-
plemented with 8 shots, TE =33 ms, TR =350 ms, Gpax =380 mT/
m, isotropic voxel resolution 0.43 mm, 120 non-collinear diffu-
sion directions at b=8000 s/mm? (A=18.8 ms, §=6.85 ms), 17
at b=0. Total imaging time was approximately 27 h.

Image Analysis

Data Preprocessing

To improve the signal-to-noise ratio in the diffusion-sensitized
images of D1, we applied 5 iterations of 2D anisotropic diffusion
smoothing (Perona and Malik 1990; Parker et al. 2000; Pilny and
Janacek 2005-2006) using Image] (Abramoff et al. 2004).

Constrained Spherical Deconvolution and Model-Based Residual
Bootstrapping

To perform probabilistic tractography, we first estimate the diffu-
sion probability density function (PDF) describing the likely or-
ientations of axonal fiber bundles within each voxel using
constrained spherical deconvolution (CSD; Tournier et al. 2007,
2008) applied to the HARDI data. The single fiber response func-
tion, required for the deconvolution process, was obtained from
the simulation of a single diffusion tensor with FA of 0.8 and
the b-factor of the dataset in question. The fiber orientation dis-
tribution function was generated with 45 spherical harmonics
(Imax =8) and was reconstructed at 8000 equidistant points on
the sphere, within each voxel. A previously described, model-
based bootstrapping (Haroon et al. 2009) was used to generate
PDFs to perform probabilistic tractography using the probabilistic
index of connectivity (PICo) software package (Parker and
Alexander 2003; Parker et al. 2003).

Cortical Parcellation

To determine the accuracy of tracking, we first defined the differ-
ent cortical regions within the visual system on each of the ma-
caque brains. These were then used as seed regions for tracking.
We used the cortical partitioning scheme of Felleman and Van
Essen (1991; FVE91), available as an MRI volume within the
Caret 5.5 software package (Van Essen et al. 2001) for the
F99UA1 rhesus macaque brain atlas. We applied nonlinear warp-
ing to the anatomical MR brain image volume of FO9UAL1 to spa-
tially match it to the brain image volumes of our datasets using
the Normalize tool (Friston et al. 1995) in SPM5 (Fig. 1). The trans-
formation operations from the nonlinear warping were then ap-
plied to the FVE91 cortical partitioning template, bringing the
cortical regions into subject space. Given that this segmentation
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Figure 1. An example of the visual cortex parcellation scheme of Felleman and Van Essen. (A) Left: midsagittal view. Right: lateral view. (B) Left: ventral-axial view. Right:
dorsal-axial view. (C) The regions depicted on the cortical flat map of the example macaque brain. AITd and AITv, anterior inferotemporal, dorsal and ventral; CITd and
CITv, central inferotemporal, dorsal and ventral; LIP, lateral intraparietal; MIP, medial intraparietal; MSTd and MSTI, medial superior temporal, dorsal and lateral; MT,
middle temporal; PIP, posterior intraparietal; PITd and PITv, posterior inferotemporal, dorsal and ventral; PO, parieto-occipital; V1, V2, V3, V4, visual areas 1,2,3,4; V3a,
visual area V3a; V4t, V4 transitional; VIP, ventral intraparietal; VOT, ventral occipitotemporal; VP, ventral posterior.

is used to drive the tractography algorithm and that poor match-
ing to the actual gray matter could negatively impact the ana-
lysis, the quality of the subject-specific region placements was
then manually assessed through a slice-by-slice examination.
Wherever required, ROIs were amended and repositioned to cor-
respond to expected cortical landmarks (Saleem and Logothetis
2006), ensuring that they encompassed the gray matter only.

Tractography

Twenty-two cortical ROIs were identified in the visual system
within both hemispheres of the 2 datasets, allowing us to per-
form intrahemispheric tracking. As the MRI measurements for
D1 were obtained using a surface coil placed over the occipital
lobe, we restricted our study to the visual system in both data
sets. Each of the visual regions in the spatially matched FVE91
template was used as a seed region for performing probabilistic
tractography using PICo (Parker and Alexander 2003; Parker
et al. 2003) with 1000 Monte Carlo streamline propagations in-
itiated per voxel of each seed region. For each dataset, a cortico-

cortical interconnection matrix was created by measuring how
many streamlines from a specified cortical region reached each
of the other cortical regions. There was an additional step to im-
pose symmetry: The connections were measured from each
A — B pair and from B —» A and the maximum number of stream-
lines from the 2 measurements was taken to be the value of con-
nection. This gave us a symmetrical matrix of “strengths” of
cortico-cortical interconnection (SCI) on a scale of 0-100% of in-
itiated streamlines. Connection strengths were determined be-
tween all 22 regions within both the left and right hemispheres.

Comparison with In Vivo Tracing Data

The SCI matrices were compared with the interconnections de-
scribed in FVE91, which are based on in vivo tracing results in
various species of macaque including M. mulatta and M. fascicu-
laris (Felleman and Van Essen 1991). True positives (TPs) were
the connections established in FVE91 with high confidence (in ei-
ther the forward or reverse tracing direction) and true negatives
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Figure 2. (A) The symmetric gold standard connection matrix with regions in an
alphabetical order, where white indicates a true connection, black no connection,
and gray indeterminate. (B) The wiring diagram representations of the in vivo
connections from Felleman and Van Essen with labels for different regions as
defined in that work.

(TNs) the connections for which good experimental evidence of
no connection existed. Potential connections for which the evi-
dence was deemed unreliable in FVE91 (due to conflicting evi-
dence or lack of findings for that connection) were discounted
from our “ground truth” connection matrix (Fig. 2). We use the
term “ground truth” not to imply that this matrix definitively re-
presents true connections (as there are limitations to the accur-
acy of the invasive tracing data), but rather to imply that this
matrix was used as a baseline against which the tractography
findings were compared.

The accuracy of tractography-derived connections was calcu-
lated as the percentage of correctly determined connections (in-
cluding TP and TN):

100 % (TP + TN)
A — Ox P4 ) 1
CCMAY = TP TN + FP + FN @

where FP is the number of false positive connections and FN false
negatives. Accuracy was calculated at every step increase of 1%
(between 0 and 100%) in the acceptance threshold value applied
to the SCI matrices. If the SCI is above this threshold, then the
connection is deemed to be present. Receiver operating charac-
teristic (ROC) curves were also generated by plotting the TP

rates against FP rates, where TPyt = TP/(TP + FN) and FPyqte = FP/
(FP +TN). Finally, % TP was calculated using 100 x TP/(TP + FP)
and % TN by 100 x TN/(TN + FN).

Some connections were found to be present in all 4 hemi-
spheres of the macaque tractography data but not present in
FVE91, and other connections were present in FVE91 but consist-
ently absent in the tractography data. We thought it possible that
these tractography connections that were classified as FPs or FNs
may in fact be correct. We considered the accuracy of FVE91 for
these connections by comparison with information provided by
a further, recently published, quantitative tracer study (Markov
et al. 2012), which reports an enhanced description of pathways
within the visual system. Despite differences in the partitioning
schemes of Felleman and Van Essen and the Markov analysis, we
were able to identify analogous regions: visual areas 1,2, visual
areas V3a, visual areas 4, V4 transitional, middle temporal, lateral
intraparietal, medial intraparietal, ventral intraparietal, and pos-
terior intraparietal were considered to be the same in both
schemes, and further regions were identified with different nam-
ing conventions: posterior inferotemporal ventral (FVE) = TEO(M),
posterior inferotemporal dorsal (FVE) = TEOm(M), central infero-
temporal ventral (FVE) = TEpd(M), central inferotemporal dorsal
(FVE) = TEpd(M), anterior inferotemporal ventral (FVE) = TEav(M),
anterior inferotemporal dorsal (FVE) = TEad(M), PO(FVE) = V6(M),
and V6a(M) combined, MST(FVE)=medial superior temporal
lateral (M) and MSTd(M) combined, and V3(M) encompassed V3
and ventral posterior in FVE. There was no analogous region in
the Markov scheme for the region defined as ventral occipitotem-
poral in the Felleman and Van Essen scheme.

The Effect of Distance Correction, Curvature, and FA Constraints

By recording the average length of the streamlines leaving each
seed voxel, the lengths of the connection trajectories originating
from each seed region were estimated. As with the SCI matrices,
symmetric “length” (in mm) of cortico-cortical interconnection
(LCI) matrices were generated for both hemispheres in the 2 data-
sets; the larger of the lengths measured between 2 regions was
used to define the connection in question. The LCI matrices
were used to compensate for previously reported (Tomassini
et al. 2007; Morris et al. 2008; Jones 2010) distance effects that in-
fluence probabilistic tractography results. Two methods of
streamline length-based correction were explored. First, as im-
plemented in FSL’s probtrackx (Behrens et al. 2007), the values
in the SCI matrices were multiplied with the corresponding dis-
tance value in the LCI matrices (R-correction). Second, SCI matri-
ces were multiplied by the square of the corresponding distance
values in the LCI matrix (R?-correction). To interrogate the suc-
cess of the corrections, the TP and FP rates were calculated as a
function of connection length by dividing all connections into 5
bins, by ordering the connections according to length and placing
an equal number of connections in each bin.

We also considered the effects of other constraints and opti-
mizations that are commonly used in tractography experiments.
The tractography experiments described above were repeated in
both hemispheres for both datasets using 4 different FA stream-
line propagation termination thresholds of: 0, 0.1, 0.2, and 0.3.
These values are based on recommended values that were used
in other studies (Kunimatsu et al. 2004; Stadlbauer et al. 2007;
Parizel et al. 2007) and are founded upon considerations of the se-
lection of a threshold that distinguishes gray and white matter.
As our tracking start and termination regions lie within cortical
gray matter, where the FA values may be lower than the thresh-
olds used (i.e., 0.1, 0.2, and 0.3), the use of FA threshold values as
streamline propagation termination constraints may end the
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Figure 3. (A) The average receiver operating characteristic (ROC) for SCI matrices at a range of acceptance thresholds in comparison with FVE91. (B) Accuracy of connections
from the SCI matrices at a range of acceptance thresholds from 1 to 40%, compared with FVE91. (C) Percentage of TN and (D) % of TP connections identified when
optimizing the SCI matrices generated for D1 and D2 against the Felleman and Van Essen atlas. Note that results are only shown for acceptance thresholds between 1

and 40%, although the full range of threshold levels up to 100% was tested.

tracking process before tracking has left the seed mask. To allow
for the streamlines to reach the white matter of the brains before
the FA termination constraint initiates, a cortical gray matter
mask was used to specify regions in which this constraint was
not employed. These masks were also used at the far end of the
streamlines where the paths penetrate the gray matter. The cor-
tical gray matter mask was generated by combining all the cor-
tical regions derived from the cortical partitioning scheme of
FVE91. This was then warped onto the cortex in each dataset.

Another constraint that was explored was the use of curvature
thresholds. This constraint is typically employed to allow for the
expectation that, in white matter, at a voxel resolution, sharp
changes in the direction of fiber pathways are not expected
(Schmahmann et al. 2007; Wakana et al. 2007; Behrens and Jbabdi
2009). To test the effects of curvature constraints, curvature-
based termination values of 70, 80, 90, and 180° were separately
used as constraints at each step of the streamline propagation
process.

Results

Accuracy of Connections

The ROC curves (Fig. 3A) for each hemisphere in each data set
show performance that is clearly above chance (black line) for all

tested thresholds of SCI. Figure 3B shows the effect of the accept-
ance threshold for SCI on connection accuracy, which is optimum
between 2% and 5% for both datasets. Above this optimum thresh-
old only the strongest connections are accepted, leading to an in-
crease in the percentage of TP connections (Fig. 3D), but a decrease
in the percentage of TNs (Fig. 3C) as weaker connections are
missed (more FNs). Below the optimum threshold, progressively
weaker connections are erroneously accepted (more FPs), reducing
the percentage of TPs (Fig. 3D) but increasing the percentage of
TNs (Fig. 3C). Average accuracies of 77% and 70% of connections
at the optimum thresholds were found in D1 and D2, respectively
(Table 1), showing good agreement between the results from each
brain, despite quite different acquisition parameters.

The connection matrices (Fig. 4) show good correspondence
between the known connections from in vivo tracing and the dif-
fusion-based connections at the identified optimum acceptance
thresholds for each hemisphere. The majority of FN connections
were long range (Table 2), involving connections between differ-
ent lobes. This may be explained by the inherent bias of tracto-
graphy toward the shortest pathways. FP connections tended to
be shorter range, with half being within the same lobe (Table 3).
These “false” connections were compared with the results of a
more recent quantitative tracer study (Markov et al. 2012) that
has identified a number of additional pathways, as indicated by
the footnotes “a and b” in Tables 2 and 3. Markov tested 9 of
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Table 1 Accuracy of connections

D1 D2

Optimum threshold (%) Accuracy (%) Optimum threshold (%) Accuracy (%)

Left Right Overall Left Right Overall Left Right Overall Left Right Overall
No correction 2 2 2 75 79 77 2 3 2 72 69 70
R-correction 1 1 1 75 77 76 1 1 1 69 69 68
R?-correction 3 3 3 73 74 74 5 16 5 73 71 71
Curvature <70 1 3 1 76 72 74 7 2 6 70 69 70
Curvature <80 2 4 2 74 73 73 1 2 1 71 69 69
Curvature <90 2 8 2 74 73 73 2 3 3 70 70 70
Curvature <180 3 3 3 73 75 74 2 3 2 72 69 70
FA >0.0 2 2 2 75 79 77 2 3 2 72 69 70
FA >0.1 2 1 1 72 74 72 1 1 1 71 73 71
FA >0.2 2 1 1 73 72 72 5 3 3 66 71 68
FA >0.3 1 1 1 71 71 71 1 1 1 67 66 68

Note: The results of optimizing D1 and D2 on the Felleman and Van Essen atlas using no distance correction, R and R? correction; 70, 80, 90, and 180° curvature constraints;

and FA >0.0, FA >0.1, FA >0.2, and FA >0.3 constraints.

D1
Left Hemisphere

12345678910111213141516171819202122

Right Hemisphere

12345678 910111213141516171819202122

D2
Left Hemisphere

1234567891011121314156171819202122

Right Hemisphere

12345678910111213141516171819202122

Figure 4. Comparison of the thresholded connection matrices generated for D1 and D2 against the Felleman and Van Essen atlas (Fig. 2A). Regions are provided in an

alphabetical order, as defined in Figure 2.

the 18 connections identified as FPs relative to the FVE91 results,
and identified 8 previously undocumented true connections and
confirmed 1 nonconnection. These newer results are clearly in
stronger agreement with the tractography results than the
FVE91 results. However, Markov also tested 10 of the 40 FNs
(Table 3) and confirmed the existence of 8 connections that
were not found with tractography along with 2 connections
that were confirmed to be absent.

The Effects of Distance Correction

Figure 5 shows the results of the distance correction methods on
accuracy (compare with Fig. 3). Without distance correction, both
the TP and FP rates decline with increasing distance away from
the ROI seed point (Fig. 6). Both the R and R2-correction’ show
some improvements in the TP rate identified at long distance
(Fig. 6A), but the FP rate also increases (Fig. 6B), resulting in little
notable increase in overall accuracy of the identified connections
(Table 1).

The Effects of Streamline Curvature Termination
Constraints

Curvature constraints appear to have no clear effect on the accur-
acy of the results (Table 1). Although the use of a curvature

threshold increases the percentage of identified TNs, it also de-
creases the percentage of identified TPs.

The Effects of Variations in FA Termination Constraints

The use of higher FA termination thresholds appears to have a
negative effect on the accuracy of the tracking results (Table 1),
that is, when the FA threshold is increased, the level of accuracy
of the tracking results is reduced. These results suggest that,
under the experimental conditions used in this work, there is
no justification in using any FA threshold to terminate tracking.

Discussion

Our results demonstrate that a threshold of approximately 2-5%
is a good acceptance level for SCI when using probabilistic track-
ing methods such as PICo. We were able to achieve a tractogra-
phy-based connection accuracy of 77% in D1 and 70% in D2
relative to the connections that were identified by Felleman and
Van Essen. The difference in accuracy found between D1 and D2
is most likely to be due to differences in the data acquisition pro-
tocols and the fact that D1 and D2 are from different subspecies of
macaque. Considering the uncertainty of false connections in the
Felleman and Van Essen work, our results reflect the lower limit
of accuracy.
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Table 2 Apparent FN connections Table 3 Apparent FP connections
Occipital Temporal Parietal Occipital Temporal Parietal
Occipital V1-v4t? V4t-AITd V3-LIP Occipital V1-vP? V2-PITv® V2-MIP¢
V3-MT® V4t-AITv V3a-LIP VP-PITv? V3-MIP
V3-V4t V4t-CITd? VP-LIP MT-PITd? V4-MSTi®
VOT-V3a V2-MSTi® VAt-PITd
V3a-MSTi VOT-CITv
VP-PIP Temporal AITv-AITd PITd-MSTi
MT-PO€ CITv-CITd?
V4t-PO PITd-CITd*
VP-PO PITd-PITv?
VP-VIP Parietal PIP-LIP
V4t-LIP PIP-VIP
V4t-MIP PIP-MIP
V4t-PIP VIP-MIP
V4t-VIP
VOT-MIP Connections that are present in all 4 hemispheres of the macaque tractography
VOT-LIP data, but which do not exist in the Felleman and Van Essen atlas. In bold are
VOT-PIP the 8 connections that are clearly identified as not present in the Felleman and
VOT-VIP Van Essen atlas, while there was uncertainty for the 10 connections not
VOT-PO highlighted. o A A
b b #Strong connection identified in Markov et al. (2012).
Temporal PITv-AITd PITv-LIP PWeak connection identified in Markov et al. (2012).
CITd-MIP “Connection found to be absent in Markov et al. (2012).
Parietal MSTi-LIP
PO-LIP
PO-MSTd
PO-MSTi Our analysis did not take into account differences in the phys-
VIP-MSTi ical diameter of the tracts, or the fact that some connections may
MSTi-MIP be associated with subregions within our cortical regions. Both
PITd-MIP effects are likely to lead to reduced sensitivity of the diffusion
PITv-MIP? MRI tracking methods used in this work; improvements in spatial
PITv-MSTd® resolution and in the definition of cortical regions may lead to
PIP-MSTd improvements in the percentage of accurately identified connec-
PIP-MSTi tions and nonconnections. In this study, we did not compensate

Connections that are present in the Felleman and Van Essen atlas, but which did
not exist in any of the 4 hemispheres of the macaque tractography data. In bold
are the 20 connections that are clearly identified as present in the Felleman and
Van Essen atlas, while there was uncertainty for the 20 connections not
highlighted.

*Weak connection identified in Markov et al. (2012).

bStrong connection identified in Markov et al. (2012).

“Connection found to be absent in Markov et al. (2012).

Indeed, further comparison with the results of a recent quan-
titative tracer study (Markov et al. 2012) supports this conclusion
(Tables 2 and 3). Their results suggest that nearly all of the con-
sistent “FP” connections identified by our tractography experi-
ments are true connections, but that the majority of consistent
“FNs” are likely to be truly missed connections. This reflects the
limited sensitivity of tractography, which is unlikely to be able to
reproduce small, fine, or dispersed connection pathways. Fur-
thermore, tractography is thought to be biased toward terminat-
ing on gyral crowns rather than on sulcal walls (Jbabdi and
Johansen-Berg 2011), which may have contributed to the large
number of FNs, which tend to involve small areas in the sulci
(Table 2). This suggests that the true accuracy of the tractography
results may be greater than suggested by comparison with the
Felleman and Van Essen results, and also that a lower threshold
of acceptance for the tractography results may be appropriate to
capture more of these missed connections. Use of the CoCoMac
(http://cocomac.org) database, which is a more up-to-date and
comprehensive collection of macaque invasive tracer informa-
tion, may also offer a better test of accuracy than the Felleman
and Van Essen map.

for variations in the sizes of the cortical regions, that is, more
streamlines will propagate from larger cortical regions such as
V1 than from smaller regions. While this will reflect the true
underlying anatomy, tracer injections tend to be comparable in
absolute size and are typically not scaled to area size, so this
would introduce some differences between tractography and tra-
cer-derived results.

We investigated the performance of variables such as dis-
tance-based corrections, curvature, and FA constraints, which
are commonly used when performing tractography, against in
vivo tracer results, allowing a better understanding of their true
effects. Without distance correction, the TP and FP rates both de-
cline with increasing distance. Both the R and R?-corrections
show improvements in the TP rate at long distance, but the FP
rate is also increased, resulting in little gain in overall accuracy.
Therefore, a more sophisticated correction method is needed if
distance effects are to be compensated for.

Unexpectedly, we found that use of the FA thresholds tested
reduced the accuracy of the connections found. This is possibly
due to the rejection of streamlines that are actually TP pathways.
This may be confounded by the necessity to segment gray matter
to avoid the application of FA thresholds in these regions. If seg-
mentation is not accurate, or if partial volume problems lead to
regions of low FA beyond the identified cortical boundaries, this
could contribute to the rejection of TP pathways emerging from
the gray matter or entering the gray matter at the terminus of
streamlines. In situations where the aim of tractography is not
to establish connections between gray matter regions per se,
but perhaps to segment a specific white matter pathway without
its gray matter entry points, then it may still be possible that FA
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thresholds could be helpful; our methodology is not able to an-
swer this point definitively.

Although theoretically a curvature threshold appears to be
very useful in excluding streamlines that are anatomically doubt-
ful, it may be that such sharp changes in the direction of the
streamlines have a minimal effect on the outcome of probabilis-
tic tractography, unlike in deterministic tractography, where a
single erroneous change of direction could have severe

consequences. This could explain why such a constraint has little
or no effect on our results. The slight variation in the results ob-
tained on repeating the experiments using different curvature
thresholds may simply be due to the Monte Carlo sampling
that is used by PICo, which will introduce some variability. Argu-
ably, the nature of probabilistic tractography dictates that all pos-
sible fiber orientations at a given point along a pathway are valid,
with the probability of each being chosen determined by the
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intravoxel PDF alone; additional orientational thresholds are
therefore applying post hoc cutoffs on the PDFs, which is at
odds with the probabilistic framework of the technique. The
lack of influence of curvature constraints in our results may sim-
ply be indicating that the bootstrap generation of the PDFs is suf-
ficient to guard against a high probability of pathways with high
curvature. It is possible that if our default step size was larger,
curvature constraints may have been more important.

Our results are comparable with those of Thomas et al. (2014),
showing similar performance on the ROC curves (e.g., compare
results in Fig. 3 with the CSD results in Fig. 2 of the work by
Thomas) despite consideration of different brain regions. While
Thomas interpreted these results in a negative light, we are
more optimistic as we believe these measures represent the
lower limits of accuracy due to imperfections in the results of
the tracer studies. However, we agree that tractography is funda-
mentally limited in its ability to detect long-range anatomical
projections.

Conclusion

Our results demonstrate that tractography can identify the ma-
jority of expected anatomical connections in the visual network
of the macaque brain and provide useful data to help define the
limitations of the method. However, some caution is needed in
interpretation of these results as it is falsely assumed that the in-
vasive tracer studies provide a “gold standard” measure of con-
nections. This limitation may be apparent in our data, where
certain connections were present in both MR diffusion imaging
datasets, but were absent in the Felleman and Van Essen atlas
(a limitation that is partly confirmed by more recent invasive
tracking data). Our results therefore represent a lower boundary
on the true accuracy of connection identification using tractogra-
phy. One further limitation of the current study is that it focuses
exclusively on identifying the presence or absence of interareal
connections, whereas actual connection strengths vary by
many orders of magnitude. This comparative approach could
prove useful in future studies aiming to test the performance of
different tractography algorithms, or to try and identify the opti-
mum acquisition and postprocessing parameters.
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