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Abstract

Summary: Mutational signatures are patterns in the occurrence of somatic single-nucleotide vari-

ants that can reflect underlying mutational processes. The SomaticSignatures package provides

flexible, interoperable and easy-to-use tools that identify such signatures in cancer sequencing

data. It facilitates large-scale, cross-dataset estimation of mutational signatures, implements exist-

ing methods for pattern decomposition, supports extension through user-defined approaches and

integrates with existing Bioconductor workflows.

Availability and implementation: The R package SomaticSignatures is available as part of the

Bioconductor project. Its documentation provides additional details on the methods and demon-

strates applications to biological datasets.

Contact: julian.gehring@embl.de, whuber@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutational signatures link observed somatic single-nucleotide vari-

ants to mutation generating processes (Alexandrov et al., 2013a).

The identification of these signatures offers insights into the evolu-

tion, heterogeneity and developmental mechanisms of cancer

(Fischer et al., 2013; Alexandrov et al., 2013b; Nik-Zainal et al.,

2012). Existing softwares offer specialized functionality for this ap-

proach and have contributed to the characterization of signatures in

multiple cancer types (Nik-Zainal et al., 2012; Fischer et al., 2013),

while their reliance on custom data input and output formats limits

integration into common workflows.

The SomaticSignatures package aims to encourage wider adoption

of mutational signatures in tumor genome analysis by providing an ac-

cessible R implementation that supports multiple statistical approaches,

scales to large datasets and closely interacts with the data structures and

tools of Bioconductor (R Core Team, 2015; Gentleman et al., 2004).

2 Approach

The probability of a somatic single-nucleotide variant (SNV) to

occur can depend on the sequence neighborhood, and a fruitful ap-

proach is to analyze SNV frequencies together with their immediate

sequence context, the flanking 30 and 50 bases (Alexandrov et al.,

2013b). As an example, the mutation of A to G in the sequence TAC

defines the mutational motif T[A>G]C. The occurrence patterns of

such motifs capture characteristics of mutational mechanisms, and

the frequencies of the 96 possible motifs across all samples define

the mutational spectrum. It is represented by the matrix M, with Mij

enumerating over the motifs i and the samples j. The mutational

spectrum can be interpreted by decomposing M into two matrices of

smaller size (Nik-Zainal et al., 2012),

Mij ¼
Xr

k¼1

WikHkj þ eij; (1)
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where the number of signatures r is typically small compared to the

number of samples, and the elements of the residual matrix e are

minimized such that WH is a useful approximation of the data. The

columns of W describe the composition of a signature: Wik is the

relative frequency of somatic motif i in the kth signature. The rows

of H indicate the contribution of each signature to a particular sam-

ple j. A primary goal of the SomaticSignatures package is the easy

application of this approach to datasets in an environment that pro-

vides users with powerful visualizations and algorithms.

3 Methods

Several approaches exist for the decomposition [Equation (1)] that

differ in their constraints and computational complexity. In principal

component analysis (PCA), for a given r, W and H are chosen such

that the norm
P

ij e
2
ij is minimal and W is orthonormal. Non-negative

matrix factorization (NMF) (Brunet et al., 2004) is motivated by

the fact that the mutational spectrum fulfills Mij�0 and imposes

the same requirement on the elements of W and H. Different NMF

and PCA algorithms allow additional constraints on the results,

such as sparsity. To deduce the number r of signatures present in

the data, information theoretical criteria as well as prior biological

knowledge can be employed (Nik-Zainal et al., 2012; Alexandrov

et al., 2013a).

4 Results

SomaticSignatures is a flexible and efficient tool for inferring charac-

teristics of mutational mechanisms, based on the methodology de-

veloped by Nik-Zainal et al. (2012). It integrates with Bioconductor

tools for processing and annotating genomic variants. An analysis

starts with a set of SNV calls, typically imported from a VCF file

and represented as a VRanges object (Obenchain et al., 2014). Since

the original calls do not contain information about the sequence

context, we construct the mutational motifs first, based on the se-

quence of a reference or personalized genome.

ctx ¼ mutationContextðVRanges; GenomeÞ

Subsequently, we define the mutational spectrum M. While its

columns are by default defined by the sample labels, users can spe-

cify an alternative grouping covariate, for example tumor type.

m ¼ motifMatrixðctx; groupÞ

Mutational signatures and their contribution to each sample’s

mutational spectrum are estimated with a chosen decomposition

method for a defined number of signatures. We provide convenient

access to implementations for NMF and PCA, and users can apply

functions with alternative decomposition methods through the API.

sigs ¼ identifySignaturesðm; nSig; methodÞ

The user interface and library of plotting functions facilitate sub-

sequent analysis and presentation of results (Fig. 1). Accounting for

technical biases is often essential, particularly when analyzing across

multiple datasets. For this purpose, we provide methods to normal-

ize for the background distribution of sequence motifs and demon-

strate the adjustment for batch effects.

In the documentation of the software, we illustrate a use case by

analyzing 594 607 somatic SNV calls from 2408 TCGA whole-

exome sequenced samples (Gehring, 2014). The analysis, including

NMF, PCA and hierarchical clustering, completes within minutes on

a standard desktop computer. The different approaches yield a

biologically meaningful grouping of the eight cancer types according

to the estimated signatures (Fig. 1).

We have applied this approach to the characterization of kidney

cancer and have shown that classification of subtypes according to

mutational signatures is consistent with classification based on RNA

expression profiling and mutation rates (Durinck et al., 2015).
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Fig. 1. Analysis of mutational signatures for eight TCGA studies (Gehring,

2014). The observed mutational spectrum of each study (panel a) was decom-

posed into five distinct mutational signatures S1–S5 (panel b) with NMF. The

presence of these signatures in the studies (panel c), as shown by hierarchical

clustering, underlines the similarities in mutational processes of biologically

related cancer types. An annotated high-resolution version of this figure is

available as Supplementary Figure S1
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