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Abstract

Animals are grouped into ~35 ‘phyla’ based upon the notion of distinct body plansl 2.
Morphological and molecular analyses have revealed that a stage in the middle of development—
known as the phylotypic period—is conserved among species within some phyla®=. Although
these analyses provide evidence for their existence, phyla have also been criticized as lacking an
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objective definition, and consequently based on arbitrary groupings of animals1C. Here we
compare the developmental transcriptomes of ten species, each annotated to a different phylum,
with a wide range of life histories and embryonic forms. We find that in all ten species,
development comprises the coupling of early and late phases of conserved gene expression. These
phases are linked by a divergent ‘mid-developmental transition’ that uses species-specific suites of
signalling pathways and transcription factors. This mid-developmental transition overlaps with the
phylotypic period that has been defined previously for three of the ten phyla, suggesting that
transcriptional circuits and signalling mechanisms active during this transition are crucial for
defining the phyletic body plan and that the mid-developmental transition may be used to define
phylotypic periods in other phyla. Placing these observations alongside the reported conservation
of mid-development within phyla, we propose that a phylum may be defined as a collection of
species whose gene expression at the mid-developmental transition is both highly conserved
among them, yet divergent relative to other species.

To study the broad patterns of embryonic development, we selected ten distantly related
species that collectively provide a wide sampling of the variation exhibited by the animal
kingdom at the level of morphological and developmental complexity (Fig. 1 and Extended
Data Table 1). This collection includes a single species from poriferans, cnidarians,
nematodes, arthropods, chordates, echinoderms, annelids, platyhelminthes, ctenophores, and
tardigrades. Seven of the species are bilaterians—five protostomes and two deuterostomes—
while the cnidarian Nematostella vectensis represents a clade that is the sister group to
bilaterians, and the ctenophore Mnemiopsis leidyi and the poriferan Amphimedon
queenslandica represent two earlier branching taxall. Collectively, these species provide a
unique platform for the study of global features in animal development.

For each species, we isolated on average 70 individual embryos spanning development (Fig.
1b). The transcriptome of each embryo was analysed using CEL-Seq!?, a technique for low-
input multiplexed RNA-seq. For three species—Hypsibius dujardini (tardigrade), Schmidtea
polychroa (platyhelminth), and Platynereis dumerilii (annelid)—where a published genome
was unavailable, we first produced a comprehensive developmental transcriptome (Extended
Data Fig. 1, Extended Data Tables 2 and 3, and Supplementary Table 1). To assay dynamic
expression so that it is not overly biased by individual embryos, for each of the ten time-
courses we computed expression across twenty overlapping sliding windows of the embryos,
sorted by BLIND13, a technique for ordering large-scale transcriptomic developmental time-
courses (Extended Data Fig. 2a), and used these averaged expression profiles in our
analyses.

Figure 2 shows the standardized expression profiles of the dynamically expressed genes
across the ten species (Extended Data Fig. 2b). To compare gene expression across these
species, we delineated 11,139 orthologous protein families, with each orthologous family
having representatives from an average of six species. The expression of eleven C. elegans
transcription factors—conserved across the other species in this study—are indicated in Fig.
2, highlighting how this data set can serve as a resource for developmental and evolutionary
biologists. For example, the TCF/LEF family is expressed in the early phases of six of the
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time-courses and later in the remaining species (Fig. 2, dark squares, TCF/LEF is named
pop-1in C. elegans).

To systematically compare gene expression across species, we computed the correlation
across orthologous gene expression throughout development for each pair of species. For
example, comparison of tardigrade and annelid embryonic transcriptomes revealed two
conserved phases of expression in these two species—early and late—separated by a sharp
mid-developmental transition (P< 10719, Kolmogorov—-Smirnov test, Fig. 3, inset; Extended
Data Fig. 3). These observations indicate that although the external embryonic development
of these two species is enormously different—at the level of orthologous gene expression,
their early and late development is comparable. Moreover, while development appears
morphologically gradual in both species, it is punctuated by a dramatic change in gene
expression during mid-development. Comparing all pairs of species extended this result,
even for the ctenophore and the sponge, suggesting that this dual-phase feature of
development dates back to the common ancestor of all animals (Fig. 3). The broad extent of
this behaviour is remarkable, especially considering the challenges associated with the de
novo assembly of transcriptomes and reliance upon inferred gene models. Deviations from
the dual-phase pattern may occur for biological reasons. For example, the early embryos of
the planarian S. polychroa contain substantial amounts of maternal RNA, which appears as a
third initial phase in all comparisons with that species. Other deviations appear more cryptic,
such as the correlation matrix between the cnidarian and the sponge. Overall, the dual-phase
pattern holds for most pairwise species comparisons, with the exception of 9 out of 45
(Extended Data Fig. 3), and is robust to the parameters used for constructing the sliding
window expression profiles and to possible biases in the embryo sampling (Extended Data
Fig. 4a, b).

To study the deeply conserved expression modules we asked which Gene Ontology
functional categories are enriched in the genes occurring in each of the two phases. Focusing
on the stages spanning three windows before and following the transition, we identified
genes whose expression is restricted to the early and late phases (Extended Data Fig. 5). We
found that orthologous groups of genes that tend to be expressed in the early phase across
the ten species are enriched for chromatin changes, cell cycle, and the regulation of gene
expression (Extended Data Fig. 5), suggesting that this phase is characterized by the
expression of genes involved in the cell biology of proliferation. The late phase, in contrast,
was enriched with cell-type specific genes such as various transporters, metabolic enzymes,
and synaptic transmission factors that together reflect a period of differentiation.

We next asked if the transition between the early and late phases is enriched in the
expression of genes of particular functional groups, and found significant enrichments for
signalling processes such as Notchand Wnt during this transition (Extended Data Fig. 5).
Thus, a common signature among the animals studied here is that, between periods of cell
proliferation and differentiation, a period of intense signalling occurs, which is expected
from a developmental biology perspectivel4. To study the expressed signalling pathways in
greater detail, we examined seven major pathways and tested for their enrichment during the
transition between the two phases in each of the ten species (Fig. 4a). We found a pattern of
variation indicating that each of the distantly related species uses a distinct suite of
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signalling pathways during the transition. Extending this analysis to transcription factor
families, we found that only the homeobox gene family is enriched at the mid-
developmental transition in all ten species, as might be expected; otherwise, each species
expresses a unique combination of the major developmental transcription factors (Fig. 4b).
A distinct combination of signalling pathways and transcription factors during the mid-
developmental transition may thus be of particular importance to the development of specific
body plans.

Mapping the timing of these mid-developmental transitions back onto the embryonic time-
course of nematodes, arthropods, and chordates, we found that they overlap—or partially
overlap—with the previously described phylotypic periods of these animals (Fig. 1b).
Specifically, in nematodes the transition maps to the end of the ventral enclosure stage which
has been proposed as the phylotypic period’ (Fig. 1b). In chordates, the transition maps to
the early part of the pharyngula stage, which for this group of animals has been assigned the
phylotypic period®15. Furthermore, in arthropods, the transition centres upon the head
involution and dorsal closure stage but also begins at the end of the germ-band stage, which
has been assigned as the phylotypic period in this phylum16:17. Given this correspondence,
we propose that the mid-developmental transition uncovered in this study marks a phylum's
phylotypic period. We note, however, that the lack of complete correspondence of the
arthropod mid-developmental transition with the germ-band stage will require further
analysis and that this provisional definition will also need refinement to account for other
taxonomic ranks (for example, class) and for the diversity of life cycles within a phylum.

In the annelid, the mid-developmental transition corresponds to the late trochophore stage,
which overlaps the onset of differentiation of the first three larval segments, stomodeal
opening (mouth), and ventral nerve cord!8. These features have been proposed to define the
phylotypic period in annelids!®. Interestingly, the trochophore larva is common to other
spiralian phyla (for example, molluscs and nemerteans). In the flatworm, which undergoes a
highly derived mode of development20, the mid-developmental transition corresponds to the
stage in which the embryonic pharynx is joined by a second ‘adult-pharynx’, consistent with
the phylotypic period previously proposed for this phylum?2L, In the sponge, the mid-
developmental transition may occur between the cloud and spot stages, when the primary
larval axis is established?2. We note however that in species with more complex life cycles
with several phases of differentiation a single mid-developmental transition may be less
accentuated.

Finally, we measured the extent of evolutionary change within the two conserved phases and
the mid-developmental transition by determining whether orthologues annotated for a
particular temporal category in one species are also annotated to the same temporal category
in another species. Figure 4c shows an example of this analysis for D. melanogasterand C.
elegans. For 4,395 orthologues delineated between these two species, the early phase, mid-
developmental transition, and the late phase expression account for 51%, 14%, and 35% of
the C. elegans orthologues, respectively. A total of 28% of the orthologues are annotated to
the early phase in both C. elegansand D. melanogaster, while by chance only 22% are
expected given the fraction of genes in each category across the species (Fig. 4c). In
contrast, 3% were expected to be conserved at the mid-developmental transition at random,
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and 3% were observed. The log-odds ratios between observed and expected for the early
phase and the mid-developmental transition between C. elegans and D. melanogaster are
thus 0.35 and 0, respectively. Comparing the log-odds ratios across the three temporal
categories for each of the 45 pairs of the ten species, we found that the mid-developmental
transition profiles are significantly less conserved than the early and late phase expression
(Fig. 4d, P< 1078 compared with the early phase and £< 10712 with the late phase,
Kolmogorov—Smirnov test). We found a similar result when comparing at the level of PFAM
domains (Extended Data Figs 6 and 7).

Our results are consistent with an inverse hourglass model for metazoan body plans (Fig. 4e)
in which the molecular components that comprise early and late embryogenesis are more
conserved, and the signalling pathways and transcription factors acting within the mid-
developmental transition are variable across major animal lineages (Fig. 4a, b). Interestingly,
the model summarizing comparisons made within a phylum, where gene expression
differences across species are minimal at the phylotypic period, has an inverse pattern23.
Consequently, a “phylum’ may be defined as a set of species sharing the same signals and
transcription factor networks during the mid-developmental transition. As a result,
transcriptional variance will have an hourglass shape within the phylum, and the inverse is
seen when comparing species across phyla (Fig. 4e). A non-phylum lower taxon would not
meet these criteria since an hourglass pattern of similarities would be observed both within
the taxon and across more distant species. Should this transcriptomic definition hold,
evidence will be provided for the usefulness of ‘phylum’ as a biological classification. It
may also suggest the delineation of new phyla, as well as the collapsing of previously
distinct ones, requiring validation by zoological studies. We note that the topology of an
inverted hourglass has been previously proposed for heterochrony at the phylotypic period24,
though it was not invoked in the context of inter-phylum divergence.

While the Hox cluster has been implicated with the metazoan ‘zootype’2®, we find that even
organisms without Hox genes (Amphimedor?S and Mnemiopsis®’) have a mid-
developmental transition period at a time consistent with a phylotypic period (Fig. 1b). Thus,
more ancient than the patterning of the body axis by Hox genes, may be the molecular
constraints of the transition from a general phase of proliferation to a phase of signalling and
differentiation that results in the positioning of cells in a phylum-specific manner. Such a
transition may be a hallmark of development only in animals, or future work may show that
this is a general characteristic of development in all multicellular life. It will be interesting to
further employ systematic analyses in studying the developmental constraints on metazoans
and other clades828,

METHODS

Data reporting

No statistical methods were used to predetermine sample size. The investigators were not
blinded to allocation during experiments and outcome assessment.
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Sample collection

Platynereis dumerilii embryos were collected in EMBL Heidelberg, Germany. In each of
several containers, a gravid male and a female were mixed in a small container containing
North Sea water. The classical breeding dance was observed after several minutes and the
females and males released oocytes and sperm. Fertilized eggs were incubated at 18 °C and
embryos were collected every hour after fertilization for a period of 5 days. Individual
embryos were collected on the cap of a 1.5 ml Eppendorf tube using a micro mouth pipette.
Excessive water was removed and the sample was flash-frozen in liquid nitrogen.

Schmidltea polychroa embryos were collected at the Max Planck Institute CBG, Dresden,
Germany. A population of S. polychroawas maintained in the lab at 20 °C as previously
described31. Egg capsules were regularly collected over 15 days of development just after
deposition and kept in Petri dishes at 20 °C. To release embryos for isolation, capsules were
carefully opened using two fine forceps. After assessment of stage of development according
to the Martin-Duran system32 excess water was removed and embryos were flash-frozen in
Eppendorf tubes in liquid nitrogen.

Hypsibius dujardini starting cultures were provided by Bob Goldstein (University of North
Carolina at Chapel Hill) and embryos were collected as previously described33 at the
Technion, Israel. Small cultures of tardigrades were kept in 60mm glass Petri dishes in
commercial bottled spring water until gravid animals were visible. Tardigrades lay 2-5 eggs
during molting, with the embryos deposited in their shed exoskeleton, the exuvia. Soon after
the adult crawled out of the exuvia, it was cut open using a scalpel on a microscope cavity-
slide to release embryos into the medium. Embryos were observed using a standard
binocular and when reaching two-cell stage were deposited in a 10 pl drop mineral water on
the cap of a 1.5 ml Eppendorf tube. Tubes were incubated for respective periods at 20 °C.
For 4.5 days, once per hour past the two-cell stage, embryos were inspected for viability,
excessive water was removed using a micro mouth pipette, and the tube was flash-frozen in
liquid nitrogen.

Drosophila melanogaster embryos were collected at the Technion using a previously
published protocol34. Briefly, agar plates with apple juice smeared with freshly prepared
yeast were used to make young adult flies lay a lot of eggs. Cages consisting of such plates
were set up with at least 20 flies and left for roughly one day for the flies to acclimatize.
Plates were replaced with fresh ones twice in one hour interval to ensure the use of only
newly laid eggs. Drosophila embryos are covered with a non-transparent chorion which has
to be removed before live imaging by dechorionation. Shortly after being laid, embryos were
washed off from plates into a plastic sieve using tap water and a fine brush used to loosen
the embryos. In the sieve, embryos were submerged in 50% bleach solution for two minutes.
Embryos were washed and rinsed with cold water. Using a needle pick, 20 embryos were
placed in a row on a strip of agar placed on a glass slide. n-Heptane glue was applied in a
thin layer on a big glass cover slip. This coverslip was carefully put upside down on top of
the embryos on the agar strip so that embryos adhere to the glue layer. Embryos were
covered with PBS and kept in humid chambers at 25 °C. Embryos on the coverslip were
observed under the light microscope and for each embryo, the time of cellularization was
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noted. To collect an embryo, a needle pick was used to carefully remove it from the slide and
it was flash-frozen in an Eppendorf tube in liquid nitrogen.

Strongylocentrotus purpuratus oocytes and sperm were kindly provided by Smadar Ben
Tabou deLeon (Haifa University, Israel) and mixed and cultured at the Technion. Mixing
occurred by 4 drops of sperm in 50 ml of eggs in sea water and incubated at 18 °C in Petri
dishes. After fertilization, every 40 min (for a period of 72 hours), single embryos were
deposited on the cap of a 1.5 ml Eppendorf tube. Excessive water was removed using a
micro mouth pipette and the embryo was flash-frozen in liquid nitrogen.

Danio rerio fertilization was performed in the lab of Karina Yaniv (Weizmann Institute,
Israel). Four female and one male Danio rerio fish were mixed in a breeder tank. Fertilized
eggs were collected into zebrafish embryo medium as previously described3®. Fertilized
eggs were sampled in a small volume of medium every 40 min from fertilization into the cap
of a 1.5 ml Eppendorf tube. Excess water was removed using a micro mouth pipette and the
embryo flash-frozen in liquid nitrogen.

Nematostella vectensis egg masses and sperm were provided by Amos Schaffer (Gat Lab,
Hebrew University of Jerusalem). Eggs and sperms were mixed and egg jelly was dissolved
as previously described3® using 4% cysteine (pH 7.4-7.6) to make single embryos accessible
for collection. The embryos were washed with cysteine six times using 30% of sea water.
Fertilized embryos were observed under a light microscope and embryos reaching the 4-cell
stage were deposited in a 10 ul drop of 30% salt water on the cap of a 1.5 ml Eppendorf
tube. Tubes were closed and incubated for respective periods at 20 °C. At collection time,
embryos were inspected for viability and excessive water was removed using a micro mouth
pipette. The embryo was then flash-frozen in liquid nitrogen. After (and including) the four-
cell stage, every 20 minutes (for a period of 48 hours when the embryos reached the late
planula stage), single embryos were deposited on the cap of a 1.5 ml Eppendorf tube.

Mnemiopsis leidyi embryos were collected in the Whitney Institute, University of Florida as
previously described3”. Stages ranged from the fertilized egg to 20 h. Three replicate time-
courses each comprising 20 embryos were isolated. In one replicate, embryos were flash
frozen and shipped on dry ice. In the other two RNA was prepared by a TRIzol extraction
and shipped in 75% ethanol on dry ice.

RNA-seq transcriptome sequencing

For Hypsibius dujardini, Schmidtea polychroa, and Platynereis dumerilii, RNA was isolated
from a mixed population of embryos, larvae, and adults according to the TRIzol protocol
(Invitrogen). This RNA was processed according to the Illumina TruSeq RNA-seq protocol
by the Technion Genome Center and 100 bp paired-end sequencing was performed. To pre-
process the reads, ‘Sickle’38 was used for quality trimming with a threshold of 31 and
Illumina adaptors were removed using ‘Scythe’3°. Sequencing error correction was next
made using the AllpathLG toolkit4? and poly-A sequences were trimmed using trimest
(Gary Williams, unpublished). The resulting libraries were cleaned of short and duplicate
reads using the fastx toolkit (Assaf Gordon, unpublished). Hypsibius dujardinis genome has
been recently reported by two groups®1:42,
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Mapping to S. purpuratus and N. vectensis

The sea urchin transcriptome was downloaded from Echinobase, NCBI BioProject
PRJINA81157. The longest Isoform per transcript was selected leaving ~21,000 peptides. For
this organism the mapping was done more loosely with bowtie parameters set to “—mp 3,1 -
N 1-L 15” as the RNA-seq was done on a heterogenic population. For Nematostella we
retrieved the T1 transcriptome from Stellabase®3. Using Transdecoder (https://
transdecoder.github.io) revealed that, of the ~115,000 transcripts, only ~53,000 encoded
proteins. BLAST analysis of the encoded protein resulted in ~42,000 unique proteins and the
longest transcript was selected for each protein.

CEL-Seq transcriptome sequencing

Total RNA was extracted from single embryos using TRIzol as previously described’
including minor adjustments. After the addition of TRIzol to the embryos the mixture was
frozen in liquid nitrogen, thawed at 37 °C and vortexed for 30 s. This procedure was
repeated five times. Chloroform was then added and the sample further processed. The dried
total RNA pellet was dissolved in RNase-free water before introduction into subsequent
amplification and sequencing library preparation steps. Using the CEL-Seq protocol*4, 1 pl
of a single embryo total RNA sample with a maximum concentration of 50 ng pl~1, was
mixed with 1 pl of the ERCC spike-in kit diluted according to the manufacturer's protocol“®.
The libraries were sequenced using Illumina paired-end sequencing as previously reported in
the CEL-Seq protocol*4. For Read 1, used to determine the barcode, the first 15 bp were
sequenced and for Read 2, used to determine the identity of the transcript, the first 35 bp
were sequenced. The CEL-Seq pipeline is available at https://github.com/yanailab/CEL-Seq-
pipeline.

CEL-Seq initial analysis pipeline
Transcript abundances were obtained from the sequencing data using custom scripts
organized into a multistep paralleled computational pipeline. Briefly, after trimming and
filtering, the paired-end reads were demultiplexed based on the first eight bases of the first
read. For each sample, reads were mapped to a reference genome or transcriptome using
bowtie2 version 2.2.3 (ref. 46) with default parameters and counted using htseg-count*’ to
generate read counts. Samples were filtered to include only samples with at least 500,000
reads and in additions ERCC spike-in information was also used to filter out samples with
low correlation coefficients (<0.65) to the known concentration or with high (>0.3) spike-in
to gene read count ratio. Read counts were then normalized by dividing by the total number
of counted reads and multiplying by 108. Because CEL-Seq retains only the 3’ end of the
transcript, this procedure yields the estimated gene expression levels in transcripts per
million (tpm) without transcript length normalization. In this work, we compare the
transcripts per million developmental profiles for different genes and across orthologues, and
such comparisons are generally robust to overall RNA content changes.

De novo transcriptome assembly with stranding and 3" anchoring

A de novotranscriptome was generated for S. polychroa, P dumerilii and H. dujardinii.
Since we had at our disposal CEL-Seq reads, in addition to the RNA-Seq reads, our strategy
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was to exploit the stranded and 3’-biased nature of CEL-Seq. The Trinity software*® was
used to generate, for each of the three species, two de novo transcriptome assemblies: (1)
single-end CEL-Seq reads were used to generate a 3’ biased stranded transcriptome, and (2)
the CEL-Seq reads were combined with paired-end RNA-seq reads were used to generate a
combined transcriptome. For the CEL-Seq 3’ assembly, we ran Trinity using the single-end
mode with ‘SS_lib_type’ parameter set to ‘F’. For the combined assembly we ran Trinity
using the paired-end mode with default parameters. The two resulting transcriptomes were
then used to generate a single 3’ anchored stranded transcriptome. For each transcript
(contig) in the first set, we identified the corresponding transcripts in the second set using
BLAST49. Of those identified, we selected the transcript with the highest alignment score
and used the strand information of the transcript in the first set to generate a stranded
transcript (Extended Data Fig. 1). Genes with alternative 3’-ends may be represented as
distinct genes in this set, in those rare cases when the CEL-Seq contigs do not overlap. The
generated set of transcripts was further filtered to contain only transcripts with a predicted
protein using the Trinotate pipeline that is a part of the Trinity software*8. PFAM domains®?
were then identified using HMMER®!,

Gene Ontology and PFAM

GO annotations for each transcriptome were generated using Trinotate (http:/
trinotate.github.io/). Specifically, transcripts were searched against Uniprot sequences
(comprising SwissProt and Trembl invertebrate, vertebrate, mammal, rodents and human
data, clustered to 90% identity). GO and PFAM identifiers were then extracted from Uniprot
accessions.

Delineation of orthologous clusters. OrthoMCL>2 was used to delineate orthologous
clusters from the ten proteomes of the ten species using the following parameters:
“percentMatchCutoff” was set to 24, “evalueExponentCutoff” was set to -5, and the MCL
parameters were “—abc -1 1.5”. In the case of multiple genes in an orthology cluster for a
particular species, the one with the highest fold-change was selected as the representative.
We found similar results if the representative is selected randomly among the inparalogues.

Developmental gene expression profiles

Each time-course was initially ordered using BLIND—an automated method for
determining the developmental order of transcriptomic samples!3 (Extended Data Fig. 2a).
These profiles were smoothed using a moving average calculation with span parameter set to
3. In order to compare profiles of equal lengths, for each species we reduced the time-course
to twenty sliding windows using the following method. We defined the size of the window
such that there is only overlap between every two consecutive windows. For each window,
the average expression was calculated for each gene across the included embryos. For each
time-course, dynamic genes were defined as those with minimum expression of 10
transcripts per million and at least a twofold change. Standardized expression was used in
analysis where noted: to generate a standardized expression, the mean expression value was
subtracted from each expression value and the results were divided by the standard
deviation. To generate the phasegrams shown in Fig. 2 we first standardized the logg
profiles by subtracting the mean and dividing by the standard deviation. We next computed
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the first two principal components of this expression data; since the profiles were
standardized, the genes form a circle. The genes are then sorted according to their angle
from the origin in this space. A gene expression profile was mapped to a temporal phase
(early, transition, or late) by computing the correlation with the three idealized profiles
shown in Extended Data Fig. 5 and assigning it to the pattern exhibiting the highest
correlation and thus best match.

Mid-developmental transition detection

The transition period for each species was computed based upon the transcriptome
similarities with the transcriptomes of the other species, shown in Fig. 3. The twenty
transcriptomes were clustered using hierarchical clustering based upon the Euclidean
distances among their profiles of correlations with the profiles of all other species. The two
deepest clusters were then identified and the precise temporal window separating them was
set as the mid-developmental transition period.

Gene Ontology (GO) enrichment analysis

A temporal phase was assigned to each orthologous group by annotating it to its most
represented phase. The C. elegans Gene Ontology annotation was used on the C. elegans
orthologues. Enrichment was computed using the hypergeometric distribution. In order to
avoid retrieving enrichments due to the same set of genes we carried out serial enrichments
as follows. The most enriched gene ontology group was noted, its genes removed from the
set, and enrichment search was repeated to detect additional Gene Ontology terms. For the
signalling pathways shown in Fig. 4b, the following gene ontology terms were used: ‘Wnt
signalling pathway’, ‘Notch signalling pathway’, ‘hedgehog receptor activity’, ‘epidermal
growth factor receptor signalling pathway’, ‘transforming growth factor beta receptor
signalling pathway’, ‘MAPK cascade’, ‘G-protein coupled receptor activity’. For this
analysis, we searched for enrichment up to three windows before and after the inferred
transition, and kept the most significant 2 value for each pathway (hypergeometric
distribution).

PFAM signatures

For each of 5,745 PFAMs, we computed an enrichment profile throughout time, and for each
species, as follows. For each of the twenty expression windows of the matrix of standardized
logg expression values of the dynamic genes, we marked genes with expression above 0.5
as expressed. We then calculated the fraction of the genes within this set that contain genes
annotated to the PFAM domain. A temporal phase was annotated using supervised clustering
using the same approach shown in Extended Data Fig. 5. For the transcription factor families
shown in Fig. 4d the following PFAMSs were used: ‘Homeobox domain’, ‘GATA zinc
finger’, ‘Ligand-binding domain of nuclear hormone receptor’, ‘Helix—loop—helix DNA-
binding domain’, ‘bZIP transcription factor’, ‘Zinc finger, C4 type (two domains)’, ‘Zinc
finger, C2H2 type’, and “T-box’. For this analysis, we searched for enrichment up to three
windows before and after the inferred transition, and kept the most significant P value for
each TF family (hypergeometric distribution).
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Extended Data Figure 1. A schematic for the de novo transcriptome analysis
See also the Methods section. CEL-Seq reads were mapped to the published transcriptomes

where available.
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Extended Data Figure 2. Gene expression time-cour ses for ten species
a, BLIND analysis on the reported time-courses. The colour indicates the ordering. The

species is indicated for each plot. b, The number of dynamically expressed genes for each
species. The species are shown in the same order as in the main figures. Constitutively high
(low) expression is defined as that where the maximum expression is more (less) than the 10
transcripts per million threshold yet is not dynamic (two-fold change and at least 10
transcripts per million maximum expression).
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Extended Data Figure 3. Testing the significance of the transition in the orthologue correlation
matrices shown in Fig. 3

a, Schematic indicating the mid-developmental transition (orange), correlations among
windows of the same phase (green), and correlations among windows of different phases
(grey). b, The orange squares indicate statistical tests examined in c. ¢, For each pair of
species a series of Kolmogorov—Smirnov tests are shown. Each test compares the intra-phase
to the inter-phase correlations (a) for the mid-developmental transition and three windows
before and after it (b). The yellow boxes indicate those species comparisons where there is
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significant statistical evidence for the dual-phase pattern (higher significance for the middle

tests).
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Extended Data Figure 4. Robustness of Fig. 3 analysis
a, The analysis was repeated using the indicated number of sliding windows. b, The analysis

was repeated by randomly removing embryo transcriptomes. From each of the ten data sets,
we removed 10%, 20% or 30% of the embryos and repeated the analysis using 20 windows.
We repeated this five times and then re-identified the mid-developmental transition. The plot
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indicates the median and standard deviation of the detected mid-developmental transition

windows across these trials. In all species, the median is identical to the mid-developmental
transition identified by the complete data set. c, d, Same as Fig. 3, using all detected
orthologues for the pairwise comparisons (not limited to 1,500 as in Fig. 3, the number of
examined orthologues are indicated above each plot) (c), and a set of 407 orthologues (d)
across all taxa.
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Extended Data Figure 5. Gene enrichment analysis
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a, A landscape showing for each gene (circle) the correlation with an idealized ‘late module
profile’ (xaxis) and with a ‘transition profile’ (yaxis). The idealized profiles used to
compute correlations are shown in the insets. Spots correspond to C. efegans genes. They are
coloured according to the assigned sets: early module (blue), mid-developmental transition
(red), and late module (yellow). b, Gene Ontology (GO) enrichment for the early phase,
transition, and late phase gene sets. The gene sets were defined by integrating expression
from all ten species. ‘RNA polymerase 1l...” is short for ‘RNA polymerase 1l core promoter
sequence-specific DNA binding transcription factor activity involved in preinitiation
complex assembly’. The legend indicates the assigned sets: early phase (blue), mid-
developmental transition (red), and late phases (yellow). The profiles are of length seven
since we examined three windows before and after the mid-developmental transition.
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Extended Data Figure 6. PFAM enrichment and conservation across phyla
a, For each of 5,746 PFAM protein domains, we computed an expression signature based

upon the fraction of its genes expressed at each stage throughout development across each of
the ten species. As an example of this approach, a shows the signatures for six PFAMs,
indicating the normalized fraction of genes in that group expressed at the time points
surrounding the transition for each species. The profiles are centred according to the mid-
developmental transition as defined in Fig. 3, examining four windows before and after it.
The greyscale indicates the fraction of genes expressed in each window. We attributed a
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phase of expression for each PFAM in each species, as we have for individual genes. To the
right of each PFAM signature is the annotated phase; early (blue), mid-developmental
transition (red), or late (yellow). We then computed the degree to which the temporal
expression across phyla matches a coherent phase expression in three groupings: metazoan,
bilaterian, and protostomes. b, Metazoan (all ten species), bilaterian (all except the
cnidarian, sponge, and ctenophore), and protostome (nematode, arthropod, tardigrade,
annelid, and platyhelminth) groups are shown. To identify PFAMs in the metazoan group,
we queried for PFAMs whose signature contains the same temporal phases of expression
across the species. The metazoan-consistent PFAMs were nearly exclusively expressed in
the early phase, suggesting stronger evolutionary constraints on this phase. A similar pattern
was also observed for PFAMs with coherent expression in the seven bilaterian species in our
data set. From this analysis, we conclude that bilaterians and protostomes each possess
unique suites of innovations that are reflected in these shared phase-specific PFAM
enrichments. Interestingly, protostome-coherent PFAMs are biased towards the late phases,
possibly related to common differentiation processes operating in these taxa.
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Extended Data Figure 7. Same as Fig. 4c, d for PFAM analysis
The degree of conservation of early, transition, and late phase annotation of PFAMs was

computed across species. A similar pattern was observed as that for orthologues (Fig. 4c, d).
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Extended Data Table 3
Assemblies for CEL-Seq mapping and their BUSCO completeness®3
Species Assembly used for mapping BUSCO
P, dumerilii Pdum_transcriptome_v1 (De Novo - NCBI BioProject PRINA271451) 57%
S. polychroa Spol_transcriptome_v1 (De Novo - NCBI BioProject PRINA271420) 70%
C. elegans WS230 (WormBase) 90%
H. dujardini Hduj_transcriptome_v1 (De Novo - NCBI BioProject PRINA271450) 71%
D. melanogaster BDGP5 (Ensembl) 99%
S. purpuratus WHL22 transcriptome3.64 78%
D. rerio Zv9 (Ensembl) 96%
N. vectensis NVT1 (Stellabae)® 78%
A. queenslandica Aqu2.1%6 83%
M. leidyi MIScaffold091%6” 70%
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparing development acrossten phyla using CEL-Seq
a, A phylogeny of the examined species based on recent work11:29.30_ b A representation of

the times (notches) at which individual embryos were collected. Drawings of embryos at the
indicated representative stages are shown above the collection time-course (on the right,
timescale in minutes). The dark grey shading indicates the mid-developmental transitions.
Stars, species where the developmental time-course is mapped to a mixed-stage
transcriptome reported here; circles, mapped to the previously published genomes; squares,
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previously published time-courses!3:28, Arrows indicate direct (solid) and indirect (dashed)
developers.
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P. dumerilii ~ S. polychroa  C. elegans  H. dujardini D. melanogaster S. purpuratus D. rerio N. vectensis A. queenslandica M. leidyi
9,832 6,142

Time

13,207 10,479 11,464 8,391 11,579 10,198 16,106 10,053

=

Figure 2. Dynamic embryonic expression throughout the animal kingdom
Sorted standardized temporal gene expression profiles for each species. Genes of eleven

orthologous groups are indicated by the markers along with the name of the C. elegans
orthologue. The dashed lines indicate the timing of the mid-developmental transition. The
number indicates expressed genes in each data set.
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Figure 3. Cross-phyla comparison of developmental transcriptomes
Each heat map shows the correlations between the developmental transcriptomes of a pair of

species based upon analysis of 1,500 highly expressed orthologues (similar results are
observed for other sets of orthologues, Extended Data Fig. 4c, d). Dashed lines indicate the
mid-developmental transitions. The grey box outlines indicate species-pairs in which the
transition is not significant (Extended Data Fig. 3). The inset shows the comparison for H.
dujardiniand P, dumerill, showing also the self-correlations.
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Figure 4. An inverse hourglass model for animal evolution
a, b, Functional enrichments for expression of seven signalling pathways (a) and seven

transcription factor families (b) during the mid-developmental transitions. NHR, nuclear
hormone receptors; ZF NR, zinc-finger nuclear receptors; multi-zinc, multiple zinc-fingers.
¢, Comparison of the orthologue temporal associations between C. elegans and D.
melanogaster. d, Summary of the 45 pairwise species comparisons of orthologue temporal
associations. e, Inverse hourglass model for the origin of phyla compared with the hourglass

model for within-phylum evolution.
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