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Abstract

Recent technological advances equipped researchers with capabilities that go beyond traditional 

genotyping of loci known to be polymorphic in a general population. Genetic sequences of study 

participants can now be assessed directly. This capability removed technology-driven bias toward 

scoring predominantly common polymorphisms and let researchers reveal a wealth of rare and 

sample-specific variants. While the relative contributions of rare and common polymorphisms to 

trait variation are being debated, researchers are faced with the need for new statistical tools for 

simultaneous evaluation of all variants within a region. Several research groups demonstrated 

flexibility and good statistical power of the functional linear model approach. In this work we 

extend previous developments to allow inclusion of multiple traits and adjustment for additional 

covariates. Our functional approach is unique in that it provides a nuanced depiction of effects and 

interactions for the variables in the model by representing them as curves varying over a genetic 

region. We demonstrate flexibility and competitive power of our approach by contrasting its 

performance with commonly used statistical tools and illustrate its potential for discovery and 

characterization of genetic architecture of complex traits using sequencing data from the Dallas 

Heart Study.
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1 Introduction

Genome-wide association studies (GWAS) have identified numerous risk loci for common 

complex diseases, and next-generation sequencing based association strategies are now 

emerging to characterize the contribution of rare genetic variants to human genetic disorders. 

Analysis of the ‘rare variant - common complex disease’ hypothesis requires tailored 

statistical methods, as single marker tests fail to uncover these rare variants [Carvajal-

Carmona, 2010]. An entirely new powerful class of statistical methods based on non-

parametric functions was recently developed for genetic association testing that can 

accommodate both rare and common variants, or the combination of the two [Fan et al., 

2014, 2013; Lee et al., 2014; Luo et al., 2011, 2012a,b; Svishcheva et al., 2015; 

Vsevolozhskaya et al., 2014; Wang et al., 2015; Zhu and Xiong, 2012]. A comprehensive 

comparison of non-parametric functional-based methods (FBMs) via simulation studies and 

real data applications have repeatedly shown that FBMs have a valid type-I error rate and a 

substantially higher power to detect an association compared with alternative approaches. 

Additionally, FMBs were proven to be a powerful approach for genetic association studies 

with longitudinal data [Reimherr et al., 2014], or for the analysis of gene expression data 

[Storey et al., 2005].

Recently, our research group has demonstrated that within FBMs, functional analysis of 

variance (FANOVA) attains higher power to detect an association between a genetic region 

and a dichotomous trait compared to methods based on functional linear models (FLM) 

[Vsevolozhskaya et al., 2014]. Specifically, we have shown that FANOVA outperforms FLM 

for small to moderate effect sizes of the variants within a genetic region. Nonetheless, from a 

practical point of view, FANOVA had a notable limitation in that it was not able to 

accommodate quantitative traits or adjust for continuous covariates.

In light of these shortcomings, our aim was to extend the existing FANOVA method to 

association analyses of multiple quantitative and qualitative traits and to accommodate 

situations in which (1) a gene influences more than one trait (i.e., pleiotropy), (2) where 

there are confounding/mediation effects (due to population substructure or other sources), 

and (3) where the effect of disease risk can be modified by a trait or an exposure – a 

phenomena that we refer hereafter as “Treatment by Trait” (T×T) interaction.

To conceptualize T×T interaction, consider a study of genetic risk factors of substance abuse 

disorder. It is well known that personality traits like impulsivity and sensation-seeking are 

highly prevalent in drug-dependent individuals (e.g., [De Wit, 2009]). It is also known that 

personality traits are substantially influenced by genes (e.g., [Bouchard Jr and Loehlin, 

2001]). Suppose there are genetic risk factors that contribute to the increased risk of 

developing drug addiction among individuals with high trait-impulsivity. Suppose, further, 

that a different genetic disposition might be involved in the increased risk of developing drug 

addiction among individuals with low trait-impulsively. Hence, risk alleles for drug-

dependence (i.e., ‘treatment’) might vary by the level of personality traits, which will be 

modeled as T×T interaction in our generalized FANOVA approach – more on this later.
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A distinctive contribution of the approach presented here to the emerging field of FBMs for 

genetic association studies is the introduction of an efficient way to estimate the effects of 

phenotypes, confounding factors and T×T interactions using continuous curves smoothly 

varying over genetic loci. Previously proposed functional methods for genetic association 

studies (e.g., [Fan et al., 2013; Luo et al., 2011, 2012a]) and other methods that combine 

information across multiple variants within a gene (e.g., [Liu and Leal, 2010; Wu et al., 

2011]) aggregate across both the association signals of genetic variants as well as over 

covariate effects. We exploit the flexibility of the functional approach to unveil a more 

nuanced blueprint of how covariate and interaction effects vary within a genetic region by 

estimating partial regression coefficient curves that change over variant positions.

Unlike traditional statistical models that treat a disease phenotype as an outcome (i.e., on the 

left-hand side of the equation), our model puts non-genetic variables on the right-hand side, 

including traits, environmental exposures, and confounders. The response function in our 

model is an allelic dosage curve, fitted through genetic variants within a region. If we start 

our modeling by including a binary trait such as drug dependence as a single predictor, the 

continuous regression coefficient will be the difference between average allelic dosages over 

multiple variants of the two groups. That is, a continuous intercept curve will estimate 

smoothed average allelic dosage among non drug dependent controls, and a continuous 

regression coefficient will estimate a deviation from this baseline allelic dosage over 

multiple variants among drug-dependent cases. Further, if we include personality trait as a 

covariate, the regression coefficient curve for drug-addiction will be adjusted for personality 

trait. Finally, if we include a T×T interaction between drug-dependence status and a 

personality trait, the deviation from the baseline allelic dosage among drug-dependent cases 

will vary by the level of a personality trait.

Functional models where genetic predictor (X) and the outcome (Y) are swapped in the 

regression equation are reminiscent of the reverse regression approach [Maddala, 1992]. In 

general, coefficients of the direct and the reverse regressions are not the same, however the 

test statistic for the X (adjusted for any covariates) as well as the corresponding partial 

correlation coefficient remain the same after the swapping. For example, adjustment for 

confounding or mediation is unaffected and remains valid in the reverse regression approach.

To estimate continuous coefficient curves, our new generalized FANOVA approach utilizes a 

connection between penalized spline regression and best linear unbiased predictors 

(BLUPs), enabling a straightforward practical implementation using standard linear mixed 

models statistical software. A connection between BLUPs and penalized functional 

regression has been explored in statistical and machine learning literature [Brumback et al., 

1999; Crainiceanu et al., 2005; Crainiceanu and Goldsmith, 2010; Eilers and Marx, 1996; 

Goldsmith et al., 2011; Ivanescu et al., 2014; Lian, 2007; Nosedal-Sanchez et al., 2012; 

Pearce and Wand, 2006; Ruppert et al., 2003; Wand and Ormerod, 2008; Wang, 1998]. 

However, this connection has largely been ignored in functional method approaches for 

genetic association studies.

We provide an illustration of our method using data from the Dallas Heart Study [Romeo et 

al., 2007], by characterizing associations of sequence variants with plasma triglyceride 
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levels, modified by race and adjusted for sex. In addition to identifying the originally 

reported association between triglyceride levels and the ANGPTL4 gene, our new FANOVA 

approach identified specific sub-regions of the ANGPTL4 gene associated with plasma 

triglyceride levels among European Americans, African Americans, and Hispanics.

2 Methods

2.1 Genotypic functions: a brief overview

In brief, our method is an extension of the previously proposed FANOVA methodology, 

which seeks to quantify the relationship between scalar phenotypes X1, X2, . . . , Xk and 

smooth genotypic functions G(t)'s, with t indexing a genetic variant's position over a genetic 

region, t ∈ [0, τ] [Vsevolozhskaya et al., 2014]. By using the term ‘genotypic functions,’ we 

refer to nonparametric functions fitted with a basis expansion method [Ramsay and 

Silverman, 2005; Ruppert et al., 2003; Wood, 2006]. Thus, for each subject, the genetic data 

is not of a discrete (i.e., counted) nature, such as would be the case for genotype frequencies, 

but rather a single nonparametric genotypic function, G(t), of a continuous nature.

A genotypic function is obtained by either (i) a cubic B-spline basis expansion over a dense 

set of knots, κ1, . . . , κK, over the range of the variant's genomic positions ti's (in the one-

base coordinate system) or (ii) penalized spline smoothing that avoids the knot selection 

problem completely (e.g., [Luo et al., 2012a; Vsevolozhskaya et al., 2014]). Earlier 

investigations of functional linear models designed for genetic association testing include 

comprehensive coverage of the estimation procedure for the genotypic functions G(t)'s [Fan 

et al., 2014, 2013; Lee et al., 2014; Luo et al., 2011, 2012a,b; Svishcheva et al., 2015; 

Vsevolozhskaya et al., 2014; Wang et al., 2015; Zhu and Xiong, 2012].

If we let G1(t), . . . , GN(t), t ∈ [0, τ] denote the functional genotypic data for N individuals, 

and we let X1i, . . . , XPi, i = 1, . . . , N denote a set of P variables that consists of covariates 

and traits (either quantitative or qualitative) that may contribute to a disease, our model for 

each individual's genotypic function is:

(1)

where βi(t)'s are continuous regression coefficients that describe an association between a 

scalar trait and a set of variants in a genetic region t ∈ [0, τ], and where ε(t) is a residual 

function. Unlike traditional models where the outcome is regressed on a set of predictors, 

this model treats genetic information as an outcome. Outside of the functional approach, 

utility of such “reverse regressions” has been explored previously for analysis of genetic 

associations [Feng, 2014; Kwan et al., 2011]. While coefficient estimates change, in general, 

due to swapping of variables between two sides of a regression equation, the partial 

correlations as well as the test statistics and P-values for the coefficients remain invariant: 

this follows simply from expressing these quantities in terms of the entries of the inverse of 

the correlation matrix between all variables including the outcome. Thus, testing for effects 

or for validity of regression adjustments are preserved under the reversal. There is also 

convenience in having the same type of outcome (i.e., genetic information) and thus the 

same type of a link function regardless of the type and the number of other variables in the 
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model. Additionally, within the functional approach, exploration of 's may allow 

researchers to determine sub-regions of [0, τ] that harbor causal genetic variants (i.e., sub-

regions over which ).

To estimate 's, we place a function-on-scalar regression in Eq. 1 into the context of a 

mixed-effects model or, more generally, embed the penalized splines problem into the class 

of reproducing kernel methods. To introduce the method, we first present a case of a single 

curve estimation, and conclude with the general case that allows us to estimate continuous 

coefficients of multiple traits, construct their confidence intervals and test for an association. 

We finally note that in the context of this paper, the word “kernel” should not be confused 

with a weight function as in the local regression (or local smoothing), which is also called a 

kernel [Hastie et al., 2009].

2.2 Estimating a single curve

To draw connections between smoothing splines and reproducing kernels, first consider a 

simpler problem of estimating a single curve from the observed yi's and ti's, i = 1, . . . , n. 

One possible approach to estimating a nonparametric function f(t) from discrete data is to 

invoke penalized spline smoothing (e.g., [Wahba, 1990]). This smooth interpolation of the 

data is achieved by minimizing least squares fits with an additional roughness penalty (i.e., 

penalized sums of squares) as follows:

(2)

Here, the roughness of a function is quantified by the square of a linear differential operator 

Ly(t) (a typical choice is Ly(t) = f″(t) that corresponds to penalizing curvature of the 

function). The constant term, λ, referred to as a smoothing or a tuning parameter, should be 

either specified by a user or determined through the generalized cross-validation (GCV) 

[Wood, 2006].

The above minimization problem is analogous to a corresponding regularization problem 

within the machine learning domain:

(3)

where L(yi, f(ti)) is a loss function, ∥P f∥2 penalizes f in terms of the variability of its 

function values, and  is the reproducing kernel Hilbert space (RKHS) of real functions f. 
The theory of RKHS was developed by Aronszajn [1950] and Saitoh [1988], with good 

overviews provided by Smola and Schölkopf [1998]; Wahba [1990] and Rasmussen and 

Williams [2006]. Briefly, a RKHS on  is a Hilbert space of real-valued functions 

generated by a bivariate symmetric, positive definite kernel k(·, ·) with the following 

properties: (i) for every t in , k(t, t′) is a function of t′ in  and (ii) k has the reproducing 

property , where 〈·, ·〉 denotes the inner product. To conceptualize 

penalized splines in Eq. (2) as BLUPs in a mixed model framework, we explore the solution 
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to the regularization problem in Eq. (3) from the machine learning theory. Based on the 

results of the representer theorem [Kimeldorf and Wahba, 1971], it can be shown that each 

minimizer  of Eq. (3) can be written as a linear combination of kernel functions, as 

follows:

(4)

The solution for α = [α1, . . . , αn]′ can be obtained as , in which K is then n 
× n matrix with ijth entry of k(ti, tj), I is the n × n identity matrix, nad y is the n × 1 vector of 

observed yi's [Hastie et al., 2009; Rasmussen and Williams, 2006]. Further, the vector of n 

fitted values is given by . This solution looks very similar to that from a linear 

regression model (i.e.,  since we used ti instead xi in Eqs. (2-3)). Regrettably, this 

reproducing kernel transformation of ti's does not simply move our non-linear problem into 

the ‘friendly’ linear model domain, because the solution for α depends on λ.

A slight variation to the representer theorem can be achieved by decomposing  into 

, where  is a finite-dimensional null space containing terms which will not be 

penalized, and  is it's orthogonal complement (i.e., penalized terms). For example, for ∥P 
f∥2 defined by differential operators of the form Ly(t) = f(m)(t), the null space  is spanned 

by polynomials of degree up to m – 1. More specifically, if m = 2, then constant and linear 

functions are in the null space, because they are not penalized for ‘curvature.’ With the 

decomposition of , the minimizer f of the regularization function in Eq. (3) now has the 

form:

(5)

where ϕ1(t), . . . , ϕm(t) form the basis of  and k1(·, ·) is a reproducing kernel that 

generates . If m = 2 as in the example above, then ϕ1(t) = 1 and ϕ2(t) = t span the null 

space of unpenalized functions.

There are relatively few published recommendations in the statistical literature on how to 

construct k1(·, ·). For example, Lian [2007] writes “[...] the construction of k1 in general is 
difficult and a search of the literature does not seem to provide us with any clues about how 

to construct a positive definite kernel in general.” Nonetheless, if we shift our attention to 

the machine learning literature, we see that k1(t, ti) = G(t, ti), where G(t, ti) is a Green's 

function of the linear differential operator Ly(t) [Fasshauer, 2012; Fasshauer and Ye, 2013; 

Poggio and Girosi, 1990; Rasmussen and Williams, 2006]. Note that the Green's function 

also depends on the boundary conditions. A ‘natural’ choice is the “Natural Boundary 

Condition” f(j)(a) = f(j)(b) = 0, j = 1, . . . , m; where a and b are the boundaries of the 

functional domain [Green and Silverman, 1993].

How can we estimate the fitted values of the coefficients d̂ and ĉ in Eq. (5) for a specific 

problem? If we re-write Eq. (5) using linear algebra notations as:
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(6)

it becomes evident that Eq. (6) represents a solution to the linear mixed-effects model with 

design matrices Φ and K1, and d̂ and ĉ estimated as best linear unbiased predictors (BLUPs) 

from this model [Speed, 1991]. In addition, the BLUP solution for the coefficients is 

independent of the smoothing parameters λ, which is equal to the ratio of the variances of 

the residuals and random effects. For numerical stability reasons, the design matrices are 

specified for a sequence of knots k1, . . . , kκ places at sample quantilies over the range of ti's 

[Ruppert, 2002] as:

(7)

where G(ti, tj) = (ti – tj)+ is the Green's function of the linear differential operator f(2)(t), and 

x+ = max{0, x}. This specification of the design matrices corresponds to a truncated lines 

series basis expansion . Other choices of basis functions 

can also be used with corresponding changes to penalized terms. Possible choices include, 

but are not limited to, (a) truncated power basis , (b) O'sullivan splines [Wand and 

Ormerod, 2008], (c) thin plate splines [Ivanescu et al., 2014], or (d) the Gaussian kernel 

[Lian, 2007].

Some readers might wonder whether the mixed model formulation for penalized splines bear 

the same parameter interpretation as in a typical application to nested hierarchical data. We 

should clarify that the functional representation in Eq. (6) is just a convenient way of 

shifting a non-linear problem into a linear domain, while simultaneously estimating a 

smoothing parameter. Similarly, the random effects in c, are just a convenience device to 

model the curvature in f and should not be interpreted as random effects, per se.

2.3 Estimating β(t)'s

With respect to the conceptual model in Eq. (1), continuous regression coefficients can be 

estimated as follows. For each subject, the genotypic function is evaluated on the grid of 

genomic positions t1, . . . , tn, i.e, Ĝi(t) = Ĝi(t1), . . . , Ĝi(tn). For the sequence of knots 

k1, . . . , kκ, each functional regression coefficient is expanded in terms of the linear 

combination of ϕ's and k1's. This expansion yields the following mixed-model representation 

of Eq. (1):
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(8)

Conceptually, the generalized FANOVA-based regression coefficients, β(t)'s, are similar to 

the genetic effect coefficients in the recently published paper by Wang et al. [2015]. 

Specifically, Wang et al. [2015] also proposed to estimate regression coefficients, βl(t)'s, 

smoothly varying over the genetic position t. However, unlike the methodology proposed in 

the present study, their approach can not simultaneously handle quantitative and qualitative 

traits, adjust coefficients for confounders/mediators over a continuum [0, τ] or modify 

effects by the level of another trait. With our approach, this adjustments can be easily 

incorporated into the model.

Suppose we want to adjust the effect of a risk factor X1 by trait X2 over all t. The model will 

be written as:

Suppose, further, we want to modify the effect of a risk factor X1 by the level of trait X2, i.e., 

model a T×T interaction (for simplicity, assume that X2 has only two levels). The model can 

be expressed as:

Then, for the first level of X2, dummy coded as 0, the association between a gene and X1 

will be estimated by :

and for the second level of X2, dummy coded as 1, the association between a gene and X1 

will be modified as:

To facilitate the data analysis using mixed-effects software, an input response should be a 

vectorized matrix of genotype functions for N subjects evaluated on the grid of genomic 
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positions, . Input predictors 

should be N ·n×1 vectors X1, . . . , XP which are generated by repeating each phenotype 

observation n times and stacking them on top of one another. The fixed and the random 

effects design matrices, Φ and K1, are then constructed as follows:

and , where 1N is N × 1 vector of 1's,  is the 

Kronecker product, and K is the n × κ matrix with the ijth entry of k1(ti, kj) calculated over 

the sequence of knots k1, . . . , kκ.

2.4 Confidence interval for 

Since the conceptual model in Eq. (1) can be expressed as a mixed-effects model in Eq. (8), 

the typical inferential machinery for mixed-effects models can be used to obtain the 

variance-covariance estimates of the model parameters [Ruppert et al., 2003]. An explicit 

formulation for the estimated standard deviation of  is:

(9)

where  is a REML estimate of σε, C = [Φ K1] is formed by two design matrices described 

in Eq. (7),  is the estimated smoothing parameter, and D is formed as follows:

where m is the number of ‘fixed effects’ and κ is the number of ‘random effects.’ An 

approximate point-wise 100%(1 – α) confidence interval is 

Alternatively, Bayesian credible intervals can be obtained by realizing a connection between 

Gaussian processes and spline construction [Crainiceanu et al., 2005; Rasmussen and 

Williams, 2006], or “subject re-sampling” bootstrap error bars can be obtained to construct 

the confidence intervals [Wu and Yu, 2002].
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In the application of point-wise bands to functional genotype data, the issue of bias-variance 

trade-o associated with the selection of the degree of smoothing might deserve more careful 

attention. Specifically, in the context of the mixed-effects model in Eq. (8), the response 

variable is a fitted genotypic function Ĝ(t). If the fitted function is somewhat wiggly, this 

‘noise’ will account for the increased width of the point-wise standard error bands for . 

We previously proposed the ‘flipping algorithm’ for genotype re-labeling that decreases the 

number of noisy oscillations for smoothed genotype data and showed that this approach 

results in a substantial increase of statistical power to detect a genetic association 

[Vsevolozhskaya et al., 2014]. Nonetheless, too smooth genotype functions might result in 

narrow standard error bands for  and thus estimate a biased version of a true function 

with great reliability. Further research is needed on the issue of optimal choice of a 

smoothing parameter in the context of genotype function fitting.

2.5 Testing for an association

In this section we turn our attention to a test statistic used for evaluating an association 

between a genetic region and one or more phenotypes. Whereas different types of point-wise 

confidence intervals for the coefficient curves can be constructed, the hypothesis testing 

problem of distinguishing an optimal sub-model of β(t)'s is still of interest. To address this 

issue, we will use the function  statistic [Shen and Faraway, 2004] as previously used in 

our FANOVA methodology [Vsevolozhskaya et al., 2014]. Specifically, suppose we want to 

test the nullity of a single predictor:

By using Theorem 2 in Shen and Faraway [2004], a test statistic to determine if β(t) is 

equivalent to the zero function can be constructed as follows:

(10)

where X = (1 XM1 . . . XP) is a design matrix for the full model containing all phenotypic 

variables, and  is the residual sum of squares for the full 

model. Under the null hypothesis, it can be easily shown (e.g. [Reimherr et al., 2014; Shen 

and Faraway, 2004; Zhang, 2013]) that the distribution of  can be approximated by an F-

distribution as:

where , with n being the number of genetic variants, and ri is the ith order 

eigenvalue of the empirical variance-covariance matrix under the full model, .
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Alternatively, if we want to test the nullity of K predictors simultaneously, that is, to 

compare the full model:

to the reduced model:

the test statistic  can be defined in terms of the reduction in the sums of squared errors, as 

follows:

(11)

where rss0 is the residual sum of squares for the reduced model, and  is the empirical 

variance-covariance matrix under the reduced model. Under the null hypothesis, the 

distribution of  is approximated by .

We note that the test statistic in Eq. (11) is computationally more complex than the one in 

Eq. (10). That is, if the goal is to test the nullity of only one predictor at a time, the test 

statistic in Eq. (10) can be calculated directly by fitting only the full model, and thus 

omitting fitting the reduced model. Further details and comparisons of the two formulas can 

be found in Shen and Faraway [2004].

3 Simulation Study

3.1 Design

The flexibility of our method allows us to accommodate various analysis settings and types 

of variables, including multiple, possibly correlated or pleiotropic phenotypes, and T×T 

interactions. One way to analyzing multiple traits is to test for an association one trait at a 

time. For a proper control of the experiment-wise false-discovery error rate, this ‘one at a 

time’ testing approach requires accounting for the number of tests performed and correcting 

for each individual trait's P-value. This individual correction typically leads to an inflation in 

the observed P-values. However, our method provides an efficient way of testing multiple 

traits simultaneously, with no P-value correction required, and thus naturally provides 

superior performance in terms of statistical power to detect an association. Moreover, to 

handle T×T interactions, or to assess modification of genetic susceptibility to disease by 

trait, our model requires a test of nullity for an interaction term. Previously, we investigated 

the power of FANOVA to detect an association with a single predictor [Vsevolozhskaya et 
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al., 2014]. Simulation studies presented here reflect the extension of our previous basic 

model with the addition of mediation/confounding scenarios

Figure 1 aids in conceptualization of our data simulation process. We focused on a three 

variable system and hypothesized that there is a genetic predisposition (G) to continuous 

phenotypes (Z) and (X). We also assumed a relationship between (Z) and (X) and were 

interested in testing for an association between (G) and (X), while adjusting for the third 

variable (Z). Clearly, data generated under this scenario fits the mediation analysis 

framework, but MacKinnon et al. [2000] point out that the label of (Z) (i.e., either as a 

mediator or a confounder) depends on the framework used to conceptualize the 

phenomenon. From a statistical modeling point of view, directionality and the causality are 

indistinguishable, making these seemingly different concepts of mediation and confounding 

statistically equivalent. Therefore, data generated under our design can be used to check for 

both a mediator and a confounding control.

3.2 Data generation

We generated genetic data (G) using the 1,000 genome project [Durbin et al., 2010] to 

mimic the real sequencing data structure (e.g., linkage disequilibrium patterns, allele 

frequencies, and randomly missing genotype data). Specifically, at each simulation iteration, 

a random 30 kb section of genetic region was drawn. Within this 30 kb region, each 

simulated data contained an average of 300 variants with minor allele frequencies (MAF) 

ranging from less than 0.001 to almost 0.5. The complete distribution of MAF for all 

variants across simulations is provided in the left panel of Figure 2.

Next, a continuous trait (Z) was simulated as:

(12)

where N is the number of subjects, n is the number of variants, tj indexes the position of 

variants, γ(tj) is the effect of the variant in tj's, εi ~ N(0, 1), and ”χ” indicates a subset of 

genetic variants harboring causal alleles. For example, if χ = 10%, then a random sample of 

10% of all variants for subject i were causal, and the effect of each causal variant j, γ(tj), was 

drawn from an  distribution (the rest of γ(t)'s, corresponding to non-causal 

variants, were zero). If μγ = 0, the effect of a given causal variant was either protective or 

deleterious . If μγ > 0, then the majority of causal variants had the same direction of the 

effects (i.e., deleterious), and the magnitude of the effect size varied by manipulating . The 

middle panel of Figure 2 illustrates simulated effects by MAF for the choice μγ = 0 and 

; the right panel for μγ = 0.25 and . The reader should note that under our 

simulation scenario, the causal variants can be both rare and common. Alternative situations 

with only rare or common causal variants were previously investigated by our group and 

showed favorable performance by FANOVA [Vsevolozhskaya et al., 2014].

Another continuous trait (X) was simulated as:
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(13)

Similar to  represents the effect of a causal variant j on the trait 

(X), and β ~ N(3,1) represents the effect of the third variable (Z) on the trait (X).

3.3 Type I error results

For empirical type I error simulations, we set the genetic effect on the continuous trait (X) to 

zero, i.e., α(tj) = 0 for all j, and tested for an association between (G) and (X), while 

adjusting for (Z). The percentage of risk variants for the association between (G) and (Z) in 

Eq.(12) was set to χ = 30% and γj's were simulated from an N(μγ = 0, σγ = 3) distribution. 

For the different sample sizes, we compared the generalized FANOVA approach to the 

SKAT methodology [Wu et al., 2011]. The results are summarized in Table 1. For both 

methods, all empirical type I error rates are around the nominal α levels with the exception 

of SKAT for a small sample size. To further contrast the differences between FANOVA and 

SKAT, we proceeded to a comparison of power simulations.

3.4 Statistical power results

For the statistical power comparison, both traits (Z) and (X) shared the same percentage, but 

a random set of risk variants. The percent of risk variants were set to 5%, 10%, 30%, 50%, 

70%, 90%, and 100%. The sample size values were N = 50, 500, 2500, and 5000. The 

execution time of a single iteration of the simulations (the statistical power is presented 

based on at least 1,000 iterations) on a single core (2.5Ghz Intel Xeon E5-2670v2) of high-

performance computing center (HPCC: https://wiki.hpcc.msu.edu/) ranged from 20 seconds 

for N = 50 up to an hour for N = 5000. The allocated memory for N = 5000 subjects was 

64GB.

Figure 3 summarizes empirical power results for the scenario with risk variants having either 

positive or negative effects (i.e., μγ = μα = 0) for the different number of subjects. In Figure 4 

the majority of risk variants had deleterious effects for both traits (i.e., μγ > 0 and μα > 0). In 

each figure, the generalized FANOVA statistical power to detect an association between (G) 

and (X), while adjusting for (Z), is represented by a solid line, and the power of SKAT is 

represented by a dashed line.

In general, the proposed FANOVA approach attained higher power than SKAT, especially 

for small sample sizes, small effect sizes, and when the percentage of risk variants is small. 

The empirical power of the two approaches become comparable if the effect sizes and the 

proportion of risk variants were large.

4 Application to real data: ANGPRL4 association with triglyceride

To further illustrate the utility of our generalized FANOVA approach, we turn to the issue of 

association testing between sequence variations in ANGPTL4 gene and lipid metabolism. In 

mice, the involvement of ANGPTL4 in lipid metabolism was shown by intravenous injection 
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of recombinant ANGPTL4, resulting in an increase in plasma triglycerides (TG) levels 

[Yoshida et al., 2002]. In humans, the involvement of ANGPTL4 in lipid metabolism is 

probable and may be associated with a higher risk of cardiovascular disorder [Kathiresan et 

al., 2009; Muendlein et al., 2014; Romeo et al., 2007]. However, each individual ANGPTL4 
variant confers a modest effect [Kathiresan et al., 2009], suggesting an improved statistical 

power for methods like generalized FANOVA that perform a joint gene-based association 

analysis.

We conducted an analysis of 93 sequence variations in ANGPTL4 that were identified 

among 3,551 participants in the Dallas Heart Study [Romeo et al., 2007]. To examine an 

increase in plasma TG levels, we binned individuals into the ‘low-triglyceride’ group (660 

individuals with plasma triglyceride level ≤25th percentile) and into the ‘high-triglyceride’ 

group (679 individuals with plasma triglyceride level ≥75th percentile). The resulting 

sample included 443 individuals of mixed European descent, 651 African Americans, and 

245 Hispanics.

As discussed elsewhere (e.g., [Svishcheva et al., 2015; Vsevolozhskaya et al., 2014]), 

statistical power of functional methods may depend on the quality of genotype data 

smoothing. To obtain smooth genotypic functions, we first coded allelic dosage based on the 

minor allele counts (i.e., either 0, 1 or 2) and applied the “flipping algorithm” 

[Vsevolozhskaya et al., 2014] to minimize the number of 0-2 (or 2-0) patterns in every two 

subsequent variant positions. However, because the majority of 93 sequenced variants were 

rare [Romeo et al., 2007], the coding based on minor allele counts was concluded to be 

optimal and no re-coding of allelic dosage was necessary.

To examine an effect of increase in TG levels, modified by race and adjusted for sex, we 

built the following model:

where β0(tj) is the smoothed baseline allelic dosage j = 1, . . . , 93; β1(tj) is the effect of TG-

increase on allelic dosage. The next four terms are added to examine T×T interaction or 

whether the effect of TG increase varies among European Americans (β1(tj)), African 

Americans (β1(tj) + β12(tj)), and Hispanics (β1(tj) + β13(tj)). Finally, β4(tj) is the adjustment 

for sex.

To determine the most parsimonious model, we first performed a test for T×T interaction, 

i.e., H0 : β12(tj) = β13(tj) = 0 for all tj, and found statistically significant differences in TG-

increasing effect among individuals of different racial descent (P-value=0.0028). We note 

that the magnitude of this P-value remained the same for different choices of kernels and as 

such, we proceeded to explore specific sub-regions of the ANGPTL4 gene that may harbor 

causal variants for the different racial groups.
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Each panel of Figure 5 illustrates the estimated TG-increasing effect among different racial 

groups and across 93 variants of the ANGPTL4 gene. Further, the positions of the recently 

identified variants E40K and T266M [Romeo et al., 2007; Talmud et al., 2008] are added as 

vertical lines to each panel. The left panel of Figure (5) shows  or the estimated effect 

of TG increase among European Americans. From this panel we can infer that the region 

around the E40K variant has the top contribution among European Americans, since it is the 

region over which  deviates the most from the zero line. Additionally, the direction of 

 around E40K is negative, indicating that TG increase is associated with a lower dosage 

of E40K variant, which implies that European American E40K carriers can be expected to 

have lower TG levels. However, the confidence bands for  include zero and indicate 

lack of statistical significance.

The right panel of Figure 5 shows  or the estimated effect of TG increase 

among Hispanics. Once again, the effect has the top magnitude around E40K region, but it's 

direction is reversed, indicating that Hispanic E40K carriers tend to have higher TG levels. 

Additionally, among Hispanics, E40K region association with TG-increase reached 

statistical significance.

The middle panel of Figure 5 shows  or the estimated effect of TG increase 

among African Americans. Unlike European Americans and Hispanics, the contribution of 

E40K variant does not appear to be appreciably associated with TG increase. Also, no 

contribution of T266M variant to either TG increase (or decrease) was found among any 

racial groups.

Finally, to compare our T×T interaction results to SKAT, we performed a subgroup analysis 

on data from European Americans, African Americans, and Hispanics. The P-values, 

adjusted for sex, for the test of an association between TG-levels and variants in the 

ANGPTL4 gene were as follows: among European Americans PSKAT = 0.0006, PFANOVA = 

0.0262; among Hispanics PSKAT = 0.1738, PFANOVA = 0.0001; among African Americans 

PSKAT = 0.2321, PFANOVA = 0.9447. Accordingly, both methods concluded an association 

between ANGPTL4 variants and plasma triglycerides levels among European Americans, no 

association among African Americans, and discordant results among Hispanics. The reader 

should not be surprised by seemingly disagreeing FANOVA conclusions for European 

Americans summarized via the confidence bends in Figure 5 and via the P-value for an 

association test. It has been noted multiple times, including by our research group 

[Vsevolozhskaya et al., 2015], that a combination of multiple “marginally significant” 

outcomes across different variants may result in the overall significance for a genetic region.

5 Discussion

By generalizing previously proposed FANOVA methodology, we offer a novel approach not 

previously explored in FLM-based association studies for estimating multiple phenotype-

specific effects smoothly varying over genetic variants. Furthermore, by treating genetic 

information as the response variable and all traits as predictors (qualitative or quantitative), 

the generalized FANOVA provides a straightforward way to account for hidden population 

Vsevolozhskaya et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stratification, confounders, mediators and T×T interactions. The established connection 

between penalized least squares and best linear unbiased predictors allows for a 

straightforward implementation of the proposed methodology using standard mixed linear 

model software.

The introduced notion of T×T interaction deserves additional clarification. We are not 

necessarily putting emphasis on the interaction itself or the value of its coefficient. Rather, 

the inclusion of this term gives a simple way of detecting possible effects of various 

combinations of treatment and trait values that may go beyond what is captured by the sum 

of their individual effects.

How well do our generalized FANOVA regression coefficient estimates replicate what others 

have found in prior studies of ANGPTL4 ? Studies of Romeo et al. [2007] and Talmud et al. 

[2008] revealed that among European Americans E40K carriers have significantly lower TG 

levels. Talmud et al. [2008] also showed TG-lowering effect of T266M variant, but only 

among E40K carriers (i.e., whenever E40K men were excluded from the reanalysis, there 

was no longer a significant association between T266M and TG levels). T266M is more 

prevalent than E40K and in our sample out of 620 T266M carriers only 16 were also carriers 

of E40K, which may be a reason behind lack of association. Furthermore, no studies 

presented conclusive findings over TG-lowering effect and mutations in ANGPTL4, so a 

replication of the reported association is required.

Our generalized FANOVA model is a functional model analogue of “reverse regression” 

(e.g., [Maddala, 1992]), where genetic information, X, becomes the response while 

phenotypes, Y , are treated as predictors. Regression coefficients are not invariant to 

swapping of predictor and response variables. However, partial correlations, as well as test 

statistics and the corresponding P-values remain the same after swapping. Thus, effects of 

adjustments for covariates in a direct model are properly preserved when testing for 

association in a reverse model. With multiple correlated predictors at an arbitrary variant's 

position tj, the test statistic for the regression coefficient βi can be re-expressed based on the 

partial correlation between Y and Xi, which is not affected by swapping of variables, and the 

test statistic (and therefore the P-value) is also invariant under the reversal in a functional 

model. One limitation of this approach is that for the direct and reverse tests to be 

equivalent, Xi cannot enter any interaction terms with other variables.

The generalized FANOVA is an extension of the previously proposed FANOVA approach 

and thus inherits some of its features. For example, generalized FANOVA fully utilizes 

variants’ position information and linkage-disequilibrium structure when computing the test 

statistic . However, unlike the previously proposed FANOVA, our current approach allows 

inclusion of multiple traits and adjustment for additional covariates. Moreover, our new 

functional approach provides a unique way of graphically depicting phenotypic effects and 

interactions by representing them as continuous curves varying over a genetic region. We 

also hypothesize that the functional approach may hold increased robustness to genotyping 

errors. This may be due to the fact that the estimated genotype functions, Ĝ(t), are used for 

the analysis in place of allele frequencies of the marked locus. It is noted that genotyping 

errors can have severe consequences for the analysis of low frequency alleles (e.g., 
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[Abecasis et al., 2001]). Although genotype functions are estimated via allele counts, they 

incorporate a certain degree of smoothing, therefore the fitted functions are expected to be 

less prone to genotyping errors.

In terms of the application of the generalized FANOVA methodology, practitioners can use 

standard mixed-effects software to estimate continuous regression coefficients as illustrated 

in the Methods section of this article. Previous research in penalized regression models 

[Scheipl and Greven, 2012] suggests that a penalty with a small null space should be 

preferred (a typical choice for the number of “fixed effects” is 2) and a ‘rule of thumb’ for 

the number of “random effects” is κ = 35. However, the specific number of kernel functions 

is unimportant as long as the fitted genotype functions are not too smooth.
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Figure 1. 
The genetic information (G(t)) is directly associated with the outcome of interest (X) and 

indirectly through the third variable (Z).
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Figure 2. 
Panel (a): The range and the distribution of MAF for all variants. Panels (b)-(c): MAF 

distribution of causal variants by the effect size.
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Figure 3. 
Empirical power of FANOVA (solid line) and SKAT (dashed line) when the variants can 

have either protective or deleterious effects (i.e., μγ = μα = 0). Panel (a): N = 50 σγ = σα = 

0.05; (b): N = 50 σγ = σα = 1; (c): N = 500 σγ = σα = 0.05; (d): N = 1000 σγ = σα = 0.05; (e) 

N = 2500 σγ = σα = 0.015; (f) N = 5000 σγ = σα = 0.015.
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Figure 4. 
Empirical power of FANOVA (solid line) and SKAT (dashed line) when the majority of 

variants have deleterious effect (i.e, μγ > 0 μα > 0) . Panel (a): N = 50 μγ = μα = 0.05 σγ = σα 

= 0.25; (b): N = 50 μγ = μα = 0.05 σγ = σα = 1; (c): N = 500 μγ = μα = 0.05 σγ = σα = 0.15; 

(d): N = 500 μγ = μα = 0.25 σγ = σα = 0.15; (e): N = 1000 μγ = μα = 0.05 σγ = σα = 0.05
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Figure 5. 
TG-increasing effect among European Americans (left panel), African Americans (middle 

panel), and Hispanics (right panel) with the 95% confidence bands (shaded regions).
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Table 1

Empirical type I error rates for the association tests between (G) and (X), while adjusting for (Z).

Sample size Nominal level α FANOVA SKAT

50 0.05 0.04319 0.04164

0.01 0.01037 0.00845

0.001 0.00191 0.00018

0.0001 0.00036 0.00000

500 0.05 0.04346 0.04854

0.01 0.00941 0.01002

0.001 0.00108 0.00123

0.0001 0.00023 0.00000
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