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ABSTRACT Northern and southern Ixodes scapularis Say populations differ greatly in density, host uti-
lization, and especially questing behavior of the immatures. Haplotypes of I. scapularis in North America
can be divided into two major clades—the All American Clade (haplotypes A through J) and the South-
ern Clade (M through O). This genetic variation may affect feeding success and vector competence.
This study compared feeding success of larval I. scapularis measured by time-to-drop-off and subse-
quent transmissibility success of Borrelia burgdorferi to mice using ticks from Mississippi, Connecticut
(both F haplotype), and Louisiana (haplotype O). Northern ticks (CT) fed to repletion much faster than
MS and LA ticks: overall, 73.6% of CT ticks had dropped off mice at Day 3 compared to only 1.7% and
6.6% of ticks dropped off for MS and LA ticks at that same time point. As for vector competence, 4 of the
4 mice in each case (MS or CT) that had been fed on by infected nymphs tested positive for B. burgdor-
feri. In a second experiment, 5 of the 6 mice tested positive for B. burgdorferi after exposure to infected
LA ticks as compared with 3 of the 4 mice exposed to infected CT ticks. These data demonstrate that
there is no difference in northern and southern populations of I. scapularis in their ability to transmit
B. burgdorferi, but the ability of the northern populations to feed rapidly on rodents exceeds that of
southern populations.
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Introduction

Lyme borreliosis (LB), caused by one or more
“genospecies” of Borrelia burgdorferi, is a systemic
tick-borne illness displaying a variety of clinical mani-
festations that occurs over much of the world in tem-
perate zones (Gray et al. 2002). In North America,
Borrelia burgdorferi sensu stricto is the etiologic agent
of LB, which is transmitted by Ixodes scapularis Say
ticks in the northeastern and midwestern United States,
while Ixodes pacificus Cooley and Kohls, is the vector
along the Pacific Coast. Immature ticks acquire the in-
fection in nature while feeding as larvae and nymphs
on infected reservoir vertebrate hosts such as small
mammals or birds. In the northeastern and midwestern
United States, the cycle of tick transmission of B. burg-
dorferi sensu stricto is driven by a focus on Peromyscus
mice, chipmunks, shrews, and to some extent birds, but
in the southern United States, little is known about the

reservoirs, other than that lizards may be involved
(Apperson et al. 1993, Levin et al. 1996, Durden et al.
2002). Confounding the issue is controversy (often ex-
treme) about whether and to what extent “true” Lyme
borreliosis occurs in the southern states (Auwaerter
et al. 2011, Goddard et al. 2012, Clark et al. 2013), thus
highlighting the need for ecological and epidemiologi-
cal research on LB in that region.

Tick–host surveys are important in determining
host–vector–pathogen relationships. However, host sur-
veys by themselves do not provide specific information
about relative success of tick development. The host
species’ influence on tick development and molting
success is largely unexplored beyond a few studies
found in the scientific literature (Bishopp and Hixson
1936, Trager 1939, Hixson 1940, Sonenshine and At-
wood 1967, Amin 1969, Koch and Hair 1975, Moraru
et al. 2012). Theoretically, when ticks take larger blood-
meals (and quicker) on one host as opposed to another,
this means greater host–parasite synchronization, and
that the particular host is well-suited for that tick spe-
cies (Koch and Hair 1975).

I. scapularis populations from northern and southern
parts of their range differ greatly in population density,
host utilization, and, particularly, questing behavior of
the immatures (Piesman 2002, Goddard and Goddard
2008, Goddard and Goddard 2010). The division
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between “All American” and “Southern” lineages was
first established by Norris (Norris et al. 1996), but Qiu
further refined the classification, stating that I. scapula-
ris haplotypes in North America can be divided into
two major clades—the All American Clade (haplotypes
A through J), and the Southern Clade (M through O;
Qiu et al. 2002). A recent analysis utilizing single-nucle-
otide polymorphisms supports this view, showing that
I. scapularis ticks collected from Mississippi and Geor-
gia display greater genetic variation than those from
New Jersey or Virginia (Van Zee et al. 2013). This ge-
netic variation may affect tick feeding success and vec-
tor competence among southern I. scapularis. Previous
studies have compared the vector competence of
I. scapularis collected from the northern and southern
populations (Piesman and Sinksky 1988, Sanders and
Oliver 1995), but these studies were performed before
it was possible to characterize the genetic background
of the populations used in the experiment. The present
study compares feeding success of larval I. scapularis
measured by time-to-drop-off and subsequent trans-
missibility success of B. burgdorferi to mice using ticks
from Mississippi (F haplotype), Connecticut (F haplo-
type), and Louisiana (O haplotype).

Materials and Methods

Mice and Ticks. Mice used in these experiments
were CD-1 females, 4–5 wk of age, purchased from
Charles River Laboratories (Wilmington, MA). Mice
were handled according to approved protocols on file
with the Centers for Disease Control and Prevention,
Division of Vector Borne Diseases Animal Care and
Use Committee Protocol numbers 12-003 and 09-002.
I. scapularis colonies were derived from three states:
Connecticut (CT), Mississippi (MS), and Louisiana
(LA). The CT colony originated from female I. scapula-
ris collected in Bridgeport, CT, in 2009 and maintained
as previously described (Piesman 1993). MS ticks were
collected as adults from vegetation during March 2011
in Marshall County, MS, and fed on rabbits per pre-
vious protocols (Piesman 1991). LA ticks were derived
from a colony maintained at the Tulane Primate Cen-
ter, Covington, LA (but originally collected nearby).

Molecular Genetics. The genetic background of
each tick colony was established by sequencing a
433 bp DNA fragment of the mitochondrial 16S rDNA
gene (Van Zee et al. 2013). This fragment is enough to
allow classification by haplotype as previously described
(Qiu et al. 2002). Both the CT and MS ticks were clas-
sified as haplotype “F,” the most common haplotype of
the “Northern Clade” or “All American Clade” (Norris
et al. 1996), whereas the LA ticks were haplotype “O,”
a haplotype restricted to southern states in its
distribution.

Detection of B. burgdorferi. Nucleic acids were
isolated from ticks using DNeasy Blood and Tissue kit
(Qiagen, Valencia, CA) and a Mini-Beadbeater (Bio-
spec, Bartlesville, OK; Hojgaard et al. 2014). To test for
the presence of B. burgdorferi, a multiplex TaqMan
PCR reaction was performed, targeting both B. burg-
dorferi and I. scapularis. As a control for both the

DNA purification and the PCR reaction, a set of pri-
mers and probe against the actin gene of I. scapularis
was used (Hojgaard et al. 2014). For detection of
B. burgdorferi DNA, previously described primers and
probes for the flagellar filament cap gene (fliD) were
used (Dolan et al. 2011). The multiplex PCR reactions
were performed using iQ Multiplex Powermix (Bio-
Rad), with primers in a final concentration of 300 nM,
and probes in a final concentration of 200 nM. The
PCR cycling conditions consisted of denature DNA at
95�C for 3 min followed by 40 cycles of 95�C for 10 s,
and 60�C for 1 min on a C1000 Touch thermal cycler
with a CFX96 real time system (BioRad).

Drop-off Study and Vector Competence. In
order to infect mice, a total of five nymphal I. scapularis
infected with the B31 strain of B. burgdorferi were
allowed to feed on 4- to 5-wk-old mice ad libitum until
repletion. At 3 weeks postnymphal exposure, an ear
biopsy was obtained and cultured in Barbour-Stoenner-
Kelly (BSK) to determine whether the animal was
infected as previously described (Sinsky and Piesman
1989). All mice serving as hosts for larval ticks had posi-
tive ear biopsies on examination by darkfield micro-
scopy. Mice were exposed to test larval ticks from
different locations at 4 weeks postnymphal exposure.
Logistically, we could not conduct this experiment all at
once due to the number of mice involved. Therefore,
three replicates (trials) for each location were per-
formed; however, replicates were always run with north-
ern (CT) ticks and one southern strain (MS or LA). In
each of these trials, larval ticks were placed on mice and
allowed to feed ad libitum. Larvae were not counted
prior to being placed on hosts. Exact larval counts prior
to infestation would have required prehandling and sep-
arating larvae into small batches for application. Prior
experience in our lab has shown that prehandling larval
batches notably reduces viability. At the time of these
experiments, we only had small numbers of flat larvae
available to us, especially the Louisiana larvae. There-
fore, we made the decision not to precount larvae.
Nonetheless, by a rough visual count, a minimum of
150 and a maximum of 350 larvae were placed on indi-
vidual mice depending on the number of larvae avail-
able. Larval drop-off was assessed at least twice daily,
and numbers of replete ticks found were counted and
charted as to days postapplication to each mouse.
Replete larval ticks were held in desiccators with satu-
rated humidity at 22�C. At 10 days post-larval repletion,
�5 larvae were tested for spirochetes by PCR.

For vector competence studies, in two separate
experiments, groups of five nymphs (at least 2 mo post-
molt) resulting from the above feedings were placed on
test mice and allowed to feed to repletion, comparing
the ability of MS and LA ticks to transmit B. burgdor-
feri to mice as compared with CT ticks (Note: in the
case of LA ticks, three mice received less than five
nymphs each due to low numbers available; Table 1).
No effort was made to compare nymphal drop-off
times of ticks from different locations due to the small
numbers of nymphs used. Replete nymphs were
subsequently tested for the presence of spirochetes
by PCR. Exposed mice were then tested for
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transmission of spirochetes by culturing ear, bladder,
and heart at 1-mo postnymphal exposure (Piesman and
Happ 1997). Each organ cultured in BSK was exam-
ined by darkfield microscopy weekly for 1 mo to detect
live spirochetes.

Statistical Analysis. Pearson’s Chi-squared test was
used to evaluate statistical significance of differences in
tick drop-off rates in northern versus southern ticks
(Table 2). Specifically, this test was used to evaluate

whether location and tick drop-off times were inde-
pendent or related.

Results and Discussion

Drop-off Study. Despite our efforts to roughly
place equal numbers of tick larvae on each mouse, the
numbers feeding to repletion on experimental mice
were widely disparate—339 MS ticks; 75 LA ticks; and
516 CT ticks (Fig. 1). However, because actual larval
numbers were not counted, no conclusions about the
relative numbers of ticks recovered per location will be
made here. Future studies are warranted to more accu-
rately determine feeding success on mice of immature
I. scapularis ticks derived from different locations. As
for drop-off times, CT ticks fed to repletion much
faster than MS and LA ticks: overall, 73.6% of CT ticks
had dropped off mice at Day 3 compared with only
1.7% and 6.6% of ticks dropped off for MS and LA

Table 1. Experiments assessing ability of nymphal I. scapularis
from different locations to transmit B. burgdorferi to mice

Mousea No. placed
on mouse

No. fed
on mouse

No. ticks
PCR þþ

Mouse culture
for Bbb

MS-1 5 4 4 Pos
MS-2 5 2 2 Pos
MS-3 5 1 1 Pos
MS-4 5 4 4 Pos
CT-1 5 4 2 Pos
CT-2 5 5 3 Pos
CT-3 5 5 1 Pos
CT-4 5 5 4 Pos
Second experiment
LA-1 5 2 2 Pos
LA-2 5 2 2 Pos
LA-3 4 4 4 Pos
LA-4 3 1 1 Pos
LA-5 3 1 1 Pos
LA-6 3 1 1 Neg
CT-1 5 1 1 Pos
CT-2 5 4 3 Neg
CT-3 5 1 1 Pos
CT-4 5 4 3 Pos

a Mouse number with ticks from three locations—either
Mississippi, Connecticut, or Louisiana.

b Cultured for B. burgdorferi.

Table 2. Statistical analysis of tick drop-off data

A
Day 2 Day 3 Day 4 Day 5

MS–LA ticks 0 11 267 136
CT ticks 158 225 100 33
v2¼ 485.4705, df¼ 3, P< 2.2e-16

B
Day 3 Day 4

MS–LA ticks 11 267
CT ticks 225 100
v2¼ 265.2742, df¼ 1, P< 2.2e-16

C
Day 4 Day 5

MS–LA ticks 267 136
CT ticks 100 33
v2¼ 3.2955, df¼ 1, P< 0.06947
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Fig. 1. Larval I. scapularis drop-off times from three different locations, repeated three times (three trials of each).
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ticks at that same time point (Fig. 1). Statistical analysis
of the data showed that location (tick origin) and time
until tick drop-off were related (P< 0.001, Table 2).
Further analysis showed that the timeframe of days 3–4
for tick drop-off was significantly related to location
(P< 0.001, Table 2B), while the timeframe of days 4–5
for tick drop-off was not significantly related to location
(P> 0.05, Table 2C). It is important to note that our
study included only two (F and O) of several genetic
haplotypes of northern and southern populations of I.
scapularis, thereby limiting the conclusions we can
make to these two particular haplotypes. Despite this
limitation, there were marked differences in feeding
success (as measured by drop-off times) between
northern and southern larval ticks. Interestingly, even
southern haplotype F (from Mississippi) did not have
the same drop-off rate as northern haplotype F (from
Connecticut). Perhaps there is selection pressure on
southern populations of I. scapularis immatures to feed
on lizards and thus they are not adapted to feeding rap-
idly on rodents. In fact, previous studies of small
rodents in Mississippi have found few, if any of them
infested with immature I. scapularis (Norment et al.
1985, Clark and Durden 2002, Moraru et al. 2012,
2013).

Vector competence. All I. scapularis ticks, regard-
less of geographic origin, easily transmitted B. burgdor-
feri to mice (Table 1). In the first experiment, 4 of the
4 mice in each case (MS or CT) that had been fed on
by infected nymphs tested positive for B. burgdorferi.
In the second experiment, 5 of the 6 mice tested posi-
tive for B. burgdorferi after exposure to infected LA
ticks as compared with 3 of the 4 mice exposed to
infected CT ticks. These data demonstrate that there is
no difference in northern and southern populations of
I. scapularis in their ability to serve as vectors of B.
burgdorferi and points to lack of anthropophily of local
immature ticks as a reason for scarcity of LB in south-
ern states. Certainly, there may be many ecological or
host-preference differences in tick populations that
indirectly affect Lyme disease epidemiology in the
southern United States, but southern populations of
I. scapularis are indeed able to acquire and transmit
the agent of Lyme disease.
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