
ORIGINAL ARTICLE

Insights in the ecology and evolutionary history of
the Miscellaneous Crenarchaeotic Group lineage

Mireia Fillol1, Jean-Christophe Auguet2, Emilio O Casamayor3 and Carles M Borrego1,4

1Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain;
2Marine Biodiversity, Exploitation and Conservation (MARBEC), UMR CNRS 9190, Montpellier University,
Place Euge ́ne Bataillon, Montpellier, France; 3Integrative Freshwater Ecology Group, Centro de Estudios
Avanzados de Blanes, CEAB-CSIC, Accés Cala Sant Francesc, Girona, Spain and 4Water Quality and
Microbial Diversity, Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological
Park of the University of Girona, Girona, Spain

Members of the archaeal Miscellaneous Crenarchaeotic Group (MCG) are among the most successful
microorganisms on the planet. During its evolutionary diversification, this very diverse group has
managed to cross the saline–freshwater boundary, one of the most important evolutionary barriers
structuring microbial communities. However, the current understanding on the ecological
significance of MCG in freshwater habitats is scarce and the evolutionary relationships between
freshwater and saline MCG remains poorly known. Here, we carried out molecular phylogenies using
publicly available 16S rRNA gene sequences from various geographic locations to investigate the
distribution of MCG in freshwater and saline sediments and to evaluate the implications of saline–
freshwater transitions during the diversification events. Our approach provided a robust ecological
framework in which MCG archaea appeared as a core generalist group in the sediment realm.
However, the analysis of the complex intragroup phylogeny of the 21 subgroups currently forming the
MCG lineage revealed that distinct evolutionary MCG subgroups have arisen in marine and
freshwater sediments suggesting the occurrence of adaptive evolution specific to each habitat. The
ancestral state reconstruction analysis indicated that this segregation was mainly due to the
occurrence of a few saline–freshwater transition events during the MCG diversification. In addition, a
network analysis showed that both saline and freshwater MCG recurrently co-occur with archaea of
the class Thermoplasmata in sediment ecosystems, suggesting a potentially relevant trophic
connection between the two clades.
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Introduction

Over the course of the last decade, the rapid
accumulation of genetic data has fundamentally
changed our understanding of ecosystem functioning
by unraveling new abundant microbial groups
(mostly represented by uncultivated microbes)
involved in important ecological processes such as
aerobic ammonia oxidation in Thaumarchaeota
(Konneke et al., 2005), anaerobic ammonia oxidation
in Planctomycetales (Dalsgaard et al., 2003; Kuypers
et al., 2003) and light-energy conversion using
proteorhodopsin in SAR86 (Beja et al., 2000).
However, most of these abundant microbial groups
escape our capacity to understand their ecology and
physiology. This is for instance the case of the

Miscellaneous Crenarchaeotic Group (MCG), a sister
clade of the archaeal phyla Thaumarchaeota and
Aigarchaeota, which appears to be particularly
abundant and widespread in marine sediments
(Biddle et al., 2006, 2008; Durbin and Teske, 2012;
Kubo et al., 2012; Lloyd et al., 2013; Lazar et al.,
2014), where it accounts on average for 12% of total
prokaryotic cells in CARD-FISH counts (Kubo et al.,
2012) and for 30% of all clones in archaeal 16S rRNA
gene libraries (Fry et al., 2008). Considering that half
of the microbial cells in the oceans are found in
sediments (Kallmeyer et al., 2012) and that oceans
covers ~ 70% of the surface of the planet, members of
the MCG may be one of the most successful lineages
on the Earth. This success extends beyond the limits
of the marine sediment habitat as MCG 16S rRNA
gene sequences are also present in other natural
habitats such as freshwater plankton and sediment,
and hydrothermal vents (see Figure 3-group C2 in
Auguet et al., 2010).

The widespread distribution of MCG suggests a
great versatility in their physiological capabilities.
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That is in agrement with the discovery of a
functional bacteriochlorophyll a synthase (bchG)
gene in a MCG fosmid, conferring metabolic
plasticity to adapt to various environments
(Meng et al., 2009). However, the lack of cultured
MCG representatives has hampered a better
understanding of the metabolic potential of the
group. First evidence for heterotrophy based on
buried organic carbon was brought by Biddle et al.
(2006), who observed assimilation of sedimentary
organic compounds by MCG archaea using isotopic
analysis. Assimilation of organic carbon by MCG
archaea have recently been corroborated in incuba-
tion experiments of estuarine sediments by stable
isotope probing (Webster et al., 2010; Seyler et al.,
2014). Recent findings from metagenomic data
(Meng et al., 2014) and single-cell genomics (Lloyd
et al., 2013) provided indirect evidence that mem-
bers of the MCG lineage may be involved in the
degradation of aromatic compounds (for example,
protocatechuate) and detrital proteins, respectively.
This heterogeneity in the potential substrates used
by MCG archaea reflects the extremely high genomic
diversity of the lineage (Meng et al., 2014), hindering
a full understanding on the ecological role and
influence of MCG in biogeochemical cycles.

Indeed, members of the MCG are very divergent
(up to 24%, based on 16S rRNA gene identity, Kubo
et al., 2012) and the whole lineage has been
proposed as a new archaeal phylum named
Bathyarchaeota (Meng et al., 2014). Although a
comprehensive phylogeny subdividing the MCG
lineage into 17 monophyletic subgroups has recently
been reported (Kubo et al., 2012), many questions
remain unanswered concerning the distribution and
functions of these subgroups in the different habitats.
Of particular interest is the ability of MCG to
overcome one of the most important evolutionary
barriers structuring microbial communities, that is,
salinity (Auguet et al., 2010; Lozupone and Knight,
2007) and to colonize both marine and freshwater
habitats (Casamayor et al., 2001; Biddle et al., 2006;
Lehours et al., 2007; Llirós et al., 2008, 2010; Auguet
et al., 2010, 2012; Bhattarai et al., 2012; Borrel et al.,
2012; Buckles et al., 2013; Fillol et al., 2015). In
addition to the fact that the abundance of MCG in
freshwater habitats is still not well estimated, no
study has yet been conducted to investigate the
evolutionary relationships between marine and
freshwater MCG, and whether or not distinct MCG
subgroups have evolved along the transition between
marine and freshwater habitats.

In the present investigation, we used publicly
available archaeal 16S rRNA gene sequences from
globally distributed studies to (1) examine the
ecological significance of MCG within archaeal
communities in both freshwater and marine
sediments and (2) investigate the hypothesis of a
relationship between diversification and habitat
during the evolution of the MCG lineage and the
transition between marine and freshwater sediments.

In addition, we used network analysis in an attempt
to unveil potential syntrophic and/or mutualistic
interactions in which MCGs would be involved and,
by association, in the potential metabolisms they
might harbor.

Materials and methods

Data set constructions
Amultistep Biopython homemade script was used as
wrapper to the Entrez Programming Utilities to
search and retrieve archaeal 16S rRNA gene
sequences from the GenBank NCBI-nr database
(before January 2014). The Esearch utility was used
to capture DNA sequences matching the following
string ‘16S AND 600:2000[Sequence Length] AND
archaea[Organism]AND rrna[Feature key] AND iso-
lation_source[All fields] NOT genome OR chromo-
some OR plasmid’. In a following step, Efetch
retrieved the entries found by Esearch and stored
them (97668 sequences) in a GenBank formatted flat
file to get further access to environmental informa-
tion. Next, the script checked and removed
sequences that were not ribosomal, too short (that
is, o600 bp) and those that lacked the isolation
source tag. To retain only sequences retrieved from
marine or freshwater sediment habitats, sequences
were filtered by isolation source using the string:
‘sediment | sediments’. We ended with 17 839
archaeal sequences collected from 358 studies.
Variations in sampling efforts and methodologies
among studies were homogenized by clustering
archaeal sequences at a 97% and 90% identity
threshold using MOTHUR (Schloss et al., 2009). Studies
with less than 10 representative sequences were
discarded from downstream analysis. The final data
set contained 12 120 sequences distributed in 207
studies/sites: 153 from marine sediment, 13 from
hypersaline sediment and 41 from freshwater sedi-
ments (see Supplementary Table 1). These sequences
were clustered into 7098 operational taxonomic unit
(OTUs) (97% cutoff) and 3427 OTUs (90% cutoff).

Phylogenetic analysis
Representative OTU sequences of each study were
aligned in MOTHUR (Schloss et al., 2009) and imported
into ARB software (Ludwig et al., 2004; http://www.
arb-home.de) loaded with the Greengenes database
(version gg_13_5, http://greengenes.secondgenome.
com/). A base frequency filter was applied to exclude
highly variable positions before adding sequences to
the maximum parsimony backbone tree using the
parsimony quick add marked tool implemented in
ARB, thereby maintaining the overall tree topology
provided by default. The MCG phylogenetic tree was
constructed using 2781 16S rRNA gene sequences
that were dereplicated at 90% identity and classified
into 1120 OTUs. Twelve sequences were finally
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excluded from the tree because of poor
alignment score.

Affiliations of MCG sequences to each MCG
subgroups were carried out through reference
sequences of the 17 MCG subgroups (Kubo et al.,
2012) used as phylogenetic anchors. For the
construction of the MCG tree, phylogenetic inference
was carried out with RAxML version 7.7.1
(Stamatakis et al., 2008) that estimates large
phylogenies by maximum likelihood. The best
phylogenetic tree estimated by the GTRCAT model
with 1000 bootstrap replicates was drawn with iTOL
(Letunic and Bork, 2007).

Statistical analyses
Phylogenetic-based (according to the evolutionary
distances captured by the ML tree) and taxon-based
analyses (in which taxa were picked at a defined
level and then treated as equally divergent) were run
separately.

For the phylogenetic-based analyses, distance
matrices were constructed using UniFrac, a beta
diversity metric that quantifies community similarity
based on the phylogenetic relatedness (Lozupone
et al., 2006; Hamady et al., 2010). Principal
coordinate analysis plots were used to represent
the ordering relationships obtained from the UniFrac
distance matrices. We used permutational Manova
based on 1000 permutations (McArdle, 2001) with
function Adonis of the vegan package in R (Oksanen
et al., 2008) to assess the source of variation in the
UniFrac matrix.

The phylogenetic diversity (PD) index was
calculated as the sum of the branch length associated
with the 16S rRNA gene sequences within each site
(Faith, 1992). To correct for unequal number of
sequences, we calculated the mean PD of 1000
randomized subsamples of each habitat (Barberan
and Casamayor, 2010).

The phylogenetic structure was evaluated with the
phylogenetic species variability index for each
study (Helmus et al., 2007). Phylogenetic species
variability estimates PD as the variance of a trait
evolving under a neutral model. The value is 1 when
all species are phylogenetically unrelated (that is, a
star phylogeny) and approaches 0 as species become
more related. To test statistically whether marine
and freshwater archaeal communities were com-
posed of species that were more or less related to
each other than expected, we compared the mean
observed phylogenetic species variability with
distributions of mean null values (1000 iterations)
using two different randomization procedures. Null
model 1 maintains species occurrence, whereas null
model 2 maintains habitat species richness (Helmus
et al., 2007). All these analyses were run with the
R package picante (Kembel et al., 2008).

In the taxon-based approach, a table of lineage
relative abundance was constructed by considering
all the clusters or divisions immediately subordinate

to the main archaeal phyla and provided by default
in the Greengenes tree. This table was further used to
examine the species abundance distribution (SAD)
patterns of each lineage and determine the ecological
importance of the MCG lineage in archaeal sediment
communities. The index of dispersion for each
archaeal lineage was calculated as the ratio of the
variance to the mean abundance multiplied by the
occurrence. This index was used to model whether
lineages follows a Poisson distribution (that is,
stochastic distribution), falling between the 2.5%
and 97.5% confidence interval of the w2 distribution
(Krebs, 1999).

A multivariate regression tree (MRT) was
computed using the R package mvpart (De'Ath,
2002) to represent the relationship between the table
of lineage relative abundances and the environmen-
tal matrix.

We used the indicator value (IndVal) index, which
combines relative abundance and relative frequency
of occurrence (Dufrene and Legendre, 1997) to
identify archaeal lineages as analogous to the
concept of ‘indicator species’.

Ancestral state reconstruction (ASR)
We performed an ASR to test the hypothesis of a
relationship between diversification and salinity in
MCG. For each MCG OTU (90% cutoff), character
state for salinity was coded as follow: 1= freshwater,
2 = saline and 3=hypersaline. ASR was performed
using Mesquite 2.75 (Maddison and Maddison, 2011)
with the Mk1 model (maximum likelihood) and the
package ape in R. The transitions among each state
were not assumed to occur at equal rates, as the
transitions between both extremes of salinity require
more cellular adaptations than saline–freshwater or
saline–hypersaline transitions.

Co-occurrence network construction
Associations between MCG OTUs and other archaeal
OTUs in the sediment habitat were inferred from an
undirected co-occurrence network. Pairwise score
between archaeal 90% OTUs represented by more
than five sequences was computed using Spearman’s
rank correlations. Only co-occurrences correspond-
ing to correlations with a coefficient (rho)4 0.6 and
a statistical significance (P-value)o 0.01 were
considered for further analysis. Non-random
co-occurrence patterns were tested with the checker-
board score (C-score) under a null model preserving
site frequencies (Stone and Roberts, 1990; Gotelli
and McCabe, 2002). A C-score calculated for each
pair of archaeal OTUs was compared with the
C-score computed for 5000 randomly assembled null
matrices. To avoid biases affecting raw C-score
values (that is, OTU number, abundance…), the
standardized effect size (SES) was calculated
(Sridhar et al., 2012). Because the C-score is an
inverse indicator of the frequency of co-occurrence,
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positive SES values indicate less co-occurrence than
expected by chance (that is, predominance of
segregation within communities) and vice versa for
negative values (that is, predominance of facilita-
tion). If co-occurrences were not different from what
was expected by chance, values of SES should fall
between −2 and 2.

The network was visualized with the gephi soft-
ware (Bastian et al., 2009). Nodes represented
archaeal OTUs at 90% identity and edges
represented the significant correlations between
them. Network characterization was performed using
a set of overall network topological indices (that is,
node degree distribution, average node connectivity,
average path length, diameter, clustering coefficient
and modularity) and network indices for individual
nodes (that is, degree, closeness centrality and
betweenness; Newman, 2003). All analyses were
run using the R packages vegan (Oksanen et al.,
2008) and igraph (Csardi and Nepusz, 2006).

Results and Discussion
The MCG: a characteristic lineage for sediment habitats
The MCG lineage has a cosmopolitan distribution in
natural ecosystems (Inagaki et al., 2003; Fry et al.,
2008; Auguet et al., 2010; Kubo et al., 2012; Lloyd
et al., 2013) but has been mostly recovered from
marine anoxic sediments habitat (Fry et al., 2008;
Kubo et al., 2012; Lloyd et al., 2013). Nonetheless,
large variations in their relative abundance (from 1%
to 100%) were observed at global scale (Lloyd et al.,
2013). In turn, current knowledge on the MCG
distribution pattern in freshwater sediments is very
limited. Consequently, a more rigorous ecological
framework is needed before claiming for a major

ecological significance of MCG archaea in general
sedimentary habitats.

For this purpose, 7098 archaeal OTUs (97% cutoff)
belonging to 21 archaeal lineages and from 207
sediments worldwide distributed were analyzed in
an abundance vs occurrence plot (Figure 1a). We
observed a significant positive relationship between
mean relative abundance and occurrence (that is,
number of sites in which archaeal groups were
detected) showing that widespread archaeal lineages
were more locally abundant than those archaeal
classes with a more restricted distribution with the
exception of Haloarchaea. One explanation for this
trend, one of the most robust in macroecology
(Gaston et al., 2000), is related with the alternative
concept of ‘jack-of-all-trades is master of all’ (Brown,
1984; Gaston et al., 1997; Verberk et al., 2010), in
which cosmopolitan species that can tolerate a large
spectrum of environmental conditions and use a
broad range of resources become locally dominant.
This concept seems to characterize very well
members of the MCG lineage both in terms of
resources (Biddle et al., 2008; Lloyd et al., 2013;
Meng et al., 2014) and distribution. The MCG lineage
was one of the most frequent archaeal lineage found
in the sediment habitat as it occurs in 68% (141 sites)
of the 207 sediments analyzed. It was also one of the
most abundant lineages as it represented on average
36%±22% of the OTUs in each study where MCG
were detected.

As previously observed when investigating SAD
patterns (Magurran and Henderson, 2003; Verberk
et al., 2010; van der Gast et al., 2011), a discontinuity
in the occurrence vs relative abundance plot
(Figure 1a) separated archaeal lineages into two
groups: one group composed of 7 persistent/abun-
dant core lineages where MCG were included (that
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Figure 1 Species abundance distribution (SAD) pattern of archaeal classes in the clone libraries analyzed. (a) Occurrence of archaeal
lineages (number of studies in which a given lineage was found) plotted against its average abundance across these studies. A significant
positive distribution–abundance relationship is observed. Core lineages (in white) were defined as those appearing in 475 studies and
satellite lineages (in black) occurred in less than 50 studies. (b) Occurrence of each archaeal lineage plotted against its dispersion index.
The line depicts the 2.5% confidence limit of the w2 distribution: lineages falling bellow this line follow a Poisson distribution and are
randomly dispersed in space. ANME, anaerobic methanotroph; DHVE3, Deep Hydrothermal Vent Euryarchaeota-3; Halo, Halobacteria;
MCG, Miscellaneous Crenarchaeotic Group; Metbac, Methanobacteria; Metmic, Methanomicrobia; Metcoc, Methanococci; SAGMEG,
South African Gold Mine Euryarchaeotic Group; Thermcoc, Thermococci; Thermprot, Thermoprotei; Thermpl, Thermoplasmata;
UncThaum, Uncultured Thaumarchaeota; 1.1a, Thaumarchaeota 1.1a; 1.1.b, Thaumarchaeota 1.1b; 1.1.c, Thaumarchaeota 1.1c.
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is, lineages detected in more than 75 libraries) and
another with 14 rare/less abundant satellite lineages
(that is, lineages detected in less than 50 libraries).
To statistically support this empirical SAD partition,
the index of dispersion for each archaeal class was
compared with a model assuming a stochastic
distribution (Poisson model) falling between the
2.5% and 97.5% confidence limit of the w2 distribu-
tion (Krebs, 1999). Plotting dispersion indices
against occurrence confirmed that MCG represented
a core lineage in the sediment habitat and was not
randomly distributed through sediment samples. In
turn, most satellite lineages fell below the 2.5%
confidence limit line indicating random distribution
(Figure 1b).

Thus, according to its broad distribution, MCG is a
core generalist lineage in contrast to the specialist
Haloarchaea restricted to a specific type of sediment.
To illustrate this point and to link the abundance of the
different lineages to environmental data, a MRT
analysis was carried out (Figure 2). The analysis
showed a four-leaf tree ordination explaining 13% of
the phylogenetic lineage variance and primarily based
on salinity for the two first nodes. Samples clustered in
the leaves of the tree merely in function of their source
habitat (that is, hypersaline, freshwater, surface and
deep marine sediments). Pie charts in Figure 2 show in
detail how the relative abundance of each phylogenetic
group contributed to the separation and composition of
the leaves. Changes in the relative abundance of the
MCG lineage, which was particularly abundant in
freshwater and anoxic marine sediments, accounted
for most variation in the MRT tree (Figure 2). Calcula-
tion of the IndVal index on each leaf of the MRT tree
showed that most core lineages previously identified
are indicator lineages (Po0.01) for one single leaf
(color label in Figure 2). The MCGwas the only lineage
to be indicator for two leaves, saline anoxic sediments
and freshwater sediments, the most frequent and
abundant type of sediments on the Earth.

Topology of the MCG phylogenetic tree
The phylogenetic tree of the entire MCG lineage
contained 1120 OTUs (Figure 3). The lowest identity
of the most divergent sequences was 75%, agreeing
with published values (Kubo et al., 2012). This
extremely low intragroup identity supports that
MCG is one of the most phylogenetically diverse
archaeal groups. The tree topology fairly agreed with
that proposed by Kubo and co-workers, with most
sequences clustering into the 18 subgroups already
described (12% of sequences remained unclassified).
However, differences were observed within
subgroup5b, now split into 5b and 5bb, and the
identification of two new clusters (MCG-18 and
MCG-19), which were supported by high bootstrap
values (96% and 89%, respectively). Accordingly,
the MCG lineage comprised 21 clades that grouped
sequences from uncultured representatives mainly
from marine and freshwater sediments and less
frequently from hypersaline environments (see color
coding in Figure 3). On the basis of this monophyly
and deep branching position in the overall archaeal
tree several authors have recently proposed that
MCG would be considered as a new archaeal phylum
called Bathyarchaeota (Rinke et al., 2013, Meng
et al., 2014).

Evolutionary relationships between freshwater and
marine MCG lineages
Our previous results suggested a key ecological role
for the MCG lineage both in marine and freshwater
sediments. Considering the high PD within the MCG
lineage composed of 21 subgroups, one may
wonder whether these subgroups have a widespread
distribution or, in contrast, if distinct evolutionary
subgroups occur in marine and freshwater
sediments. To test these hypotheses, the MCG
assemblages were sorted into an ordination plot
according to the phylogenetic community similarity
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(Figure 4a). The mean observed phylogenetic
species variability value (0.77) was significantly
lower (that is, more phylogenetically clustered) than

the null distribution for both model 1 (0.86, Po0.05)
and model 2 (0.86, Po0.05), indicating a non-
random sampling of phylotypes from the sequence
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pools. As non-random evolutionary processes were
detected, we tested their association with environ-
mental features (that is, salinity, oxic status and
temperature). The observed segregation of freshwater
and saline MCG assemblages in the ordination plot
(Figure 4a) was statistically tested using permuta-
tional analysis of variance, which confirmed that
salinity was the environmental variable explaining
most of the variation in the phylogenetic MCG
structure (R2 = 0.04, Po0.001). Secondarily, oxic
status and temperature also had a significant effect
(R2o0.02, Po0.01 for both variables). These results
suggest that distinct evolutionary subgroups
occurred in the marine and the freshwater sediment.
Freshwater/marine segregation has been observed in
diverse microorganisms (archaea, bacteria, micro-
eukaryotes and viruses) confirming that the marine–
freshwater frontier is an important colonization
barrier (Logares et al., 2009). The strongest evidence
for this pattern in archaea has been brought by a
meta-analysis showing that the consistent phyloge-
netic separation of marine and freshwater archaea
was based on characteristic lineages adapted to a
specific habitat (Auguet et al., 2010).

To identify which MCG subgroups were segre-
gated by salinity, we calculated the IndVal index for
each subgroup within the freshwater and saline
sediments. Overall, 8 of 21 MCG subgroups (3 saline

and 5 freshwater) showed significant IndVal values
(Po0.01). Particularly, MCG subgroups 1 and 8 (for
marine sediments) and 11 and 5b (for freshwater
sediments) had the highest IndVal values and
shaped the dissimilarity in MCG assemblages
between these habitats (Figure 4b). Indeed, MCG
subgroups 11 and 5b (Fillol et al., 2015), which
dominated freshwater sediments, were almost never
detected in saline sediments and vice versa for
subgroups MCG-1 and MCG-8. Regardless of the
habitat, these MCG indicator lineages (MCG-ILs)
represented key members of MCG assemblages in
term of relative abundance as they accounted, on
average, for 44% of total MCG sequences in each
study (Figure 5). Figure 5 illustrates the strong
segregation of MCG-IL between marine and fresh-
water sediments. At a more local scale, Lazar et al.
(2014) found a vertical segregation of MCG sub-
groups as a function of sulfide concentration and
redox potential within marine sediments. These
correlations between the distribution of MCG sub-
groups and global or local environmental condi-
tions suggest the occurrence of adaptive evolution
specific to each habitat.

How shifts in salinity corresponding to the
marine–freshwater boundary determine the distribu-
tion and evolution of prokaryotes is not fully
understood, but differences in salt concentration
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can affect both energetic costs (related to osmoregu-
lation) and metabolic pathways, and ultimately limit
the environmental transitions (Oren, 2001). Here, we
supported the influence of salinity on the diversifi-
cation and specification of MCGs by the ASR using
habitat salinity of each OTU (Figure 6). ASR analysis
showed a significant correlation between patterns of
diversification and salinity where MCG occurred.
Assuming a saline representative as the most prob-
able last common ancestor, this analysis supported
the hypotheses of an evolutionary progression for
MCGs from saline to freshwater sediments. Although
ancient, colonization of freshwater sediment
occurred more recently than for saline sediments in
a first transition and subsequent diversification
events that gave rise to all freshwater MCG-IL
(Figure 6). Overall, and in agreement with other
microbial lineages (Logares et al., 2009, 2010), a few
environmental transition events (that is, switch from
a freshwater ancestor to a saline descendant and vice
versa) seemed to have occurred during the diversi-
fication of MCG. This result may explain why
freshwater and saline sediments harbored evolution-
ary distinct communities of MCG.

Co-occurrence and potential MCG–Thermoplasmata
synthrophy
To get a first insight in the potential syntrophic
and/or mutualistic interactions in which MCGs may
be involved and, by association, in the potential
metabolisms they may harbor, we constructed a
co-occurrence network based on strong and signifi-
cant Spearman correlations. As illustrated by recent
studies, microbial co-occurrence patterns can help to

unveil ecologically meaningful interactions between
species (Horner-Devine et al., 2007; Steele et al.,
2011). Network approaches also showed that
co-occurring species are often organized into groups,
or modules, of functional significance (Chaffron
et al., 2010; Barberan et al., 2012; Vick-Majors
et al., 2014). After OTU clustering at 90% identity
and filtering the data set for optimizing network
sensitivity and specificity, network inference was
calculated on 99 OTUs distributed across 205
studies. We first checked for the existence of
non-random co-occurrence patterns in the network
by using the SES of the C-score metric (Gotelli and
McCabe, 2002; Horner-Devine et al., 2007; López
et al., 2013). We observed a SES value of 2.45
(Po0.001, C-scorenorm = 0.78) indicating non-random
network structure and the existence of fewer
co-occurrences than expected by chance (that is,
more segregated taxa). Segregation of taxa seems to
be an idiosyncratic feature for biological assemblages
across domains of life (Webb, 2000; Kembel and
Hubbell, 2006; Horner-Devine and Bohannan, 2006;
Horner-Devine et al., 2007). Four major causal
mechanisms (not mutually exclusive) have been
proposed to explain segregation: competition,
habitat filtering, historical effects and neutral
processes (Diamond, 1975; Bell, 2005;
Horner-Devine et al., 2007). The results obtained
above and the low number of significant negative
correlations in the network may indicate a
dominance of habitat filtering and historical factors
over competition in the explanation of the
segregation of archaeal taxa observed here.

The sediment archaeal network (Figure 7a)
consisted of 92 nodes and 373 edges and presented
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the typical topology for microbial network (Chaffron
et al., 2010; Steele et al., 2011; Barberan et al., 2012;
Deng et al., 2012): scale-free (that is, node connec-
tivity distribution not different from a power law
model, see Supplementary Figure 1), small-world
(clustering coefficient of 0.56 and average path
length of 3.66) and modular (modularity of 0.55).
Within the resulting network, MCG was by far the
most represented archaeal lineage accounting for
47% of the nodes and 53% of the edges (Figure 7a).
Calculation of network indices for individual nodes
further corroborated the pivotal role of the MCG
lineage in the structuration of the network (Table 1).
Indeed, looking at the ranking of nodes for the 10
highest values of each index, MCG nodes were the
most represented and particularly for closeness
centrality, which has been recently related to the
concept of keystone species (Berry and Widder,
2014). In this concept initially developed for macro-
organisms, keystone species are commonly

understood as the ‘backbone’ of the community on
which the stability of the entire system depends
(Paine, 1969). Recently, prokaryotes involved in
major biogeochemical processes such as sulfates
reducers (Pester et al., 2010) or primary degraders
of refractory substrates (Ze et al., 2012) have been
regarded as keystone species. Our results suggest
that members of the MCG lineage might have a
keystone role in archaeal sediment communities.

Identifying MCG-IL within the network (Figure 7b)
revealed its ecological structure and the presence of
fresh and saline sub-networks. The structure of both
sub-networks was very similar with a clear discon-
nection of typical methanogenic lineages (that is,
essentially Methanomicrobia and Methanobacteria)
from other lineages within each sub-network
(Figure 7a). Notably, the lack of co-occurrence
between MCG members and typical methanogens
agrees with the fact that MCG are likely not
methanotrophs (Kubo et al., 2012). Modularity
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analysis revealed a more complex structure (parti-
cularly for the saline network) with the presence of
six modules (Figure 7c), that is, clusters of OTUs that
are highly connected within the module but with
very few connections outside the module. In agree-
ment with previous works (Freilich et al., 2010;
Chaffron et al., 2010; Faust and Raes, 2012), modules
could be considered as ecological and/or functional
niches as suggested by modules 4, 5 and 6, which
represented freshwater, hypersaline and saline-
methanogen sub-networks, respectively. MCG were
present in four of the six modules and, interestingly,
they systematically co-occurred more often with
members of the Thermoplasmata as indicated by
the high number of interconnections (that is,
indicated by higher degree values; Figure 7d). As
stated previously, many co-occurrences may not be
the reflection of true biological interactions but the
result of niche overlap (Barberan et al., 2012).
However, the recurrence of MCG–Thermoplasmata
associations in different modules representing dif-
ferent ecological niches was compelling and pointed
toward a potential syntrophy. Additional support for
this idea came from the potential metabolisms of
these lineages related to the remineralization of
carbon in sediments. The Thermoplasmata studied
here matched the Marine Benthic Group D, the
Terrestrial Miscellaneous Euryarchaeotal Group and
the new order Methanomassiliicoccales (Iino et al.,
2013). The latter archaeal group, the seventh order of
methanogens, are methylotrophic methanogens
obtaining energy and carbon from methanol and
methylated amines (Paul et al., 2012; Dridi et al.,
2012; Iino et al., 2013; Borrel et al., 2014). Although
no information on the potential metabolism of the
Terrestrial Miscellaneous Euryarchaeotal Group
group is available, recent findings from metagenomic
data (Meng et al., 2014; Castelle et al., 2015) and
single-cell genomics (Lloyd et al., 2013) suggested
that members of the MCG and Marine Benthic Group
D lineages may be involved in the degradation of
detrital proteins both in marine and continental
sediments. The high PD of the MCG lineage
invalidates any general assumption of potential
metabolisms shared between all MCG subgroups

(the specialization of certain subgroups towards
freshwater and marine habitats is a good example
of this). However, it is tempting to speculate on a
system where MCG and Marine Benthic Group D act
as primary degraders of detrital proteins producing
more labile compounds for other microorganisms
such as methylated substrates for methylotrophs.

To better understand if members of the MCG and
Thermoplasmata lineages work in syntrophy or
simply shared the same resources, further analyses
involving culturing and metagenomic approaches
targeting these poorly described branches of life are
needed. Further research will surely provide clues to
resolve not only the ecological role of two of the most
important archaeal groups in sediment ecosystems
but also the impact of their activity in the carbon
cycle of marine sediments, which are considered the
largest reservoir of carbon on the Earth.
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