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The emerging association of assisted reproductive technologies with adverse perinatal out-
comes has prompted the in-depth examination of clinical and laboratory protocols and
procedures and their possible effects on epigenetic regulatory mechanism(s). The application
of various approaches to study epigenetic regulation to problems in reproductive medicine
has the potential to identify relative risk indicators for particular conditions, diagnostic
biomarkers of disease state, and prognostic indicators of outcome. Moreover, when
applied genome-wide, these techniques are likely to find novel pathways of disease patho-
genesis and identify new targets for intervention. The analysis of DNA methylation, histone
modifications, transcription factors, enhancer binding and other chromatin proteins, DNase-
hypersensitivity and, micro- and other noncoding RNAs all provide overlapping and often
complementary snapshots of chromatin structure and resultant “gene activity.” In terms of
clinical application, the predictive power and utility of epigenetic information will depend
on the power of individual techniques to discriminate normal levels of interindividual var-
iation from variation linked to a disease state. At present, quantitative analysis of DNA
methylation at multiple loci seems likely to hold the greatest promise for achieving the
level of precision, reproducibility, and throughput demanded in a clinical setting.

Since the first live-birth resulting from in vi-
tro fertilization (IVF) in 1978, the combina-

tion of improved success rates and increased
demand for treatment has led to a dramatic
rise in the number of infants born as a result
of this technology. In the United States alone,
more than 130,000 assisted reproductive tech-
nology (ART) cycles were initiated in 2013,

resulting in more than 42,000 live births and
55,000 infants (www.sartcorsonline.com). World-
wide, greater than three million children have
been born with the assistance of in vitro repro-
ductive technologies. (ESHRE 2006; Van Voo-
rhis 2007).

In recent years, there have been increasing
concerns regarding the potential health impact
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of infants conceived with the assistance of IVF.
Although twin and higher order multiple preg-
nancies are the main contributors to the mor-
bidities associated with IVF conceptions, studies
have indicated that even singleton pregnancies
are at increased risk for a number of adverse
perinatal outcomes such as preterm birth, low
birth weight, congenital anomalies, preeclamp-
sia, placental abruption, perinatal mortality, and
several other pregnancy related complications
(Wang et al. 2000; Ericson and Kallen 2001;
Hansen et al. 2002; Schieve et al. 2002, 2004;
Jackson et al. 2004; Shevell et al. 2005; Chung
et al. 2006; Van Voorhis 2006; Kalra and Moli-
naro 2008; Kalra et al. 2011, 2012; Henningsen
2014). The contributing factors underlying
these associations are not known, but the obser-
vations, particularly in singleton pregnancies,
suggest a relationship of adverse outcomes to
some aspects of IVF. There is ongoing debate
whether an underlying inherent increased risk
in subfertile couples is central to the pathogen-
esis of these adverse outcomes (Schieve 2004).
Alternatively, these adverse outcomes may be
related to the protocols used to hyperstimulate
patients to maximize the number of oocytes
retrieved (Sato et al. 2007; Market-Velker et al.

2010) and/or to the laboratory procedures used
for oocyte retrieval, fertilization, and growth of
the embryos (Fig. 1). Mechanical manipulation
of gametes and embryos and exposure to tem-
perature and oxygen variation (or even light)
during a very critical time of development
may potentially have profound and lasting ef-
fects.

Therefore, it is likely that multiple factors
contribute to the observed adverse outcomes
and their pathophysiologic cellular mecha-
nism(s) may differ. Given that most of the clin-
ical observations can be attributed to a “placen-
ta process” (Shevell et al. 2005; Sun et al. 2009),
data from the mouse model and our own pub-
lished and preliminary observations in the hu-
man, lead us to hypothesize that some of the
observed adverse outcomes may be the result
of alterations in trophoblast function. This re-
sults in perturbations in the processes of im-
plantation and placentation (Fowden et al.
2006). These processes depend on both em-
bryonic factors regulating the adhesive and in-
vasive properties of trophoblasts and maternal
uterine and immunologic factors that play per-
missive and regulatory roles modulating tro-
phoblast invasion (Norwitz et al. 2001). Most
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Figure 1. Schematic representation of the different exposures during the process of clinical human in vitro
fertilization (IVF). From gonadotropin exposure during controlled ovarian stimulation (depicted as an ultra-
sound image) to culture and transfer (tx) at various stages of early development up to the blastocyst stage, the
gametes and embryos are subjected to multiple chemical and physical exposures not encountered during
unassisted conception.

M.A. Mainigi et al.

2 Cite this article as Cold Spring Harb Perspect Med 2016;6:a023416

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



importantly, oxygen tension has emerged as a
central regulator of trophoblast differentiation
(Genbacev et al. 1996, 1997; Maltepe and Simon
1998; Red-Horse et al. 2004; Jiang and Mendel-
son 2005; Robins et al. 2007).

Given the now well accepted association
of adult disease(s) to peri-conceptional and
intrauterine environmental influences (Barker
et al. 1993, 2002, 2005; Gluckman et al. 2008;
Woo and Patti 2008; Simmons 2009), it is crit-
ical to methodically and comprehensibly eval-
uate the cellular and molecular effects follow-
ing the in vitro preimplantation growth of
human embryos. Elucidation of the specific
contributions of treatment to the perinatal
morbidity of children conceived with this tech-
nology is of both scientific and public health
importance. Moreover, a comparison of results
obtained from placentas and newborns derived
after in vitro versus in vivo conceptions can not
only provide information as to the pathogene-
sis of perinatal adverse events associated with
ART, but can also suggest avenues for basic
research that focus on understanding the regu-
latory mechanisms involved in preimplantation
human embryonic development and placenta-
tion.

Here, we present background and summary
information on some of the evolving technolo-
gies used to query epigenetic marks. We try to
provide an assessment of their suitability as di-
agnostic or prognostic tools in a clinical setting.
Although many of the technologies give deeply
textured information on the relationship be-
tween individual epigenetic marks, or combina-
tions of marks, and gene activity, not all are
likely to provide the robust level of reproduc-
ibility and high-throughput amenable to rou-
tine clinical laboratory testing. The demands
placed on the technology are, in part, a byprod-
uct of the overriding issue in many clinical tests:
Given the great diversity of “normal” human
phenotypes, how does one distinguish an indi-
vidual with an “abnormal” phenotype? Both
clinicians and researchers should be aware of
the strengths, weaknesses, and pitfalls of such
technologies, as they are applied, in this case, to
the evaluation of epigenetic changes during the
clinical application of ARTs.

EPIGENETIC REGULATION

Epigenetic regulation is thought to play a role in
mediating the effects of many different expo-
sures to long-term health and disease. However,
linking an exposure and an outcome can be very
difficult. Reproduction is an excellent model to
study the relationship between an exposure and
an outcome, primarily because there is access to
tissue at birth (embryonic and extra-em-
bryonic) and because there may be “early” conse-
quences of exposure from as early as the period
of preimplantation development to later in
pregnancy, such as is observed in preeclampsia
or intrauterine growth restriction (IUGR).
Studies have shown that early exposure to high
nutrient intake and rapid weight gain in infancy
are associated with later metabolic risks in
adolescence and adulthood (Fabricius-Bjerre
et al. 2011). Exposures during pregnancy lead-
ing to IUGR have been linked to long-term un-
desirable outcomes in the offspring such as obe-
sity, metabolic syndrome, and a predisposition
toward long-term morbidity from type 2 dia-
betes and cardiovascular disease. Growing evi-
dence suggests that the liver may represent one
of the candidate organs targeted by program-
ming, undergoing structural, functional, and
epigenetic changes following exposure to an
unfavorable intrauterine environment (Cian-
farani et al. 2012). Low-birth weight and babies
delivered preterm may represent populations
at risk of long-term metabolic disorders and
may be valuable cohorts to study the role of
epigenetic programming.

Our own interest in exploiting emerging
technologies to study epigenetic regulation to
answer questions in reproductive biology stems
directly from the possibility that epigenetic
structures can be altered by environmental fac-
tors. Since the pioneering work of Barker et
al. (2002) on the fetal origins of adult disease,
we have understood that what occurs in utero
can have long-term consequences on health
and disease. Multiple studies have found an
association of the peri-conceptional, peri-im-
plantation, or in utero environments and DNA
methylation, and several are summarized in Ta-
ble 1 (modified from data in Hogg et al. 2012).

Epigenetics and ART Outcomes
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This programming, at the cellular and molecu-
lar levels, is still poorly understood, specifically
as it relates to the role of epigenetic alterations to
the development of adult disease (Fig. 2; mod-
ified from data in Hogg et al. 2012).

Many different environmental effects, such
as exposure to ethanol or altered maternal diet,
have been linked to adverse perinatal outcomes

that are believed to be regulated, in part, by
epigenetic changes in the placenta. For example,
ethanol exposure in an animal model led to
changes in DNA methylation in the placenta,
with DNA methylation in the embryo unaffect-
ed (Haycock 2009). Animal models have also
linked maternal diabetes or a high-fat diet to
epigenetic alterations in the placenta and off-

Table 1. Associations between DNA methylation and different human in utero exposures

Exposure type Exposure in utero Effect on DNA methylation Tissue Reference

Dietary/
nutritional

Dutch famine Altered DNA methylation at
several imprinted genes, some
sex-specific effects

Peripheral blood Tobi et al. 2009

Folate and
vitamin B12

Decreased global DNA methylation
(LUMA) associated with
maternal B12 status

Cord blood McKay et al.
2012

Endocrine
disrupting
chemicals

Traffic air
pollution

Lower global DNA methylation
(methylamp)

Cord blood Herbstman
et al. 2012

Antiepileptic drugs
(valproic acid)

Reduced global DNA methylation
(Illumina HumanMethylation27
array) and site-specific changes

Cord blood and
placenta

Smith et al.
2012

Modified from data in Hogg et al. (2012).

Maternal/environmental exposure
ART, alcohol, tobacco, stress,

nutrition, endocrine
disrupters

Altered epigenetic profiles
DNA methylation, histone modifications,

noncoding RNAs

Altered gene expression profiles

Adverse outcomes

Fetus Adult diseasePlacentaMother

- preeclampsia
- gestational diabetes
- recurrent miscarriage

- aberrant invasion
- impaired vascularization
- altered cell differentiation
- poor growth

- growth restriction
- metabolic changes
- altered neurological
- development
- altered hormonal axes

- hypertension
- cardiovascular disease
- obesity
- type II diabetes

Figure 2. Many of the problems of reproductive health can be linked to problems with placental morphology and
function. (Created from modified data in Hogg et al. 2012.)
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spring that can then lead to longer-term meta-
bolic effects (Simmons 2009, 2013; Gatford and
Simmons 2013). However, the majority of these
studies focus on a small number of imprinted
genes (Table 1). It is likely that all of these ex-
posures, as well as ART, have more broad epige-
netic consequences and it is critical to develop
epigenetic technologies to broadly study these
consequences.

Epigenomic Plasticity

Epigenetics is the study of differences in somati-
cally heritable states of gene expression that are
not the result of differences in DNA sequence.
Epigenetic alterations may also allow changes
in gene expression to become transgenerational.
It is largely through epigenetic means that or-
ganisms achieve phenotypic plasticity, as well
as the capacity for a single genotype to result
in different cellular phenotypes that may also
be tailored to the environment. The first studies
of epigenetic variation within populations sug-
gest high levels of phenotypically relevant vari-
ation, with the patterns of epigenetic regulation
varying between individuals and genome re-
gions as well as with environment (Johnson
and Tricker 2010).

With respect to how one might measure the
potential effects of ART on the epigenome and
the effects of the epigenome on outcomes, there
are three classes of epigenetic molecules that
might be able to make these distinctions: (1)
DNA methylation, (2) modifications of his-
tones and other chromosomal proteins, and
(3) noncoding RNAs, including miRNAs and
long-noncoding RNAs. With special relevance
to environmental effects on the epigenome, all
three epigenetic regulatory mechanisms are not
likely to be equally capable of distinguishing the
epigenetic differences between individuals that
may be of clinical interest with regard to proce-
dures used in assisted reproduction. The scope
of the problem lies in the observed level of in-
terindividual variation, the expected effect-size
of the laboratory exposure or clinical protocol
or procedure and the precision and through-
put with which the epigenetic measurements
can be made. These considerations make DNA

methylation the most likely candidate to be a
biomarker of assisted reproduction exposures.
DNA is a highly stable molecule. Levels of inter-
individual variation in global or site-specific
methylation do vary but are constrained (i.e.,
methylation at any one site can vary, as a fraction
of molecules measured, between zero and one)
and there are high-precision, highly reproduc-
ible techniques available with the capacity for
high-throughput (Eads et al. 2000; Weber et al.
2005; Khulan et al. 2006; Irizarry et al. 2008; Zuo
et al. 2009; Bibikova et al. 2011; Jelinek et al.
2012). These techniques have the ability to dis-
tinguish differences in population means of the
expected small magnitude in samples of mod-
erate size. In other words, interindividual vari-
ation is low enough and precision of the DNA
methylation measurement is high enough that it
is likely that it can be used to distinguish the
effects of the intervention (i.e., ART procedures
or clinical protocols) on the epigenotype, even if
those effects are expected to be small in magni-
tude. With current technologies, the same can-
not be said for histone modifications or even for
gene expression arrays interrogating long non-
coding or miRNAs.

DNA Methylation

Epigenetics play an important role in fetal de-
velopment. Following fertilization, areas of the
genome that are not protected by imprinting
undergo both active and passive demethyla-
tion of DNA. DNA methylation patterns then
begin to differentiate by developmental stage
and by tissue, with �20% of CpG sites show-
ing tissue-specific methylation patterns. Differ-
ent cell types, individuals, and disease states
develop unique epigenomes. Because fetal de-
velopment is a period of extensive cellular rep-
lication and growth, environmentally induced
epigenetic changes may result in stable patterns
of modified gene expression and phenotypic
differences among exposed individuals (Menon
et al. 2012). Such exposure-specific changes
could represent epigenetic “signatures” of par-
ticular exposures and be used for both forensic
and diagnostic purposes.

Epigenetics and ART Outcomes
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DNA methylation is a very important epi-
genetic mark that has suspected regulatory roles
in a broad range of biological processes and
diseases. DNA methylation plays a crucial role
in embryonic development, maintenance of
pluripotency, X-chromosome inactivation and
genomic imprinting through regulation of tran-
scription, chromatin structure, and chromo-
somal stability (Robertson 2005).

In humans, DNA methylation occurs pre-
dominantly at cytosine bases in the form of
5-methylcytosines (mCs) at methyl cytosine-
guanine dinucleotides (mCGs). hydroxyme-
thylcytosines (hmCs), formylmethylcytosines
(fmCs), carboxymethylctyosines (cmCs), and
possibly other, yet unknown, forms also occur
at much lower frequencies. These bases com-
prise the human DNA methylome and interin-
dividual differences in the methylome may
identify genomic regions involved in cell differ-
entiation and disease. Experimental and bioin-
formatic methods are now available for applying
genome-wide DNA methylation mapping to a
broad range of phenotypes, diseases, and bio-
logical questions (Bock 2012). However, there is
a growing need for establishing powerful and
efficient tools for integrative data analysis to fil-
ter biologically relevant findings from the grow-
ing mass of epigenome data.

Gene-specific methods of measuring DNA
methylation include sodium bisulfite conver-
sion of unmethylated cytosine to uracil, followed
by methylation-specific (MS) polymerase chain
reaction (PCR), pyrosequencing or mass spec-
trometry-based analyses. Bisulfite conversion is
needed for many downstream applications to
distinguish methylated DNA from nonmethy-
lated DNA. Sodium bisulfite oxidatively deam-
inates cytosine to uracil, however, 5-methylcy-
tosine is resistant to this conversion. Although
bisulfite treatment creates easily assayed, quali-
tative differences in sequence from differences
in epigenotype, the method involves a harsh
chemical treatment resulting in high fragmen-
tation and low-yield of DNA posttreatment. Of
necessity, the technique also reduces sequence
complexity (converting all unmethylated cyto-
sines to uracil/thymine), which becomes a chal-
lenge for primer design for individual genes, as

well as downstream mapping from “reads” back
to the genome in sequencing-based whole-ge-
nome approaches. Incomplete bisulfite conver-
sion can also result in false positive methylation
results. There are several methylation-sensitive
restriction endonucleases that have the ability to
cleave DNA at specific sequences, which is de-
pendent upon the DNA methylation state of the
sequence. Combined bisulfate restriction analy-
sis (COBRA) combines bisulfite treatment with
sequence-specific restriction endonucleases for
locus-specific analysis of DNA methylation.
MS PCR allows for highly sensitive detection
of locus-specific DNA methylation using PCR
amplification of bisulfite-converted DNA (Her-
man et al. 1998). It is sensitive, quick, and inex-
pensive. However, there are problems with spe-
cificity (PCR design is difficult because the
reduced complexity of converted DNA mini-
mizes primer specificity); it is not quantitative,
only one or two CpG sites are interrogated at
a time and there is no bisulfite conversion
control. Pyrosequencing is site-specific, quanti-
tative, and high-throughput, however, it only
covers short reads (�100 bp) and the assay de-
sign is difficult in CG dense areas. Mass spec-
trometry-based methods allow for relatively
inexpensive long reads. However, site-specific
effects may be lost if CpG sites are close together
or fall on small fragments.

Global restriction enzyme-based methods
of measuring DNA methylation focus on re-
petitive elements such as long interspersed
element 1 (LINE1), an autonomous retrotrans-
poson comprising �17% of the total genome,
and Alu, a SINE family (short interspersed el-
ement) which is a nonautonomous retrotrans-
poson comprising �11% of the genome. There
are quick and quantitative screens for these re-
gions, collectively. However, the assay design for
these screens can be challenging (which region/
CpGs to include, problems with variability),
and sample quality and tissue of origin can
affect the success of the assay (Lander et al.
2001). The restriction enzyme based lumino-
metric methylation assay (LUMA) determines
methylation at all CCGG sites (HpaII cleaves
unmethylated CCGG; MspI cleaves both meth-
ylated and unmethylated CCGG). Although
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this method is advantageous because one does
not need to know the exact target sequence, it
does not give specific information on which
genes are affected (Karimi et al. 2006).

DNA sequencing has become more af-
fordable and capable of high-throughput ap-
proaches. Whole-genome sequencing of bisul-
fite-converted or MeDIP-precipitated DNA to
detect genome-wide DNA methylation profiles
is being more routinely used. With the rapid
development of new methods for epigenomic
analysis, there is an acute need for a systemat-
ic assessment of available technologies (Laird
2010; Stolzenberg et al. 2011).

Genome-wide analysis of DNA methylation
can also be performed using the DREAM (dig-
ital restriction enzyme analysis of methylation)
assay. Genomic DNA is sequentially digested
using SmaI and XmaI enzymes and the methyl-
ation-specific signatures created at the ends
of each cleavage product are analyzed using
next generation sequencing. DREAM analyses
�150K unique CpG sites, 39K of which are in
CpG islands and 30K are at transcription start
sites of 13K RefSeq genes. Compared with bi-
sulfate pyrosequencing, DREAM is cost effec-
tive, quantitative, and reproducible (Jelinek
et al. 2012).

HELP (HpaII tiny fragment enrichment
by ligation-mediated PCR) is another whole-
genome methylation analysis technique. This
assay is quantitative (compared methylation-
sensitive HpaII sites with the methylation-in-
sensitiveisoschizomer MspI sites) and support-
ed by open source bioinformatic tools for anal-
ysis. One version of the HELP assay generated
representations of sizes 20022000 bp, allowing
the testing of roughly 800K loci throughout
the human genome (Khulan et al. 2006; Oda
et al. 2009). The MspI representation allows si-
multaneous copy number variability testing
(HELP-CNV) and as little as 10 ng of starting
DNA can be used for the assay (nanoHELP).
Another protocol uses HELP with massively
parallel sequencing (MPS) rather than microar-
rays (HELP-seq). This technique is similar to
methyl-seq and allows for more sensitive de-
tection of hypomethylated loci. A large number
of polymorphisms in HpaII sites (.3%)

are also detected. These are a significant source
of variability for microarray-based studies. A
HELP-tagging assay (combining the power of
the MspI normalization of HELP with the in-
creased comprehensiveness of the methyl-sen-
sitive cut counting, MSCC, assay) is based on
Illumina sequencing and is highly quantitative
(Suzuki et al. 2010).

Epigenome-wide analyses (arrays or parallel
sequencing) of DNA methylation include plat-
forms such as Illumina’s BeadChips for human
DNA (27K CpG island-heavy versus 450K with
better whole-genome coverage), promoter ar-
rays (NimbleGen, Agilent), which are biased
but available for multiple species, and tiling ar-
rays (Affymetrix, NimbleGen) for human DNA.
These latter arrays are unbiased and have more
than 41 million probes. These protocols may
include antibody precipitation of methylated
DNAor MBP before array hybridization. Parallel
sequencing or deep sequencing methods in-
clude BS-Seq, MeDIP-Seq, and MethylPlex-
Seq. Methylated DNA immunoprecipitation
(MeDIP) uses an antibody that specifically rec-
ognizes methylated DNA, and the immunopre-
cipitated methylated DNA sequences can be
identified by PCR, Next-Gen sequencing or mi-
croarray hybridization approaches. These meth-
ods are global, with respect to genome coverage;
however, a reference sequence is needed for the
BS-Seq method, an antibody is required for the
MeDIP method and in all cases and results must
be validated (Pomraning et al. 2009).

For any epigenome-wide analyses, study de-
sign considerations include sample require-
ments (amount and quality; i.e., some restric-
tion endonuclease digests require .2 mg DNA,
Illumina Bead Arrays can still be effective with
degraded DNA, whereas affinity methods are
more tolerable of DNA impurity but require
larger amounts), sample throughput (high-
throughput 96 or 384 sample assays are low in
labor but high in reagent costs), genome cover-
age and resolution (restriction endonuclease
technologies are limited to the number/distri-
bution of recognition sites and some technolo-
gies work better for smaller genomes), accuracy
and reproducibility (fragment lengths affect hy-
bridization, sequencing, and reproducibility/

Epigenetics and ART Outcomes

Cite this article as Cold Spring Harb Perspect Med 2016;6:a023416 7

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



false positives and negatives, incomplete bi-
sulfite conversion and validation), and finally
bioinformatic and data storage requirements
(Laird 2010). DNA methylation analyses, in
terms of cost, resolution, genome coverage,
and accuracy were previously reviewed by Har-
ris et al. (2010) and Bock (2012).

ASSISTED REPRODUCTIVE
TECHNOLOGIES (ART)

Major epigenetic events that occur during germ
cell development and preimplantation stages
of embryo development precisely coincide
with when clinical and laboratory procedures
related to ARTare being done. The combination
of epidemiological data indicating that children
conceived through ART are at an increased risk
for a number of undesirable outcomes and the
demonstration that model organisms subjected
to similar manipulations exhibit epigenetic al-
terations at specific loci (Mann et al. 2004; Ri-
vera et al. 2008) suggest an association between
the two.

ART may affect proper establishment and/
or maintenance of epigenetic marks. The most
provocative observations have been the combi-
nation of demonstrated effects of culture media
on DNA methylation and imprinted gene ex-
pression in model systems (Mann et al. 2004;
Rivera et al. 2008) and the suggestion that two
very rare diseases resulting from alterations at
imprinted genes (such as Beckwith–Wiede-
mann and Angelman syndromes) (DeBaun
et al. 2003; Maher et al. 2003; Odom and Segars
2010; Lazaraviciute et al. 2014) have been ob-
served at greater frequency among children con-
ceived in vitro. These data are suggestive because
the timing of epigenetic reprogramming and the
timing of clinical protocols used in assisted re-
production overlap to a great degree.

Given that the timing of interventions used
in assisted reproduction coincide with the peri-
od when genome-wide changes in DNA meth-
ylation are thought to take place, it is only a
short logical extension to compare DNA meth-
ylation levels between children conceived in vi-
tro and children conceived in vivo to determine
whether differences observed in model or-

ganisms are also observed in human concep-
tions. Such comparisons have been performed
in multiple laboratories, initially targeting
small numbers of imprinted genes (reviewed
by Batcheller et al. 2011; systematic review and
meta-analysis by Lazaraviciute et al. 2014; Ne-
lissen et al. 2014; Whitelaw et al. 2014; Melamed
et al. 2015), under the assumption that imprint-
ed genes might be more susceptible to effects of
epigenetic disruption (Table 2), and in a modest
numbers of patients.

However, it is also critical to expand our
knowledge beyond imprinted genes and CpG
islands. DNA methylation on the edges of CpG
islands, so-called “island shores,” may play a role
in affecting gene expression or affect chromatin
structure and secondarily gene expression (Iri-
zarry et al. 2009). It is therefore increasingly nec-
essary to examine global DNA methylation and
not focus solely on imprinted genes and the
known imprinting control regions. A recent
study found that methylation of LINE1 was as-
sociated with birth weight and methylation of
LINE1 and AluYb8 methylation also differed
among infants exposed to tobacco and alcohol
(Wilhelm-Benartzi et al. 2012).

MOVING FROM BIOMARKERS TO
PHYSIOLOGY AND FROM ASSOCIATIONS
TO CAUSE/EFFECT: WHAT WILL IT TAKE?

In multiple studies, associations have been ob-
served between DNA methylation levels at spe-
cific sites and conception in vitro (Table 2);
however, some inconsistencies have been ob-
served. Many of the differences between studies
can be viewed as the most likely outcome of
replication studies involving small numbers of
individuals when the level of interindividual
variation is large and the expected difference
between groups is small. As shown from the
data presented in Figure 3, there is significant
interindividual variation in both methyla-
tion and transcript levels. Nevertheless, it is
clear that many of the small differences in
mean methylation level between groups are
also matched by differences in transcript level
(Fig. 3), suggesting that the ART-associated dif-
ferences in DNA methylation may play an
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important role. Many such differences are dif-
ficult to show because the level of interindivid-
ual difference in transcript level is even larger
than the interindividual difference in methyla-
tion levels (Katari et al. 2009). In total, the stud-

ies comparing DNA methylation between chil-
dren conceived in vitro and children conceived
in vivo point to subtle differences at many
genes. In agreement with data derived from ex-
periments in the mouse, extraembryonic tis-

Table 2. Studies comparing epigenetic differences between children conceived in vivo or using ART

Tissue Methodology Sample size Genes analyzed

Difference

observed Reference

Cord blood
and
placenta

GoldenGate
array and RT-
PCR

10 ART, 13 in vivo 736 genes Yes Katari et al.
2009

Placenta Bisulfite PCR 78 ART, 38 in vivo H19, GTL2, PEG1,
KCNQ1OT1,
ZAC, PEG3,
SNRPN, XIST

Yes Kobayashi
et al.
2009

Cord blood,
peripheral
blood,
amnion/
chorion

Bisulfite PCR 77 ICSI, 35 IVF, 73 in vivo KvDMR1, H19,
SNRPN, MEST,
GRB10, MEG3,
IG-DMR, GNAS,
NESP55, GNAS,
NESPas, GNAS
XL a-s, GNAS
Exon1A

No Tierling
et al.
2010

Cord blood
and
placenta

Methylation
specific-PCR
and RT-PCR

45 ART, 56 in vivo IGF2/H19 and
IGF2R DMR, X-
inactivation

Yes Turan et al.
2010

Placenta RT-PCR 65 ART, 924 in vivo IGF2, H19,
KCNQ1OT1,
CDKN1C

Yes Katagiri
et al.
2010

Placenta
(CVS)

Bisulfite PCR 42 ART, 29 in vivo H19, MEG3, LIT1,
MEST, NESP55,
PEG3, SNRPN,
NANOG, APC

Yes Zechner
et al.
2010

Cord Blood Bisulfite PCR,
cloning and
sequencing

29 IVF and 30 in
vivo conceived twin pairs

KvDMR1, PEG1,
H19/IGF2 DMR

No Li et al.
2011

Cord blood
and
peripheral
blood

Bisulfite
sequencing

30 IVF, 30 ICSI and 60 in
vivo

PEG3, L3MBTL,
PHILDA2

No Feng et al.
2011

Placenta Pyrosequencing 35 IVF, 35 in vivo H19, MEST Yes Nelissen
et al.
2013

Chorionic
villi and
muscle
samples

Pyrosequencing,
bisulfite
sequencing
PCR

75 ART stillbirth, 73
ART multifetal
reduction, 90 natural
conception stillbirths,
82 natural conception
induced abortion

H19, LIT1, SNRPN Yes Zheng et al.
2013

Modified from data in Batcheller et al. (2011).
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sues, in general, exhibit more and larger DNA
methylation differences than embryonic tissues
(Mann et al. 2004; Rivera et al. 2008; de Waal
et al. 2014).

CONCLUDING REMARKS

Infertile couples are increasingly turning to
ART to treat their infertility. Of growing con-
cern is that ART-conceived pregnancies and
children are at increased risk for specific loss-
of-imprinting disorders, as well as congenital
malformations, IUGR, and preeclampsia. Pub-
lished reports from our own and other labora-
tories show that following hormonal stimula-
tion along with the in vitro manipulation of

human gametes and/or embryos, extra-embry-
onic and fetal tissues exhibit particular suscept-
ibility to both methylation and specific gene
expression differences.

Epigenetic changes occurring in response to
ART manipulations have been linked with ad-
verse outcomes in the offspring. Although ini-
tially ART was associated with diseases known
to be caused by epigenetic alterations, such as
Angelman syndrome and Beckwith–Wiede-
mann syndrome (Odom and Segars 2010), it
is not these rare outcomes that are most con-
cerning. The developmental origins of adult
disease hypothesis has gained strength as a pow-
erful explanation for risk of some of the most
prevalent and morbid human conditions. It is
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Figure 3. Interindividual variation in gene-specific DNA methylation and transcription. Interindividual vari-
ation in DNA methylation (left) at two CpG sites in genes that also show significant differences in transcript level
(right) between ART and control placentas. Methylation was measured using Illumina’s Infinium 27K methyl-
ation array and transcript level was measured using Illimina’s Human HT-12 Expression BeadChip in placenta
from 24 children conceived in vitro (ART) and 24 children conceived in vivo (controls).
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likely that less severe epigenetic alterations are
responsible for other, more common, adverse
outcomes associated with IVF such as low birth
weight, preeclampsia, and preterm labor. The
full impact of impaired fetal growth may not
be completely evident until years after birth
when later developmental and reproductive
milestones can be affected. Many of these out-
comes are associated with long-term health
problems such as hypertension, diabetes, and
other adverse metabolic effects.

Studying the effects of ART on the epige-
nome may help to predict long-term conse-
quences of our early interventions. It is critical
to investigate our interventions to determine
whether they are the cause of these epigenetic
differences. It is particularly important to inves-
tigate the role of each individual intervention
used in ART (i.e., superovulation, ICSI, extend-
ed culture, etc.) on epigenetic outcome and to
adapt current ART protocols to minimize risk
to the pregnancy, the neonate and the long-term
health of the offspring. Finally, it is also critical
to use this information to further our under-
standing of epigenetic programming.

Advancement in the field of epigenetics may
help us understand many of the outcomes fol-
lowing ART treatments and processes that de-
crease IVF success rates, such as poor/abnormal
embryo development, failed implantation, preg-
nancy loss, and developmental anomalies. We
know that chromosomally normal embryos do
not implant 100% of the time and changes in
DNA methylation may also play a role in lower
“egg quality” associated with age (Yue et al.
2012). Abnormal maintenance of methylation
may further play a role in early pregnancy loss
(Yin et al. 2012; Zheng et al. 2013). Therefore,
understanding epigenetic marks that predict ad-
verse disease events may help us with developing
biomarkers that could aid in early diagnosis and
treatment of conditions that could lead to im-
proved quality of life or even prevention of dis-
ease. Furthermore, we know very little about the
extended consequences of any ART-associated
epigenetic differences. Clinical ART has only
been in existence for less than four decades so
there may be yet undiscovered consequences in
the millions of children conceived by IVF.

Finally, epidemiologic data supporting a re-
lationship between ARTs, low birth weight and
rare conditions involving imprinted genes also
makes it plausible that additional exposures
around the time of conception may impact fetal
growth. Growing evidence supports the concept
that developmental programming may occur
from a window that spans peri-conception
through postnatal life. Nearly half of all preg-
nancies conceived in the United States are un-
planned (3.1 million). Such pregnancies are as-
sociated with an increased risk of delayed or lack
of prenatal care, fetal exposure to harmful
chemicals such as endocrine disrupters, smok-
ing and alcohol, and low birth weight. These
associations highlight the fact that maternal ex-
posures both preconception and in utero are
critical for programming fetal development
and when these exposures are unfavorable peri-
natal morbidity increases.

It should be noted that these issues go be-
yond the effects of clinical and laboratory pro-
tocols involved in assisted reproductive technol-
ogies. Environmental and nutritional exposures
differ among populations of women according
to socioeconomic status, race, and age. Epige-
netic differences may not only be secondary to
exposure (ART or other in utero exposure) but
may also be dependent on the maternal geno-
type. A recent study found that polymorphisms
in genes involved in folate absorption and me-
tabolism may affect DNA methylation patterns
(McKay et al. 2012). Abnormal methylation of
paternal DNA is also important to study be-
cause DNA methylation may be altered in the
sperm of men with infertility. One study has
shown that in some infertile men perturbations
in methylation may contribute to abnormal
embryo development (Aston et al. 2012). The
possibility that some aspect(s) of infertility per
se contributes to altered phenotype and/or epi-
genotype is open for consideration and further
investigation (Song et al. 2015).

Ultimately, we need additional epidem-
iological research incorporating epigenetic
markers of environmental exposure, taking a
life-course approach with regards to assessing
outcomes. Compelling results from such studies
could help to broaden the scope of maternal care
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to one that places more emphasis on preconcep-
tion surveillance and treatment. Modifications
to maternal health, both before and at the ear-
liest stages of gestation, could impact upon fetal
development and reduce adult disease disk. To
aid us in achieving this, techniques for measur-
ing DNA methylation are very useful in quanti-
fying epigenetic effects of environment and nu-
trition, correlating developmental epigenetic
variation with phenotypes, understanding epi-
genetics of cancer and chronic diseases, measur-
ing the effects of drugs on DNA methylation or
deriving new biological insights into mamma-
lian genomes (Jelinek et al. 2012). To conclude,
it is necessary to study not only different tissues,
but different time points during development
and adulthood. Although there are conflicting
hypotheses, epigenetic marks may be static and
tissue-specific differences in DNA methylation
may change during different times of develop-
ment (Novakovic et al. 2011; Yuen et al. 2011).
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