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Abstract

Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) is a master 

anti-apoptotic regulator and resistance factor that suppresses tumor necrosis factor-α (TNF-α), 

Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, as well as 

apoptosis triggered by chemotherapy agents in malignant cells. c-FLIP is expressed as long (c-

FLIPL), short (c-FLIPS), and c-FLIPR splice variants in human cells. c-FLIP binds to FADD 

and/or caspase-8 or -10 and TRAIL receptor 5 (DR5) in a ligand-dependent and -independent 

fashion and forms an apoptosis inhibitory complex (AIC). This interaction in turn prevents death-

inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. c-

FLIPL and c-FLIPS are also known to have multifunctional roles in various signaling pathways, as 

well as activating and/or upregulating several cytoprotective and pro-survival signaling proteins 

including Akt, ERK, and NF-kB. Upregulation of c-FLIP has been found in various tumor types, 

and its silencing has been shown to restore apoptosis triggered by cytokines and various 

chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, 

small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIPL in 

diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the 

efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and 

apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA 

and protein levels of c-FLIPL and c-FLIPS splice variants have been found, and much effort is 

focused on developing other c-FLIP-targeted cancer therapies. This review focuses on (1) the anti-

apoptotic role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and 

chemotherapy drug resistance, (2) the molecular mechanisms and factors that regulate c-FLIP 

expression, and (3) modulation of c-FLIP expression and function to eliminate cancer cells or 

increase the efficacy of anticancer agents. This article is part of a Special Issue entitled 

“Apoptosis: Four Decades Later”.
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INTRODUCTION

The FADD-like interleukin-1β–converting enzyme (FLICE)-inhibitory (c-FLIP) proteins 

negatively regulate the signaling complex downstream of death receptors. In this review, I 

discuss (1) apoptosis signaling pathways and the role of c-FLIP isoforms as critical anti-

apoptotic and drug resistance factors, (2) assess the potential for improving the outcome of 

cancer therapy by targeting c-FLIP and exploring the possibility of increasing its 

degradation and/or decreasing its expression to provide a safer approach to treat cancer, and 

(3) discuss novel c-FLIP targeted agents for cancer therapy that improve the efficacy of 

TRAIL and cytotoxic drugs.

APOPTOSIS SIGNALING PATHWAYS

Apoptosis is the orderly and tightly regulated cellular programmed cell death involving 

signal transduction pathways that induce cells to self-destruct during embryonic 

development, or in response to environmental hazards (e.g., radiation-induced DNA 

damage) or anticancer therapeutics. Apoptosis pathways provide control against cancer 

development, but specific mutations enable malignant cells to escape apoptosis and lead to 

tumor formation. Two major well-studied pathways, the intrinsic or mitochondrion-initiated 

pathway and the extrinsic or cell surface death receptors pathway, are involved in apoptosis 

(Fig. 1) [1–3]. In the mitochondrial pathway, cytochrome c, certain caspases, apoptosis-

inducing factor, Smac/DIABLO, and other apoptosis-inducing factors are released from the 

mitochondrial intramembrane space to the cytosol [4]. Once released, cytochrome c and 

dATP bind to apoptotic proteinase-activating factor-1 (Apaf-1), and this complex along with 

adenine nucleotides promote procaspase-9 autoactivation [5], which in turn activates 

caspases-2, -3, -6, -7, -8, and -10. Apoptosis triggered by various stimuli requires direct 

activation of Bax and BAK at the mitochondria by a member of the Bcl-2 homology 

domain-3 (BH3)-only family of proteins including Bid, Bim, or PUMA [6]. The various 

anti- and pro-apoptotic members of the Bcl-2 family form an interactive network that finally 

regulates the release of apoptosis triggering factors such as cytochrome c to the cytoplasm 

[7]. Apoptosis initiated by the endoplasmic reticulum (ER) stress signaling pathway is also 

mainly dependent on the release of cytochrome c into the cytosol [8]. This release is 

associated with opening the permeability transition pore (PTP) and a collapse of 

mitochondrial transmembrane potential (ΔΨm) due to the intake of Ca2+ following its release 

into the cytosol from the ER. Certain members of the Bcl-2 family on the ER appear to have 

a comprehensive function in the maintenance of ER homeostasis, participation in ER stress 

signal transduction pathways, and apoptosis [8].

In the extrinsic or death receptor-mediated apoptosis pathway (e.g., Fas/Fas ligand 

interaction, tumor necrosis factor-α [(TNF-α)/TNF receptor 1 (TNFR1), or TRAIL/DR5 

interaction and cell death], the initiator caspases-8 and -10 activate the downstream caspases 

including caspase-3 [9–11]. Active caspases-8 and -10 are known to cleave a pro-apoptotic 

Bcl-2 family member, Bid, and the truncated Bid induces mitochondrial cytochrome c 
release [26–29], thereby linking the two pathways. After activation, both caspases-8 and -9 

activate caspase-3, which in turn cleaves other caspases and many cellular proteins [2, 12–

14]. Another pathway related to the intrinsic apoptotic pathway has also been identified [15]. 
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In this pathway, BID is cleaved in response to several death-inducing stimuli (staurosporine, 

UV radiation, cycloheximide, etoposide) and this BID cleavage is blocked by Bcl-2, 

suggesting that degradation of BID occurred distal to cytochrome c release. Moreover, 

addition of cytochrome c to Jurkat post-nuclear extracts triggered cleavage of BID at Asp-59 

which was catalyzed by caspase-3 rather than caspase-8. These results provide evidence that 

caspase-3 mediated cleavage of BID represents a feedback loop for the amplification of 

mitochondrial cytochrome c release during cytotoxic drug- and UV radiation-induced 

apoptosis [15].

CELLULAR FLICE-LIKE INHIBITORY PROTEIN (C-FLIP)

Structure of c-FLIP

The anti-apoptotic protein c-FLIP is a death effector domain (DED)-containing protein that 

is recruited to the DISC and regulates activation of caspases-8 and -10 in the death receptor 

signaling pathways (Fig. 1). c-FLIP has 13 distinct spliced variants, three of which are 

expressed as proteins: the 26 kDa short form (c-FLIPS), the 24 kDa form of c-FLIP (c-

FLIPR), and the 55 kDa long form (c-FLIPL) [16–18] (Fig. 2). The structures of c-FLIPS and 

the viral v-FLIP proteins are similar, except that the two DEDs of c-FLIPS are followed by 

20 amino acids that appear to be crucial for its ubiquitaation and targeting for proteasomal 

degradation [11, 16–18]. c-FLIPR also contains two DEDs but lacks the additional carboxy 

(C)-terminal amino acids that are present in c-FLIPS. The C-terminus of c-FLIPL is longer 

than that of c-FLIPS and closely resembles the structure of caspases-8 and -10 [11, 16–18], 

but this region of c-FLIPL does not contain a functional caspase domain. This lack of 

caspase activity is the result of several amino acid substitutions, particularly the crucial 

cysteine residue in the catalytic domain which is necessary for the catalytic activity of 

caspases [11, 16]. Additionally, c-FLIPL has a caspase-8 cleavage site at position Asp-376 

(LEVD); c-FLIPL cleavage at this site produces the proteolytic fragment variant p43c-FLIP 

[11, 16–18]. The C-terminal region of c-FLIPS and c-FLIPR play a crucial role in 

ubiquitnation and degradation as well as the anti-apoptotic function of these isoforms [11, 

16–18]. In humans, the decision to make c-FLIPS or c-FLIPR is defined by a single 

nucleotide polymorphism in a 3′ splice site of the c-FLIP gene. An intact splice site directs 

production of c-FLIPS, but the splice-dead variant causes production of c-FLIPR [19]. 

Because of differences in protein translation rates, higher levels of c-FLIPS protein are 

produced compared with c-FLIPR [19]. The three c-FLIP variants can interact with the 

adaptor protein FADD.

c-FLIP transcription and translation

c-FLIP can be transcriptionally activated by various stimuli. These include TNF ligands, 

growth factors, interleukins, chemokines, and chemotherapeutic agents [11]. Several 

transcription factors are known to transcriptionally regulate the c-FLIP gene [11, 18]. These 

include NF-κB, p53 tumor suppressor protein, p63, E2F1, c-myc, IRF5, c-Fos, nuclear 

factor of activated T cells (NFAT), heterogeneous nuclear ribonucleo-protein K (hnRNP K), 

the forkhead transcription factor FOXO3a, early growth response-1 transcription factor 

(EGR1), androgen receptor (AR), E2F1, AP-1, and SP1. While NF-κB, p63, NFATc2, 

EGR1, hnRNP K, AR and SP1 induce c-FLIP, c-myc, FOXO3a, c-Fos, IRF5, and SP3 
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suppress c-FLIP transcription [11, 18]. p53 may transcriptionally upregulate the c-FLIP gene 

and also promote the degradation of c-FLIP protein [16]. Moreover, Gli2 transcription factor 

upregulates c-FLIPS and c-FLIPL [20]. c-FLIPS is highly induced upon activation of T cells, 

primarily via the calcineurin-NFAT pathway [16]. The human T-cell leukemia virus type 1 

(HTLV-1) Tax protein upregulates c-FLIP in HTLV-1-infected cells through activation of 

NF-κB [6]. c-FLIPS is also upregulated at the translational level and causes TRAIL 

resistance in glioblastoma multiforme (GBM) cells due to activation of the Akt mammalian 

target of rapamycin (mTOR)-p70 S6 kinase 1 (S6K1) pathway [21, 22]. Conversely, 

inhibition of mTOR or its target S6K1 suppressed polyribosomal accumulation of c-FLIPS 

mRNA, c-FLIPS protein expression, and promoted TRAIL resistance in GBM cells. 

Moreover, it has been shown that Rocaglamide (Roc) sensitizes resistant adult T-cell 

leukemia/lymphoma (ATL) cells to DR4- and DR5-mediated apoptosis by translational 

suppression of c-FLIPS through inactivation of the translation initiation factor 4E (eIF4E) 

[16, 23].

c-FLIP degradation

Both c-FLIPL and c-FLIPS isoforms are short-lived proteins that are predominately degraded 

by the ubiquitin-proteasome degradation system [11, 16, 18]. Both c-FLIP isoforms can be 

degraded by the proteasome. However, c-FLIPS is particularly sensitive to ubiquitination and 

proteasomal degradation, partly due to two crucial lysine residues in the C-terminal 20 

amino acids that are unique to c-FLIPS [24]. The sensitivity of c-FLIPS to ubiquitin-

mediated degradation adds a novel concept to DISC regulation and its control of apoptosis 

[24]. c-FLIPL and c-FLIPS levels are also regulated by JNK activation via the E3 ubiquitin 

ligase Itch [11, 18, 25]. Phosphorylation events also play important roles in the regulation of 

c-FLIP protein levels. For instance, protein kinase C (PKC) phosphorylation at the serine 

193 (S193) residue of c-FLIPS inhibits its polyubiquitination, stabilizes c-FLIPS levels, and 

increases cell survival [66]. S193 phosphorylation is markedly increased by treatment with 

the PKC activator 12-O-tetradecanoylphorbol-13-acetate and decreased by inhibition of 

PKCα and PKCβ. Phosphorylation of the S193 residue also decreased the ubiquitination of 

c-FLIPL but did not affect its stability, indicating that S193 phosphorylation has a different 

function in c-FLIPL than in c-FLIPS. Moreover, pretreatment with the PKCδ-selective 

inhibitor rottlerin or transfection with PKCδ siRNA inhibited phorbol myristate acetate 

(PMA)-induced c-FLIP expression, which identifies a role for PKCδ in c-FLIP induction 

[26].

Upregulation of c-FLIP in human cancers

Increased expression of c-FLIP isoforms has been shown in cell lines from various types of 

cancer including colorectal [11, 16, 18]. Elevated levels of c-FLIP in tumor tissue from 

patients with colorectal cancer [28, 29], bladder urothelial cancer [30], cervical cancer [31], 

Burkitt’s lymphoma [32], non-Hodgkin’s lymphoma [33], head and neck squamous cell 

carcinoma (HNSCC) [34], and hepatocellular cancers [35] have been correlated with a poor 

clinical outcome and could be a reliable prognostic factor in these types of cancer. c-FLIP 

upregulation is also seen in gastric cancer and plays an important role in lymph node 

metastasis, which ultimately contributes to tumor progression [36]. c-FLIP isoforms are also 

expressed in pancreatic intraepithelial neoplasms as well as pancreatic ductal 
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adenocarcinomas, whereas normal pancreatic ducts were consistently negative for c-FLIP 

expression [37]. McCourt et al. [38] reported that c-FLIP expression was increased in high-

grade prostatic intraepithelial neoplasia (HGPIN) and prostate cancer tissue relative to 

normal prostate epithelium. Significantly, these authors found that maximal c-FLIP 

expression was detected in castrate-resistant prostate cancer (CRPC).

C-FLIP FUNCTION

c-FLIP prevents apoptosis

Initial studies with animal models have revealed that c-FLIP plays an important role in T-cell 

proliferation and heart development [39, 40]. Moreover, abnormal c-FLIP expression has 

been found in various diseases such as cancer, multiple sclerosis, Alzheimer’s disease, 

diabetes mellitus, and rheumatoid arthritis [11, 17]. c-FLIP is also thought to be the main 

causal factor of “immune escape” [41]. c-FLIP is involved in TRAIL, Fas, TNF-α, and 

chemotherapeutic drug resistance in a wide range of human malignancies [11, 16–18]. 

Moreover, studies using c-FLIP-deficient mice support a dual function for c-FLIPL by 

confirming a role for c-FLIP in Fas L, TNF-α-induced apoptosis and revealing that c-FLIP 

has a similar function to caspase-8 in heart development [40]. Nevertheless, extensive 

literature encompassing diverse types of human cancer cells now indicates that the action of 

c-FLIP is generally anti-apoptotic in cancer cells. Furthermore, interference with c-FLIP 

expression sensitizes tumor cells to death ligands and chemotherapy in experimental models 

[11, 18, 42–45]. In addition to its function as an apoptosis modulator, c-FLIP exerts other 

cellular functions including increased cell proliferation and tumorigenesis [11, 17–19].

The structural differences between human c-FLIP variants indicate distinct regulatory roles 

for c-FLIPL and c-FLIPS in apoptosis. c-FLIPS inhibits TRAIL-induced DISC formation and 

apoptosis [24, 45], while c-FLIPL is responsible for the dual functions described above 

whereby it inhibits Fas-induced caspase-8 activation when expressed at high levels, but 

enhances caspase-8 activation when its expression level is low [11, 18]. c-FLIPS also 

suppresses apoptosis by inhibiting caspase-8 activation [46, 47]. Moreover, c-FLIPS inhibits 

oxaliplatin-induced apoptosis through the sustained XIAP protein level and Akt activation 

[48].

We have demonstrated that c-FLIPL interacts with DR5, FADD, and caspase-8 forming an 

apoptotic inhibitory complex (AIC) in MCF-7 breast cancer cells [49]. Moreover, silencing 

the c-FLIP gene by a specific siRNA leads to (1) death ligand-independent but DR5-, 

FADD-, and caspase-8- and -9-dependent apoptosis in these cells, and (2) the knockdown of 

c-FLIP expression inhibits breast cancer cell proliferation and triggers spontaneous 

apoptosis by activating both the death receptor and mitochondrial pathways [49]. Our data 

support the previous report by Jin et al. [50] demonstrating that the peptide corresponding to 

the DR5 binding domain of c-FLIPL induces apoptosis in cancer cells. It is possible that 

inhibiting the interaction of DR5 and c-FLIPL by peptides or small molecule inhibitors could 

provide a mechanism by which tumor-selective apoptosis can be achieved.
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c-FLIP activates cytoprotective pathways

As shown in Fig. 3, c-FLIP activates several cytoprotective signaling pathways involved in 

regulating cell survival, proliferation, and carcinogenesis. Overexpression of c-FLIPL 

activates NF-κB and ERK signaling by binding to adaptor proteins in each pathway, such as 

TNFR-associated factors 1 (TRAF1) and 2 (TRAF2), receptor-interacting protein 1 (RIP), 

and Raf-1 [19, 51] (see Fig. 3). The caspase-8 processed N-terminal fragment of c-FLIPL 

(p43cFLIP) is more efficient than c-FLIPL at recruiting TRAF2 and RIP1, leading to more 

robust NF-κB activation [19, 20, 52, 53]. Golks et al. [54] found that in nonapoptotic cells, 

c-FLIP and the procaspase-8 heterodimer result in a novel NH2-terminal fragment of c-FLIP 

(p22-FLIP) which is the key mediator of NF-κB activation by binding to the IKK complex. 

Moreover, TNF-α-mediated JNK activation increases turnover of NF-κB-induced c-FLIP 

[25]. This is not the result of direct c-FLIP phosphorylation, but rather depends on JNK-

mediated phosphorylation and activation of the E3 ubiquitin ligase Itch which specifically 

ubiquitinates c-FLIP and induces its proteasomal degradation. Thus, JNK antagonizes NF-

κB during TNF-α signaling by promoting the proteasomal elimination of c-FLIPL [25].

Akt, a serine-threonine kinase, interacts with c-FLIPL protein and c-FLIPL enhances the 

anti-apoptotic functions of Akt [55, 56] by modulating Gsk3β activity. Moreover, through its 

effects on Gsk3β, c-FLIPL overexpression in cancer cells induces resistance to TRAIL. This 

effect is mediated by regulation of p27 (Kip1) and caspase-3 expression [56]. Down-

regulation of the DNA-PK/Akt pathway is also reported to correlate with high 

responsiveness to TRAIL-mediated growth inhibition and apoptosis [57]. siRNA-mediated 

suppression of DNA-PK or treatment with 4,5-dimethoxy-2-nitrobenzaldehyde (DMNB), an 

inhibitor of DNA-PK, led to decreased phosphorylation of Akt and Bad (a target molecule of 

Akt), increased expression of DR4/DR5, and downregulation of c-FLIP [57]. Therefore, 

inhibition of the DNA-PK/Akt pathway may be clinically useful in treating TRAIL-resistant 

cancer cells [58].

Panner et al. [59] demonstrated that a novel phosphatase and tensin homologue (PTEN)-Akt-

atrophin-interacting protein 4 (AIP4) pathway regulates c-FLIPS ubiquitination and stability 

in GBM cell lines and xenografts. However, how PTEN and Akt are linked to AIP4 activity 

was unclear. These authors described a second regulator of ubiquitin metabolism, the 

ubiquitin-specific protease 8 (USP8), which is a downstream target of Akt, and how it links 

Akt to AIP4 and the regulation of c-FLIPS stability [60]. Overexpression of USP8 increased 

c-FLIPS ubiquitination, decreased c-FLIPS half-life, decreased c-FLIPS steady-state levels, 

and decreased TRAIL resistance. Therefore, PTEN appears to use control of ubiquitination 

to regulate TRAIL sensitivity in GBM cells.

c-FLIPL also interacts with the death domain-associated protein Daxx and prevents Fas-

induced JNK activation [61]. Thus, c-FLIPL acting on both the FADD- and Daxx-mediated 

signaling pathways may be involved in inhibiting Fas-induced cell death. Furthermore, c-

FLIPL directly interacts with a JNK activator, MAP kinase kinase 7 (MKK7), in a TNF-α-

dependent manner and inhibits the interactions of MKK7 with MAP/ERK kinase kinase 1 

(MEKK1), apoptosis signal-regulating kinase 1, (ASK1) and TGF-β-activated kinase 1. This 

interaction of c-FLIPL with MKK7 might selectively suppress JNK activation [62] (see Fig. 

3).
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Another regulator of c-FLIP upregulation is calcium/calmodulin-dependent protein kinase II 

(CaMK II), which protects cancer cells from TRAIL-induced apoptosis. Treating resistant 

cells with the CaMK II inhibitor KN-93 inhibited CaMK II activity, reduced c-FLIP 

expression, inhibited c-FLIP phosphorylation, and rescued Fas agonistic antibody (CH-11) 

sensitivity [63, 64]. Phosphorylation of c-FLIP variants by CaMK II appears to promote c-

FLIPL recruitment to the DISC and inhibit TRAIL-induced apoptosis [63, 64], but 

phosphorylation of c-FLIPL by PKC or the bile acid glycochenodeoxycholate results in 

decreased c-FLIPL recruitment to the DISC [65]. Thus, the particular site of phosphorylation 

on c-FLIPL appears to influence the functional effect of this protein on apoptosis. It has been 

shown that calmodulin (CaM) binds directly to c-FLIPL in a calcium-dependent manner and 

prevents Fas-triggered apoptosis [66]. Interestingly, a point mutation at H204 of c-FLIPL 

markedly decreases CaM binding [67]. Therefore, inhibition of CaM/c-FLIP interaction may 

provide a new therapeutic strategy for cancer treatment.

Overexpression of c-FLIP can alter cell cycle progression and enhance cell proliferation and 

carcinogenesis [68, 69]. Increased expression of c-FLIPL inhibited the ubiquitination and 

proteasomal degradation of β-catenin, resulting in an increase in the target gene cyclin D1, 

colony formation, and invasive activity in prostate cancer cells. The c-FLIP/β-catenin/cyclin 

D1 signals contributing to colony formation and invasion were reversed by selective 

silencing of c-FLIP expression [70]. Similarly, c-FLIPL, in cooperation with FADD, 

enhances canonical Wnt signaling by inhibiting proteasomal degradation of β-catenin, thus 

suggesting an additional mechanism of tumorigenesis [70]. Moreover, a role for nuclear c-

FLIPL in modulating Wnt signaling has been established [71]. Interestingly, a deficiency of 

the adenomatous polyposis coli (APC) gene and subsequent activation of β-catenin can also 

lead to repression of c-FLIP expression through activation of c-Myc [72], c-FLIP 

upregulation may contribute to the carcinogenesis and aggressiveness of endometrial 

carcinomas and serve as a useful prognostic factor for this tumor [71, 73]. c-FLIP 

overexpression is also significantly related to the presence of high-risk human 

papillomavirus (HR-HPV) infection during the progression of cervical squamous cell cancer, 

and c-FLIP is an early marker of cervical carcinogenesis [74]. Moreover, HPV16 E2 protein 

interacts with and abrogates the apoptosis inhibitory function of c-FLIP and renders cervical 

cancer cell lines hypersensitive to Fas/FasL apoptosis. This observation may be useful for 

developing therapeutic strategies to silence c-FLIP for intervention with cervical 

carcinogenesis [75]. Overexpression of c-FLIPL also increases hypoxia-inducible factor-1α 

(HIF1α) [76]. In turn, overexpression of HIF1α can result in regulation of genes responsible 

in cell proliferation, metastasis, and invasion. Moreover, c-FLIP overexpression accelerated 

progression to androgen independence by inhibiting apoptosis in LNCaP prostate tumors 

implanted in nude mice [77].

Much evidence has clearly demonstrated that c-FLIPS plays a major role in causing 

resistance to death ligands and chemotherapeutic agents. Park et al. [78] reported that 

MEK1/2 inhibitors synergistically interact with the heat shock protein 90 (HSP90) inhibitor 

and geldanamycins [17-allylamino-17-demethoxygeldanamycin (17AAG) and 17-

dimethylaminoethylamino-17-demethoxygeldanamycin] to kill hepatoma and pancreatic 

carcinoma cells. Treating cells with MEK1/2 inhibitors and 17AAG reduced expression of c-

FLIPS that was connected to loss of MEK1/2 and AKT function. Moreover, overexpression 
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of c-FLIPS or inhibition of caspase-8 abolished cell killing by MEK1/2 inhibitors and 

17AAG. Interestingly, Panner et al. [79] reported that HSP90α recruits c-FLIPS to the DISC 

and contributes to TRAIL resistance. Furthermore, combinations of sorafenib and vorinostat 

increased CD95 surface levels and CD95 association with caspase-8, and knockdown of 

CD95 or FADD expression reduced sorafenib/vorinostat-induced cell death [80]. Signaling 

by CD95 caused protein kinase R (PKR)-like endoplasmatic reticulum kinase (PERK) 

activation that was responsible for both promoting caspase-8 association with CD95 and 

increased eIF2α phosphorylation. Suppression of eIF2α function abolished sorafenib/

vorinostat lethality. Cell death was paralleled by PERK- and eIF2α-dependent reduction of 

c-FLIPs protein levels, while overexpression of c-FLIPS maintained cell viability [80]. 

Similarly, expression of phosphorylation-insensitive eIF2α-S51A blocked sorafenib- and 

vorinostat-induced suppression of c-FLIPS levels and overexpression of c-FLIPS [81]. 

Overexpression of c-FLIPS also suppressed cell death by the multinuclear platinum 

chemotherapeutic BBR3610 [82].

c-FLIP as a therapeutic target for cancer treatment

c-FLIP can serve as a critical target for therapeutic intervention aimed at inhibiting its 

transcription and posttranscriptional changes [11, 16]. Ectopic expression of c-FLIP variants 

decreases apoptosis caused by death ligands and anticancer agents [24], indicating that 

overexpression of these proteins may cause resistance to multiple anticancer drugs. It does 

not appear possible to inhibit c-FLIP function with small molecule ligands since c-FLIP has 

significant structural similarity to caspase-8 (Fig. 2). This resemblance to caspase-8 makes 

c-FLIP protein a very difficult target for drugs to inhibit its function, since small molecules 

capable of blocking its recruitment to the DISC would also likely inhibit recruitment of 

caspase-8, thereby inhibiting apoptosis. Therefore, to reduce or inhibit c-FLIP expression, 

small molecules which target c-FLIP without inhibiting caspases-8 and -10 are needed. 

Several review articles have discussed classes of agents that decrease c-FLIP expression and 

sensitize cancer cells to TRAIL or anticancer drugs [11, 16, 18, 83]. These agents affect c-

FLIP transcription, trigger c-FLIP degradation through the ubiquitin-proteasome system, or 

decrease c-FLIP translation. Moreover, DNA damaging agents are promising drugs with 

regard to downregulating levels of c-FLIP variants. Pretreatment with chemotherapeutic 

drugs including cisplatin, doxorubicin, or topoisomerase I inhibitors (camptothecin, 9-NC, 

irinotecan) downregulates c-FLIP variants expression in various tumor cells by inhibiting its 

transcription and rendering cells sensitive to death receptor-triggered apoptosis [84–90].

Several histone deacetylase inhibitors (HDACi) have been shown to significantly 

downregulate c-FLIP expression in various cancer cells at the transcriptional and 

translational levels [11, 91–94]. Among these, suberoylanilide hydroxamic acid (SAHA, 

vorinostat) is the most promising HDACi that causes robust inhibition of c-FLIP variants 

[91]. TRAIL-triggered apoptosis in breast cancer cells was blocked at the level of apical 

activation of caspase-8, and SAHA enhanced the TRAIL-induced processing and activation 

of procaspase-8. Interestingly, degradation of c-FLIPL and c-FLIPS by a ubiquitin/

proteasome-dependent Itch/AIP4-independent mechanism is observed upon exposure to 

SAHA [91]. We recently showed that a new HDACi, 4-(4-chloro-2-methylphenoxy)-N-

hydroxybutanamide (CMH) [93] or droxinostat [94], identified using a high-throughput 
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chemical library screen [95, 96], triggered apoptosis in the breast cancer cell line MCF-7 

through c-FLIPL and c-FLIPS mRNA as well as protein downregulation [93]. Interestingly, 

this agent induced more robust apoptosis in a doxorubicin-resistant variant of MCF-7 cells 

[93]. Among c-FLIP inhibitors, histone deacetylase inhibitors have been very effective 

agents. Particularly significant is the recent discovery by Kerr et al. [97] reporting a novel 

interaction between c-FLIP and Ku70, a key component of non-homologous end joining 

machinery in the DNA damage pathway in the HCT-116 human colon cancer cell line. 

Interestingly, Ku70 regulates c-FLIP protein stability by inhibiting its polyubiquitination 

[97]. Moreover, these authors showed that vorinostat (SAHA) increased the acetylation of 

Ku70, thereby disrupting the c-FLIP/Ku70 complex and initiating c-FLIP polyubiquitination 

and degradation by the proteasome. Furthermore, the HDAC6-specific inhibitor Tubacin 

mimicked the effects of SAHA, suggesting that HDAC6 is a critical regulator of Ku70 

acetylation and c-FLIP protein stability [97].

Small molecule therapeutics that selectively down-regulate c-FLIPS or c-FLIPL and gene 

therapy strategies that knock down a specific c-FLIP variant have been used to downregulate 

these variants. Developing these innovative therapeutic strategies in conjunction with TRAIL 

and chemotherapeutic agents could potentially overcome the barrier of dose-limiting toxicity 

in cancer chemotherapy. TRAIL or chemotherapy resistance in diverse cancer cell types can 

be reversed by parallel treatment with agents known to downregulate c-FLIP variants.

CONCLUSIONS

Accumulating evidence shows that c-FLIP variants induce resistance to death receptor 

ligands and chemotherapeutic agents in various cancer cells. Moreover, c-FLIP upregulation 

correlates with a poor clinical outcome and could be a reliable prognostic factor in several 

types of cancer. Therefore, c-FLIP isoforms may be a relevant clinical target for 

counteracting therapy-resistant human malignancies. Various classes of agents can 

downregulate c-FLIP expression. Since c-FLIP has significant structural similarity to 

caspase-8, it is very difficult to target c-FLIP directly since small molecules capable of 

blocking the recruitment of c-FLIP to the DISC could simultaneously inhibit the recruitment 

of caspase-8 and thereby inhibit apoptosis. Therefore, to reduce or inhibit c-FLIP 

expression, small molecules which target c-FLIP without inhibiting caspases-8 and -10 are 

needed. Compounds that inhibit or downregulate c-FLIP mRNA expression or cause 

degradation of c-FLIP at the protein level through proteasome degradation will be of 

particular interest.
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ATL adult T-cell leukemia/lymphoma

AR androgen receptor

Apaf-1 apoptotic proteinase-activating factor-1

AIC apoptosis inhibitory complex

BH3 Bcl-2 homology domain-3

CaM calmodulin

CRPC castrate-resistant prostate cancer

c-FLIP cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein

CMH 4-(4-chloro-2-methylphenoxy)-N-hydroxybutanamide

DISC death-inducing signaling complex

EGR1 early growth response-1

ER endoplasmic reticulum

DED death effector domain

DR5 death receptor 5

GBM glioblastoma multiforme

HGPIN high-grade prostatic intraepithelial neoplasia

HDACi histone deacetylase inhibitor

HR-HPV human papillomavirus

MEKK1 MAP/ERK kinase kinase 1

MKK7 MAP kinase kinase 7

PTP permeability transition pore

NFAT nuclear factor of activated T cells

PTEN phosphatase and tensin homologue

PERK protein kinase R (PKR)-like endoplasmatic reticulum kinase

siRNAs small interfering RNAs, TNFR1, TNF receptor 1

TNF-α tumor necrosis factor-α

TRAIL TNF-related apoptosis-inducing ligand

USP8 ubiquitin-specific protease 8 (USP8)
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Fig. 1. 
Apoptosis pathways and roles of c-FLIP in preventing apoptosis. TRAIL interaction with 

DR4 and DR5 transduces the death receptor (extrinsic) and mithochondrial apoptosis 

signaling pathways through activation of caspases-8 and -10 (see the text for detailed 

information). c-FLIP isoforms are major anti-apoptotic proteins that suppress caspase-8 and 

-10 activation, and therefore prevent the downstream apoptosis cascade
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Fig. 2. 
Structures of c-FLIP variants. Three c-FLIP variants, c-FLIPL, c-FLIPS, and c-FLIPR, 

contain two death effector domains (DEDs) at their N termini. In addition to two DEDs, c-

FLIPL contains a large (p20) and a small (p12) caspase-like domain without catalytic 

activity. c-FLIPS and c-FLIPR consist of two DEDs and a small C terminus. Depending on 

its cellular level at the DISC, c-FLIPL may act as an anti-apoptotic or pro-apoptotic factor 

[9, 16, 18]. c-FLIPS, c-FLIPS, c-FLIPR, and two cleavage products of c-FLIP (p43-FLIP and 

p22-FLIP) act as anti-apoptotic proteins [9, 16, 18]. p43-FLIP and p22-FLIP are generated 

from c-FLIPL by procaspase-8 cleavage at D376 [9] (adapted from [9, 16, 18])
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Fig. 3. 
Multifunctional roles of c-FLIP on various signaling pathways. As discussed in the text, in 

addition to its functional role in inhibiting apoptosis by binding to procaspases-8 and -10 

and inhibiting their activation, c-FLIP activates various anti-apoptotic and cell survival 

signaling pathways, leading to proliferation and cell survival
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