Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jan 1;89(1):84–88. doi: 10.1073/pnas.89.1.84

A peptide-hormone-inactivating endopeptidase in Xenopus laevis skin secretion.

K M Carvalho 1, C Joudiou 1, H Boussetta 1, A M Leseney 1, P Cohen 1
PMCID: PMC48180  PMID: 1729723

Abstract

An endopeptidase was isolated from Xenopus laevis skin secretions. This enzyme, which has an apparent molecular mass of 100 kDa, performs a selective cleavage at the Xaa-Phe, Xaa-Leu, or Xaa-Ile bond (Xaa = Ser, Phe, Tyr, His, or Gly) of a number of peptide hormones, including atrial natriuretic factor, substance P, angiotensin II, bradykinin, somatostatin, neuromedins B and C, and litorin. The peptidase exhibited optimal activity at pH 7.5 and a Km in the micromolar range. No cleavage was produced in vasopressin, ocytocin, minigastrin I, and [Leu5]enkephalin, which include in their sequence an Xaa-Phe, Xaa-Leu, or Xaa-Ile motif. The endopeptidase activity was inhibited by divalent cation chelators and by phosphoramidon only at high concentrations (IC50 = 50 microM), whereas it was insensitive to classical inhibitors of chymotrypsin, angiotensin convertase, and serine and cysteine peptidases, as well as carboxypeptidases. It is hypothesized that this enzyme, which is distinct from neutral endopeptidase (EC 3.4.24.11), constitutes the prototype of a family of related metalloendopeptidases that inactivate peptide substrates by cleavage at the Xaa-Phe, Xaa-Leu, or Xaa-Ile bond.

Full text

PDF
84

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almenoff J., Orlowski M. Biochemical and immunological properties of a membrane-bound brain metalloendopeptidase: comparison with thermolysin-like kidney neutral metalloendopeptidase. J Neurochem. 1984 Jan;42(1):151–157. doi: 10.1111/j.1471-4159.1984.tb09711.x. [DOI] [PubMed] [Google Scholar]
  2. Bevins C. L., Zasloff M. Peptides from frog skin. Annu Rev Biochem. 1990;59:395–414. doi: 10.1146/annurev.bi.59.070190.002143. [DOI] [PubMed] [Google Scholar]
  3. Bourne A., Kenny A. J. The hydrolysis of brain and atrial natriuretic peptides by porcine choroid plexus is attributable to endopeptidase-24.11. Biochem J. 1990 Oct 15;271(2):381–385. doi: 10.1042/bj2710381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bulant M., Delfour A., Vaudry H., Nicolas P. Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates pro-TRH-connecting peptides. Identification and characterization of prepro-TRH-(160-169) and prepro-TRH-(178-199) in the rat nervous system. J Biol Chem. 1988 Nov 15;263(32):17189–17196. [PubMed] [Google Scholar]
  6. Chang J. Y. Manual micro-sequence analysis of polypeptides using dimethylaminoazobenzene isothiocyanate. Methods Enzymol. 1983;91:455–466. doi: 10.1016/s0076-6879(83)91043-1. [DOI] [PubMed] [Google Scholar]
  7. Darby N. J., Lackey D. B., Smyth D. G. Purification of a cysteine endopeptidase which is secreted with bioactive peptides from the epidermal glands of Xenopus laevis. Eur J Biochem. 1991 Jan 1;195(1):65–70. doi: 10.1111/j.1432-1033.1991.tb15676.x. [DOI] [PubMed] [Google Scholar]
  8. Delporte C., Poloczek P., Gossen D., Tastenoy M., Winand J., Christophe J. Characterization and regulation of atrial natriuretic peptide (ANP)-R1 receptors in the human neuroblastoma cell line NB-OK-1. Eur J Pharmacol. 1991 May 25;207(1):81–88. doi: 10.1016/s0922-4106(05)80041-0. [DOI] [PubMed] [Google Scholar]
  9. Devault A., Lazure C., Nault C., Le Moual H., Seidah N. G., Chrétien M., Kahn P., Powell J., Mallet J., Beaumont A. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J. 1987 May;6(5):1317–1322. doi: 10.1002/j.1460-2075.1987.tb02370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Endo S., Yokosawa H., Ishii S. Purification and characterization of a substance P-degrading endopeptidase from rat brain. J Biochem. 1988 Dec;104(6):999–1006. doi: 10.1093/oxfordjournals.jbchem.a122599. [DOI] [PubMed] [Google Scholar]
  11. Gibson B. W., Poulter L., Williams D. H., Maggio J. E. Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis. J Biol Chem. 1986 Apr 25;261(12):5341–5349. [PubMed] [Google Scholar]
  12. Johnson G. R., Arik L., Foster C. J. Metabolism of 125I-atrial natriuretic factor by vascular smooth muscle cells. Evidence for a peptidase that specifically removes the COOH-terminal tripeptide. J Biol Chem. 1989 Jul 15;264(20):11637–11642. [PubMed] [Google Scholar]
  13. Johnson G. R., Foster C. J. Partial characterization of a metalloendopeptidase activity produced by cultured endothelial cells that removes the COOH-terminal tripeptide from 125I-atrial natriuretic factor. Biochem Biophys Res Commun. 1990 Feb 28;167(1):110–116. doi: 10.1016/0006-291x(90)91737-d. [DOI] [PubMed] [Google Scholar]
  14. Jongeneel C. V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989 Jan 2;242(2):211–214. doi: 10.1016/0014-5793(89)80471-5. [DOI] [PubMed] [Google Scholar]
  15. Kuks P. F., Créminon C., Leseney A. M., Bourdais J., Morel A., Cohen P. Xenopus laevis skin Arg-Xaa-Val-Arg-Gly-endoprotease. A highly specific protease cleaving after a single arginine of a consensus sequence of peptide hormone precursors. J Biol Chem. 1989 Sep 5;264(25):14609–14612. [PubMed] [Google Scholar]
  16. Lee C. M., Sandberg B. E., Hanley M. R., Iversen L. L. Purification and characterisation of a membrane-bound substance-P-degrading enzyme from human brain. Eur J Biochem. 1981 Feb;114(2):315–327. doi: 10.1111/j.1432-1033.1981.tb05151.x. [DOI] [PubMed] [Google Scholar]
  17. Mizuno K., Sakata J., Kojima M., Kangawa K., Matsuo H. Peptide C-terminal alpha-amidating enzyme purified to homogeneity from Xenopus laevis skin. Biochem Biophys Res Commun. 1986 Jun 30;137(3):984–991. doi: 10.1016/0006-291x(86)90322-0. [DOI] [PubMed] [Google Scholar]
  18. Mollay C., Vilas U., Hutticher A., Kreil G. Isolation of a dipeptidyl aminopeptidase, a putative processing enzyme, from skin secretion of Xenopus laevis. Eur J Biochem. 1986 Oct 1;160(1):31–35. doi: 10.1111/j.1432-1033.1986.tb09935.x. [DOI] [PubMed] [Google Scholar]
  19. Nicolas P., Delfour A., Boussetta H., Morel A., Rholam M., Cohen P. Solid phase synthesis of somatostatin-28 II. A new biologically active octacosapeptide from anglerfish pancreatic islets. Biochem Biophys Res Commun. 1986 Oct 30;140(2):565–573. doi: 10.1016/0006-291x(86)90769-2. [DOI] [PubMed] [Google Scholar]
  20. Nyberg F., Le Greves P., Sundqvist C., Terenius L. Characterization of substance P(1-7) and (1-8) generating enzyme in human cerebrospinal fluid. Biochem Biophys Res Commun. 1984 Nov 30;125(1):244–250. doi: 10.1016/s0006-291x(84)80360-5. [DOI] [PubMed] [Google Scholar]
  21. Oblin A., Danse M. J., Zivkovic B. Metalloendopeptidase (EC 3.4.24.11) but not angiotensin converting enzyme is involved in the inactivation of substance P by synaptic membranes of the rat substantia nigra. Life Sci. 1989;44(20):1467–1474. doi: 10.1016/0024-3205(89)90325-1. [DOI] [PubMed] [Google Scholar]
  22. Olins G. M., Krieter P. A., Trapani A. J., Spear K. L., Bovy P. R. Specific inhibitors of endopeptidase 24.11 inhibit the metabolism of atrial natriuretic peptides in vitro and in vivo. Mol Cell Endocrinol. 1989 Feb;61(2):201–208. doi: 10.1016/0303-7207(89)90131-7. [DOI] [PubMed] [Google Scholar]
  23. Plevrakis I., Clamagirand C., Créminon C., Brakch N., Rholam M., Cohen P. Proocytocin/neurophysin convertase from bovine neurohypophysis and corpus luteum secretory granules: complete purification, structure-function relationships, and competitive inhibitor. Biochemistry. 1989 Mar 21;28(6):2705–2710. doi: 10.1021/bi00432a051. [DOI] [PubMed] [Google Scholar]
  24. Pozsgay M., Michaud C., Orlowski M. The active site of endopeptidase-24.11: substrate and inhibitor studies. Biochem Soc Trans. 1985 Feb;13(1):44–47. doi: 10.1042/bst0130044. [DOI] [PubMed] [Google Scholar]
  25. Resnick N. M., Maloy W. L., Guy H. R., Zasloff M. A novel endopeptidase from Xenopus that recognizes alpha-helical secondary structure. Cell. 1991 Aug 9;66(3):541–554. doi: 10.1016/0092-8674(81)90017-9. [DOI] [PubMed] [Google Scholar]
  26. Roques B. P., Beaumont A. Neutral endopeptidase-24.11 inhibitors: from analgesics to antihypertensives? Trends Pharmacol Sci. 1990 Jun;11(6):245–249. doi: 10.1016/0165-6147(90)90252-4. [DOI] [PubMed] [Google Scholar]
  27. Rugg E. L., Aiton J. F., Cramb G. Degradation of [125I]-atrial natriuretic peptide by a soluble metallopeptidase isolated from rat ventricular myocytes. Biochem Biophys Res Commun. 1988 Apr 15;152(1):294–300. doi: 10.1016/s0006-291x(88)80713-7. [DOI] [PubMed] [Google Scholar]
  28. Schwartz J. C., Gros C., Lecomte J. M., Bralet J. Enkephalinase (EC 3.4.24.11) inhibitors: protection of endogenous ANF against inactivation and potential therapeutic applications. Life Sci. 1990;47(15):1279–1297. doi: 10.1016/0024-3205(90)90192-t. [DOI] [PubMed] [Google Scholar]
  29. Stephenson S. L., Kenny A. J. The metabolism of neuropeptides. Hydrolysis of peptides by the phosphoramidon-insensitive rat kidney enzyme 'endopeptidase-2' and by rat microvillar membranes. Biochem J. 1988 Oct 1;255(1):45–51. doi: 10.1042/bj2550045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toll L., Brandt S. R., Olsen C. M., Judd A. K., Almquist R. G. Isolation and characterization of a new atrial peptide-degrading enzyme from bovine kidney. Biochem Biophys Res Commun. 1991 Mar 29;175(3):886–893. doi: 10.1016/0006-291x(91)91648-v. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES