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Abstract
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous sys-

tem (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use

serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of

stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimu-

lation have not been available. Here, we demonstrate that a linear-nonlinear model accu-

rately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings

from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array.

In the model, the stimulus is projected onto a low-dimensional subspace and then under-

goes a nonlinear transformation to produce an estimate of spiking probability. The low-

dimensional subspace is estimated using principal components analysis, which gives the

neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sen-

sitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy

given a fixed amount of power when compared to equal amplitude stimulation on up to three

electrodes. We find that the model captures the responses of all the cells recorded in the

study, suggesting that it will generalize to most cell types in the retina. The model is compu-

tationally efficient to evaluate and, therefore, appropriate for future real-time applications

including stimulation strategies that make use of recorded neural activity to improve the

stimulation strategy.

Author Summary

Implantable multi-electrode arrays (MEAs) are used to record neurological signals and
stimulate the nervous system to restore lost function (e.g. cochlear implants). MEAs that
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can combine both sensing and stimulation will revolutionize the development of the next
generation of devices. Simple models that can accurately characterize neural responses to
electrical stimulation are necessary for the development of future neuroprostheses con-
trolled by neural feedback. We demonstrate a model that accurately predicts neural
responses to concurrent stimulation across multiple electrodes. The model is simple to
evaluate, making it an appropriate model for use with neural feedback. The methods
described are applicable to a wide range of neural prostheses, thus greatly assisting future
device development.

Introduction
Implantable electrode arrays are widely used in clinical studies, clinical practice and basic neu-
roscience research and have advanced our understanding of the nervous system. Implantable
electronic devices can be used to record neurological signals and stimulate the nervous system
to restore lost functions. Sensing electrodes have been used in applications such as brain-
machine interfaces [1] and localization of seizure foci in epilepsy [2]. Stimulating electrodes
have been used for the restoration of hearing [3], sight [4,5], bowel control [6], and balance [7],
and in deep brain stimulation (DBS) to treat a range of conditions [8]. Most neuroprostheses
operate in an open-loop fashion; they require psychophysics to tune stimulation parameters.
However, devices that can combine both sensing and stimulation are desirable for the develop-
ment of a new generation of neuroprostheses that are controlled by neural feedback. Feedback
in neuroprostheses is being explored in applications such as DBS for the enhancement of mem-
ory [9], abatement of seizures [10], control of Parkinson’s disease [11], and the control of brain
machine interfaces [12].

Models that can accurately characterize a neural system and predict responses to electrical
stimulation are beneficial to the development of improved stimulation strategies that exploit
neural feedback. Volume conductor models are typically used to describe retinal responses to
electrical stimulation, however these are computationally intensive and can be difficult to fit to
neural response data [13–15]. Simpler models that can be constrained using neural recordings
are necessary for real-time applications. Linear-nonlinear models based on a spike-triggered
average (STA) have been successfully used to characterize retinal responses to light [16–19].
Models that incorporate higher dimensional components identified through a spike-triggered
covariance (STC) analysis have been explored to describe higher order excitatory and suppres-
sive features of the visual system [20–25]. Generally, STA and STC models make use of white
noise inputs and have the advantage that a wide repertoire of possible inputs patterns can be
explored. White noise models have previously been explored to describe the temporal proper-
ties of electrical stimulation in the retina [26,27]. Spatial interactions between stimulating elec-
trodes has not been previously investigated. An example of a stimulation algorithm that could
benefit from an accurate description of the spatial interactions is current steering, which
attempts to improve the resolution of a device by combining stimulation across many elec-
trodes to target neurons at a particular point [28].

Two benefits obtained by using neural feedback algorithms are (1) the accurate prediction
of the response to an arbitrary stimulus across the electrode array and (2) the ability to fit the
device to individual patients from the recorded neural responses to a set of stimuli presented in
a reasonable amount of time. Here, we combine whole cell patch clamp recordings from indi-
vidual retinal ganglion cells (RGCs) with stimulation using a multi-electrode array to demon-
strate a model with the above advantages. We find that a simple linear-nonlinear model
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accurately captures the effects of multi-electrode interactions and estimates the spatial relation-
ship between stimulus and response. The approach is scalable to a large number of electrodes,
which is prohibitive to accomplish with psychophysics. In contrast to conventional volume
conductor models of electrical stimulation [13–15], our model is straightforward to constrain
using neural response data and is orders of magnitude more computationally efficient, making
it suitable for use in real-time applications.

Materials and Methods

Retinal whole mount preparation
Methods conformed to the policies of the National Health and Medical Research Council of
Australia and were approved by the Animal Experimentation Ethics Committee of the Univer-
sity of Melbourne (Approval Number: 1112084). Data were acquired from retinae of Long-
Evans rats ranging from 1 to 6 months of age. Long-Evans rats were chosen for several reasons.
First, rat RGC morphological types have been examined in detail [29,30] and have similarities
to RGCs found in other species, including the macaque monkey [31] and cat [32,33]. Second,
the size of the rat retina is larger than the mouse retina and so we were able to cover the entire
stimulating electrode array with half of the retina.

The animals were initially anesthetized with a mixture of ketamine and xylazine prior to
enucleation. After enucleation, the rats were euthanized with an overdose of pentobarbital
sodium (350 mg intracardiac). Dissections were carried out in dim light conditions to avoid
bleaching the photoreceptors. After hemisecting the eyes behind the ora serrata, the vitreous
body was removed and each retina was cut into two pieces. The retinae were left in a perfusion
dish with carbogenated Ames medium (Sigma) at room temperature until used. Pieces of retina
were mounted on a multi-electrode array (MEA) with ganglion cell layer up and were held in
place with a perfusion chamber and stainless steel harp fitted with Lycra threads (Warner
Instruments) (Fig 1A). Once mounted in the chamber, the retina was perfused (4–6 mL/min)
with carbogenated Ames medium (Sigma-Aldrich, St. Louis, MO) at room temperature. The
chamber was mounted on the stage of an upright microscope (Olympus Fluoview FV1200)
equipped with a x40 water immersion lens and visualized with infrared optics on a monitor
with x4 additional magnification.

Multi-electrode array fabrication
Electrical stimulation was applied subretinally through a custom-made MEA fabricated on a
glass coverslip consisting of 20 platinum stimulating electrodes (Fig 1). Each electrode had an
exposed disc of 400 μm diameter, and a vertical pitch of 1 mm. The stimulating area of the
MEA spanned an area of 3.5 x 3.5 mm2 (excluding the outer ring which was not used). Glass
coverslips were cleaned in an oxygen plasma chamber for 20 minutes (Fig 1B). Next, a positive
(UV-removable) photoresist (AZ1415H, Microchemicals) was spin-coated onto the surface at
4000 revolutions per minute for 60 seconds (Fig 1C). A laser-printed chrome on soda glass
photolithography mask was used to expose a pattern in the photoresist, then developed chemi-
cally (MIF726, Microchemicals) revealing openings for electrode pads and tracks (Fig 1D and
1E). The developed cover slips were loaded into an electron beam deposition chamber (Therm-
ionics) and pumped to a vacuum pressure of 1.5×10−6 mbar. A 20 nm titanium adhesion layer
was deposited at a rate of 0.2 Å/sec, followed by a platinum deposition of 130 nm at a rate of
0.6 Å/sec. Residual photoresist was removed by soaking in acetone for 30 minutes, rinsing with
deionized water, and finally oxygen plasma cleaning for 10 minutes. For electrode isolation, a
negative (UV-curing) photoresist (SU8-2002, Microchemicals) was spin-coated onto the cover-
slip and exposed through a different photolithography mask leaving only metal exposed for
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stimulating electrodes and contact pads (Fig 1F and 1G). The entire device was then cured at
200°C on a temperature-controlled hotplate.

Data acquisition
Whole cell intracellular recordings were obtained using standard procedures [34] at room tem-
perature. The main reason for recording at room temperature was to ensure that recordings
lasted for many hours. To obtain a whole cell recording, a small hole was made in the inner
limiting membrane to expose a small number of RGC somas. A pipette was then filled with
internal solution containing (in mM) 115 K-gluconate, 5 KCl, 5 EGTA, 10 HEPES, 2 Na-ATP,
0.25 Na-GTP (mosM = 273, pH = 7.3), Alexa Hydrazide 488 (250 mM), and biocytin (0.5%)
(Fig 1A). Initial pipette resistance in the bath ranged between 5–10 MO. Prior to recording, the
pipette voltage was nulled, pipette resistance was compensated with the bridge balancing circuit
of the amplifier, and capacitance was compensated on the amplifier head stage. Voltage record-
ings were collected in current clamp mode and amplified (SEC-05X, NPI electronic), digitized
with 16-bit precision at 25 kHz (National Instruments BNC-2090), and stored for offline
analysis.

Intracellular recordings lasting up to 4 hours were obtained. Stimulation artefacts that were
present in the intracellular recording were removed offline by setting the membrane potential

Fig 1. Whole mount preparation and fabrication steps of the platinum stimulating electrode array. (a) The retina was placed on the stimulating array
ganglion cell side up. An intracellular patch pipette was used to record from exposed retinal ganglion cell bodies. b) Plasma-cleaned glass cover slip. (c)
Glass cover slip spin-coated with positive photoresist. (d) Photoresist removed selectively (dumb-bell shaped pattern for demonstration only) using
photolithography mask. (e) Titanium/platinummetal evaporation to create pattern where photoresist from (d) was removed; the residual photoresist was
removed using acetone. (f) An insulating layer of SU-8 is spin-coated onto the platinum pattern. (g) The insulation is opened to reveal platinum electrodes
having 400 μm diameter. (h) The platinum electrode array is surrounded by a ring of shorted electrodes, which was not used in this work. All electrodes have
an exposed disc of 400 μm diameter and a 1 mm center-to-center pitch in the vertical direction. The central portion of the stimulating array (excluding the
outer ring) covered an area of approximately 3.5 mm x 3.5 mm.

doi:10.1371/journal.pcbi.1004849.g001
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to a constant value for the duration of the stimulus. Spikes in the remaining membrane poten-
tial waveform could be easily detected by finding peaks that crossed a set value. Spike times
were calculated as the time that the action potential reached its peak value. Spike delay times
were calculated by taking the difference between the spike time and the preceding stimulus off-
set time.

Intrinsic physiological differences, such as spike width, membrane time constant, and input
resistance, among RGC types have been described [35,36], which could lead to differences in
response latencies to electrical stimulation. Therefore, we performed a k-means cluster analysis
on the spike latency from stimulation offset time. The number of clusters (k) to fit was set man-
ually by visual inspection of the clusters. From the cluster analysis, we could detect if there
were two or more clusters that might be attributed to direct activation or indirect activation via
activation of presynaptic neurons. Unless otherwise stated, responses to electrical stimulation
were evaluated by analyzing the short-latency responses. Short-latency responses were spikes
that fell within two standard deviations of the mean of the shortest-latency cluster. Long-
latency responses fell within the cluster that occurred directly after the short-latency response.

Electrical stimulation
Stimulation consisted of biphasic pulses of equal phase duration (500 μs) with an interphase
gap (50 μs) and random amplitude. The random amplitudes were sampled from a Gaussian
distribution with variance σ2. Fig 2 illustrates the random amplitude pulses applied to all elec-
trodes. Stimulation waveform signals were generated by a custom-made MATLAB (Math-
Works version 2014a) interface commanding a multi-channel stimulator (Tucker Davis
Technologies: RZ2 base station and IZ2 multichannel stimulator). All stimulus amplitudes
were bounded by the limits of the stimulator (±300 μA). Biphasic pulses were applied to all
electrodes at a frequency of 10 Hz and the numbers of short-latency responses were recorded.

To avoid overstimulation of a cell, an appropriate value of σ was chosen for each cell. Three
stimulus trains of 500 pulses were initially generated with fixed σ = 50 μA and applied to the
tissue. Next, a new set of stimulus trains were generated using a σ that varied between 50 μA

Fig 2. Sample of the random pulses applied to 20 electrodes at a given time. (a) Snapshot of the random amplitude of biphasic pulses applied to all
electrodes; the colors indicate amplitudes in μA. A positive amplitude produces an anodic-first pulse; a negative amplitude produces a cathodic-first pulse.
Electrode amplitudes were sampled from a Gaussian distribution with variance σ2. Electrode numbers are shown below each electrode. (b) Time course of
the biphasic pulse applied to each electrode.

doi:10.1371/journal.pcbi.1004849.g002
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and 250 μA in steps of 50 μA. The number of spikes detected within 5 ms from the stimulus
time was used to compute a response probability. A sigmoidal curve was fit to the data of σ ver-
sus response probability to find the value of σ that resulted in half the maximum level of
response. For cells where the maximum response probability was close to 1, σ was chosen to be
a value that resulted in a response probability of 0.5. For other cells that saturated at a response
probability less than 1, σ was a lower value.

Once an appropriate value for σ was chosen for the cell, a stimulus vector, St
!
, of length 20

(equal to the number of electrodes) was generated by sampling each element from a Gaussian
distribution. If the amplitude of stimulation of an electrode exceeded the stimulator limits
(±300 μA), then the amplitude value was discarded and a new value was generated from the

distribution. Each stimulus was applied 3–5 times before a new St
!

was generated. The experi-
ment continued for as long as the cell’s responses remained stable (usually 3–4 hours). Once
cells started to show signs of deterioration (e.g. unstable high frequency spontaneous activity),
the experiment was terminated.

Immunocytochemistry and morphological identification
After recording, the retinal tissue was removed from the chamber and mounted onto filter
paper. The tissue was then fixed for ~45 min in phosphate-buffered 4% paraformaldehyde and
stored for up to 2 weeks in 0.1 M phosphate-buffered saline (PBS; pH 7.4) at 4°C. The tissue
was then immersed in 0.5% Triton X-100 (20 μg/ml streptavidin conjugated Alexa 488; Invitro-
gen) in PBS overnight to expose biocytin-filled cells. Tissue was washed thoroughly in PBS,
mounted onto Superfrost+ slides, and coverslipped in 60% glycerol. Cells were then recon-
structed in 3D using a confocal microscope (FluoView FV1200).

RGC types were initially identified by their focal light response at the beginning of each
experiment. ON cells showed an increase in spike rate at the onset of light; OFF cells showed
an increase in spike rate at the offset of light; ON-OFF cells showed an increase in spike rate at
the onset or offset of light. Additionally, RGC classification was correlated with morphology
based on dendritic stratification in the inner plexiform layer (IPL) [29,30]. The level of stratifi-
cation was defined as 0–100% from the level of the inner nuclear layer to the level of the gan-
glion cell layer. The stratification depth (s(x)) was quantified as a percentage of the inner
plexiform layer (IPL) thickness, according to

sðxÞ ¼ 100
Ls � x
Ls � Le

� �
: ð1Þ

Here, x refers to the depth of a terminal dendrite and Ls and Le represent the IPL-GCL border
and the GCL-INL border of the inner plexiform layer, respectively, where depth decreases
from the ganglion cell layer towards the photoreceptor layer. Cells that stratified in the inner
part of the IPL (s(x)� 40%) are denoted as OFF-cells. Cells that stratified in the outer part of
the IPL (s(x)� 60%) are referred to as ON-cells. For all cells in this study, the physiological
and morphological classifications correlated well. Dendritic field sizes were calculated by trac-
ing out a region connecting the dendritic tips of each cell and fitting an ellipse to the region.
The major axis of the ellipse was used to estimate the dendritic field size.

Mathematical model & model estimation
Our objective was to find a mathematical description able to accurately capture the spiking
probability of RGCs to subretinal stimulation using a MEA. We characterized neural responses
using an N-dimensional linear subspace of the stimulus space, combined with a nonlinearity
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describing the intrinsic nonlinear firing properties of neurons. Using STC analysis, we derived
the lower dimension stimulation subspace that led to a short-latency response in the neuron.
By projecting the raw and spike-triggered stimuli onto the lower dimension subspace, we esti-

mated the intrinsic nonlinearity. The probability of generating a spike, given stimulus St
!
, was

estimated as

PðR ¼ spikejSt
!Þ ¼ N Nð v!1 � St

!
; v!2 �St

�!
; . . . ; v!N �St

�!Þ; ð2Þ

whereN represents the static nonlinear function operating on arguments in μA and v!i

(i = 1,2,. . .,N) represent the N significant principal components. To find v!i (i = 1,2,. . .,N), the
stimulus data were first separated into a matrix containing only stimuli generating a short-
latency response, SD, and a matrix containing all stimuli, ST (Fig 3A). We found the low-
dimensional linear subspace that best captured the difference between the spike-triggered sti-
muli and the raw ensemble by performing principal component analysis (PCA) on the covari-
ance matrix of the spike-triggered ensemble,

Cs ¼ covðSDÞ; ð3Þ

and comparing it to the variance of the raw ensemble which was approximately σ2 in all stimu-
lus directions due to the Gaussian nature of ST. PCA on Cs produce a set of eigenvectors giving
a rotated set of axes in stimulus space and a corresponding set of eigenvalues giving the vari-
ance of the spike-triggered ensemble along each of the axes. Eigenvalues that are greater than
the variance of the input stimuli reveal the directions where the spike-triggered stimuli have
experienced an increase in variance from the raw ensemble. Similarly, eigenvectors that are
smaller than the variance of the input stimuli reveal directions where the spike-triggered sti-
muli have experienced a decrease in variance from the raw ensemble. The eigenvalues that are

sufficiently different from the raw ensemble correspond to eigenvectors ( v!i; i ¼ 1; 2; . . . ;N)
pointing in directions in the stimulus space that carry information about the spiking probabil-
ity of the neuron.

Fig 3. Recovery of the spike-triggered stimuli for the spike-triggered covariance (STC) analysis. (a)
Discretized sequence of the neural response and stimulus. Each stimulus consists of a combination of
biphasic pulses applied to all 20 electrodes. Stimuli that evoked a spike in the neuron are recorded in the
stimulus matrix SD. (b) STC was conducted on the stimuli generating a response, SD, to separate the stimulus
space into a positive and negative region (+ and ×). The x-axis corresponds to the first eigenvector (v!1 ); the y-
axis corresponds to the second eigenvector (v!2 ). Not all stimuli generated a response in the neuron. Shown in
black are the total applied stimuli, ST, which are overlaid by stimuli SD (white crosses). Also shown are the
projections of the electrical receptive fields,w!þ (large diamond) andw!� (large circle).

doi:10.1371/journal.pcbi.1004849.g003
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To test if the neural response could be accurately characterized by a one-dimensional
model, we examined how many eigenvalues resulting from PCA were significantly different to
chance [20]. We compared the eigenvalues obtained by PCA on spike-triggering stimuli to a
distribution of eigenvalues for a randomly chosen ensemble of stimuli. This was done by ran-
domly time-shifting the spike train and performing PCA on the corresponding randomized
spike-triggered stimuli to recover a new set of eigenvalues. By repeating these 1000 times, we
construct a distribution of eigenvalues and set a confidence criterion outside of which we pre-
sumed the magnitude of the true eigenvalues to be significant. The confidence criterion used
was two standard deviations, or a 95% confidence interval. If the greatest or least eigenvalue
fell outside these bounds, we rejected the null hypothesis that the spike-triggered ensemble was
not significantly different to the full ensemble. We then projected out the axis corresponding to
this eigenvalue from the raw data. We repeated the test until all remaining eigenvalues fell
within the bounds of the null distribution, suggesting that the remaining eigenvalues were
insignificant in affecting the variance of the neuron. Components having an eigenvalue signifi-
cantly greater than the variance of the randomly time-shifted ensemble were considered to be
components that generate an excitatory response on the cell. Conversely, components that are
significantly smaller than the variance of the raw ensemble were considered to be components
that suppressed the cell’s response.

For the majority of cells, we found that a simplification to one-dimension ( v!1) accurately
captured the spike-triggering information, thereby reducing the equation to one dimension.
Using this simplification, Eq (2) becomes

PðR ¼ spikejSt
!Þ ¼ N 1ð v!1 � St

!Þ: ð4Þ

Results in the literature indicate that response thresholds to electrical stimulation for some
cell types might differ depending on pulse polarity [37]. To explore difference in response to
pulse polarity, we allowed the probability to be described by two different nonlinear functions
and we found the electrical receptive fields (ERFs) for stimuli having a net effect that was either
cathodic-first or anodic-first. Eq (4) then becomes

PðR ¼ spikejSt
!Þ ¼ N þðw!þ � St

!Þ þN �ðw!� � St
!Þ þ cRs; ð5Þ

whereN þ andN � represent static nonlinear functions and w!þ and w!� represent the ERFs

for stimuli with positive projections ( v!1 � St
!

> 0, net anodic-first) and negative ( v!1 � St
!

< 0,
net cathodic-first), respectively. Rs represents the spontaneous firing rate in Hz and c represents
a scaling factor of units Hz-1. To find the nonlinearities and the ERFs, the first principal com-

ponent ( v!1) was used to divide the stimulus space into positive and negative regions by pro-
jecting all stimuli of SD and ST onto the first principal component (Fig 3B). Positive and
negative regions were defined by the stimuli having either a positive or negative projection
onto the first principal component. This produced two spike-triggered stimulus matrices, Sþ

D

and S�
D. The means of the matrices are analogous to the spike-triggered average for net anodic-

first and net cathodic-first stimuli [16], and provide an estimate of the ERFs, w!þ and w!�,
respectively. Fig 3B shows an example of the stimuli projected onto the first two principal com-

ponents and the ERFs, w!þ and w!�. After the stimuli were separated into two regions, the non-

linear functions,N þ andN �, were recovered by projecting all stimuli onto the normalized

vectors w!þ and w!� and segmenting the projected stimuli into 30 bins (15 for the net anodic-
first and 15 for the net cathodic-first regions) such that each bin contained an equal number of
spikes. By comparing the number of spike-eliciting stimuli to the total number of stimuli in
each bin, an estimate of the spike probability was generated. The nonlinear function from Eq
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(5) was then fit to the data, with the following equations for the sigmoidal curves:

N þðxþÞ ¼
aþ

1þ expð�bþðxþ � cþÞÞ
ð6Þ

N �ðx�Þ ¼ a� � a�
1þ expð�b�ðx� � c�ÞÞ

; ð7Þ

where xþ ¼ w!þ � St
!

and x� ¼ w!� � St
!
. Coefficients a+ and a− represent scaling factors that

determine the saturation amplitudes, b+ and b− represent the gain of the sigmoidal curves, and
c+ and c− represent the thresholds (50% of the saturation level) for the net anodic-first and net

cathodic-first stimulation, respectively. Note that the vectors w!þ and w!� might not necessarily

be parallel to each other, nor parallel to v!1. This may result in electrodes that differentially
influence the neuron’s response to anodic-first or cathodic-first stimulation.

To test the similarity between the positive and negative ERFs, we calculated the correlation
coefficient between them. A correlation coefficient close to -1 indicated that the two ERFs are
approximately equal in magnitude but opposite in sign, and therefore the cell was equally influ-
enced by the same combination of electrodes. A value closer to 0 indicates that the two ERFs
have no correlation, and therefore the cell is not influenced by the same electrodes. Positive
correlation coefficients were not expected and did not occur. The spatial extent over which a
cell was influenced by electrical stimulation was estimated by computing a weighted mean of
the distance between the cell and the electrodes. The distance between the cell and each elec-
trode center was weighted by the electrode’s influence on the cell as given by the ERFs. The
weighted mean for both ERFs was given by,

Dþ ¼
P20

i¼1w
þ
i diP20

i¼1w
þ
i

ð8Þ

D� ¼
P20

i¼1w
�
i diP20

i¼1w
�
i

ð9Þ

where wþ
i and w�

i are the weights given by w!þ and w!� respectively, and di is the distance
between the cell and electrode i.

To test which electrodes significantly affected the cell's response, w!þ and w!� were recalcu-
lated 1000 times by projecting the data onto the first eigenvector of the randomly time-shifted

distribution of eigenvectors from the significance test. A distribution for w!þ and w!� was con-

structed from which the true w!þ and w!� could be compared. Electrodes from the true w!þ

and w!� were compared to the root mean square (RMS) of the distribution and electrodes that
were larger than the RMS bounds were considered significant.

For cells where more than one significant principal component was obtained from the sig-
nificance test, we compared the variance explained by the first principal component to that of
the next most significant component. This was done by comparing the separation of the first
eigenvalue e1 from the mean of the randomized distribution of eigenvalues (�ernd) with the sepa-
ration between the next most significant eigenvalue (e2) and the same mean. The strength was
defined as

G ¼ je1 � �erndj
je2 � �erndj

; ð10Þ
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and gives a relative measure of how much larger e1 is compared to the next most significant
eigenvalue. �ernd was calculated from the first iteration of the hypothesis test.

Model validation
For each cell, 80% of the data were used to fit the model parameters, while the remaining data
were used to validate the model. To obtain a quantitative estimate of the performance of the
model, the probability of response given a stimulus was calculated from the validation data and
compared to the model prediction. The validation stimuli were assigned 1 if they produced a
direct response and 0 otherwise. Each stimulus was also assigned a predicted probability using
the model (Eq (5)) recovered from the training data. The stimuli were then binned into seg-
ments in the range of 0 to 1 depending on their predicted probability and an actual probability
for each bin was calculated by the fraction of stimuli assigned a 1. The mean square error (EMS)
was then calculated,

EMS ¼ 1

B

PB
i¼1ðP̂ i � PiÞ2; ð11Þ

where B is the number of bins, P̂ i is the predicted probability, and Pi is the calculated probabil-
ity from the data for a particular bin. For all cells, B was equal to 10. The root mean square
error (ERMS) of the model, given by

ERMS ¼
ffiffiffiffiffiffiffi
EMS

p
; ð12Þ

was used as a quantitative measure of the model accuracy.
We also compared the error of a one-dimensional model to that of a two-dimensional

model. The two-dimensional spike probability was estimated by

PðR ¼ spikejSt
!Þ ¼ N 2ð v!1 � St

!
; v!2 �St

�!Þ; ð13Þ

where v!2 represented the next most significant component, either the second (excitatory) or
last (suppressive) principal component. To find the two-dimensional nonlinearity (N 2), a sur-
face was fit to the spike-triggered data projected onto these two most significant components.
The surface fit was obtained using a cubic spline interpolation on MATLAB’s curve fitting tool-
box. Once the surface was fit, the validation data was used to calculate the mean model error
calculated using Eqs (11) and (12).

Results

Stimulation
Intracellular recordings lasting up to 4 hours were obtained from 25 cells. This population
included 7 ON, 13 OFF, 3 ON-OFF, and 2 cells where 3-D morphological reconstructions were
not possible. Our comparison of histological and physiological results were consistent with
those of Huxlin and Goodchild [29]: ON center cells stratify in the inner IPL (40–100% depth),
while OFF center cells stratify in the outer IPL (0–40% depth). ON-OFF types stratify in both
the inner and outer layers of the IPL. Fig 4 shows an example of an ON-OFF RGC with den-
drites stratifying in both inner and outer layers of the IPL. A summary of the stratification
depths for the ON, OFF, and ON-OFF cells are given in Table 1.

To fit the model parameters, cells were simultaneously stimulated with biphasic pulses on
all electrodes, where the amplitude of the pulses were randomly chosen from a Gaussian distri-
bution of zero mean and standard deviation σ (here after white noise stimuli). To determine an
appropriate value of σ for each cell, three short stimulus trains (approximately 3 min each) of
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Fig 4. ON-OFF retinal ganglion cell. (a) A stained image of a RGC from which dendritic stratification and
dendritic field size can be analyzed. The bounding box (thin white line) shows the region encompassing the
dendritic field of the cell. An ellipse was fit to this region (thick blue line) to estimate the dendritic field size.
The major axis of the elliptical fit for this cell was 508 μm. (b) Dendritic stratification for this cell is in two
distinct layers of the inner-plexiform layer (IPL). Dendrites in the ON sublamina of the IPL stratify at an
average depth of 66.9%, while the OFF dendrites stratify at an average depth of 27.2%. The solid horizontal
lines represent the edge of the IPL. The dashed line represents the approximate ON/OFF border; the region
above the dashed line is the ON layer, the region below is the OFF layer.

doi:10.1371/journal.pcbi.1004849.g004

Table 1. Summary of results.

Mean Standard deviation Min Max

ON (depth %) 57.1 6.6 49.2 69.6

OFF (depth %) 24.1 9.7 11.0 37.6

ON-OFF (inner) (depth %) 63.8 0.16 57.7 66.9

ON-OFF (outer) (depth %) 20.8 7.7 16.3 27.2

Negative threshold (c
−

) -233 124 -39 -469

Positive threshold (c+) 235 136 59 416

Average model RMSE 0.064 0.027 0.028 0.117

Mean latency for SL responses (ms) (N = 20) 1.75 1 0.5 4.35

Mean latency for LL responses (ms) (N = 17) 11 2.59 4.2 20.27

1-dimensional nonlinear fit coefficient (r2) 0.92 0.04 0.83 0.99

doi:10.1371/journal.pcbi.1004849.t001
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white noise stimuli with different σ were initially presented to the cell (σ varied from 50–250 μA
in steps of 50 μA). The number of times the cell responded within 5 ms was used to obtain a
response probability. Each cell responded with a different maximum response probability when
stimulated with white noise at the highest value of σ; some cells could respond with a spike prob-
ability close to one, while others only responded with a spike probability less than one. However,
cells that responded to fewer pulses tended to show an increased level of long-latency activity
(> 5 ms), most likely due to intensified network activation. The value of σ used for white noise
stimulation for each cell in the rest of the experiment was the value corresponding to half the sat-
uration level.

Fig 5 shows examples of two cells with different σ values. Cell 2 responded with a spike
probability close to one even at low σ values while cell 1 responded maximally with a spike
probability of around 0.6 (Fig 5A). The value of σ used for white noise stimulation for cell 1
was 85 μA and for cell 2 was 145 μA. Note that we used this method to calibrate our experi-
ments and the nonlinear curves do not show the maximum probability of firing, as each point
is an average over a variety of stimulus amplitudes. Following this calibration, longer trains of
white noise stimulation (approximately 2 minutes each) with the corresponding value of σ for
each cell were used to obtain data for recovering the model parameters. The corresponding
Gaussian distributions for cells 1 and 2 are shown in Fig 5B. The experiment for each cell lasted
approximately 3–4 hours.

Stimulation artefacts were present in the recordings that could be removed by blanking
without affecting the ability to detect the cells’ spikes. Fig 6A shows examples of some of the
spiking patterns observed during experiments: (i) a failed anodic-first stimulus, (ii) a successful
short-latency anodic-first stimulus, (iii) a successful short-latency cathodic-first stimulus, and
(iv) a successful long-latency cathodic-first stimulus. The top panel in each subplot shows the
raw recording and the bottom panels show the same signals with the artefact removed by
blanking. Also shown in the bottom panels are the thresholds used to detect spikes (horizontal
lines). These figures show that spikes could be easily identified without interference from the
stimulus artefact.

Fig 5. White noise stimulation amplitudes. (a) The increase in spike probability with increasing amplitude
of the standard deviation of the white noise for two cells. To avoid over stimulation of recorded cells, white
noise stimulation with a standard deviation (σ) was initially applied to each cell. The value of σ corresponding
to half the maximal spike probability was used as the standard deviation of white noise stimulation for the
experiment. Cell 1 reached a maximum value close to 1. The value of σ corresponding to a 0.5 spike
probability was 85 μA. Cell 2 reached a maximal value close to 0.6. The value of σ corresponding to a spike
probability of 0.3 was 145 μA. Error bars refer to the standard deviation from the mean. (b) The σ values from
(a) were used to generate Gaussian distributions from which stimulation amplitudes on each electrode were
sampled. Stimulus amplitudes were limited to ±300 μA, hence the distribution is truncated at these values.

doi:10.1371/journal.pcbi.1004849.g005
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The spike latencies after a stimulus pulse were analyzed for each cell. Some cells produced a
bimodal distribution attributed to the short- and long-latency responses (N = 13), with four
cells showing overlapping distributions for the two latencies. The remaining cells only pro-
duced short-latency spikes that were close to the timing of the stimulus pulse (N = 8). Fig 6B
depicts the spike latencies for all cells. The average short-latency cluster mean for all cells was
1.75 ms from stimulus offset (SD 1 ms). The longest short-latency cluster for a cell had a mean
of 4.35 ms (SD 1.37 ms). Fig 6C and 6D show the distributions of spike latencies for two sample
cells, along with fitted Gaussian distributions obtained from the cluster analyses. Fig 6C shows
a cell with two distinct clusters, with a short-latency cluster mean at 1.95 ms. Fig 6D shows two
overlapped clusters with the short-latency cluster mean at 4.35 ms.

Model estimation
Our aim was to find a mathematical description that could accurately capture the response
probability of neurons to concurrent stimulation using a MEA. To do this we first performed a

Fig 6. Spike detection and spike latency analysis. (a) Membrane potentials showing the response to four
stimulus types; (i) a failed anodic first stimulus, (ii) a successful anodic first stimulus with a short-latency
response, (iii) a successful cathodic first stimulus with a short-latency response and (iv) a successful cathodic
first stimulus with a long-latency response. Bottom traces in each panel show the stimulus artefact removed
by setting the artefact to a constant value, and the threshold used to detect spikes (horizontal line at zero). (b)
Short and long spike latencies for all cells. Horizontal lines show the standard error of the short latency
clusters. Vertical lines show the standard error for the long latency clusters. Note that for many of the cells,
the standard errors are very small. The dashed line shows the line of equality. Eight cells did not produce a
long latency component, and hence lie below the dashed line. The × symbol shows the mean of all short and
long latencies. (c) Distribution of spike latencies for a sample cell. A k-means cluster analysis (2 clusters) on
the spike latencies gives the two distributions shown by the Gaussian distribution. This cell had a short-
latency distribution mean of 1.95 ms (SD 0.54 ms). The long-latency distribution mean is 5.03 ms (SD 2.58
ms). (d) Distribution of spike latencies for another sample cell. A k-means cluster analysis (2 clusters) on the
spike latencies gives the two distributions shown by the Gaussian distribution. This cell had a short-latency
mean of 4.35 ms (SD 1.37 ms). The long-latency distribution mean is 12.87 ms (SD 2.58 ms).

doi:10.1371/journal.pcbi.1004849.g006
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principal components analysis on the ensemble of stimuli that triggered a short latency spike.
For all cells we found that the neural response could be well predicted by projection onto a sub-

space spanned by the first principal component, v!1. The variance explained by v!1 was signifi-

cantly higher than that of next greatest component, v!2, suggesting that the spiking

information was well captured by v!1.

Fig 7A shows the spike-triggered probabilities projected onto v!1 and v!2 from the sample
cell in Fig 3B. The histograms show the number of stimuli (gray) and responses (black) along
each axis; the ratio of the bars of the two histograms is used to determine the spike probabilities
along each axis. From the histograms, it is clear that the distribution of the spike-triggered sti-

muli was bimodal in the v!1 axis; however, it remained unimodal along v!2, similar to Gaussian
distribution of the full stimulus ensemble.

A statistical hypothesis test was used to determine howmany eigenvalues recovered by PCA
revealed a significant amount of the spike-eliciting information. The test compares the eigenvalues
recovered from the data, to a set of eigenvalues produced by randomly time-shifting the spike
train and performing PCA on the new set of stimuli. From the set of time-shifted eigenvalues, a
95% confidence limit was set to determine which eigenvalues from the original spike-triggered
data lie outside of the limits. Fig 7B illustrates an example of the hypothesis test. For the sample
cell, the test revealed that a large amount of information was contained in the first component,

which was excitatory ( v!1, eigenvalue above the confidence interval, long red arrow in Fig 7B). A
second suppressive component was also significant, but contained a very small amount of infor-
mation (the last component, eigenvalue below the confidence interval, short red arrow in Fig 7B).
The shaded region shows the 95% confidence intervals from the hypothesis test. The circles repre-
sent the eigenvalues obtained from PCA on the spike-eliciting data. After two iterations of the
hypothesis test, all eigenvalues were within the 95% confidence intervals. The arrows shown in the
figure represent the separation between the mean of the randomly time-shifted distribution of
eigenvalues and the raw eigenvalues (je1 � �erndj and je2 � �erndj in Eq (10)). For this cell, je1 � �erndj
was approximately 12 times greater than je2 � �erndj (G = 12). Note that for this experiment, elec-
trode 12 was not operational and hence only 19 components were produced.

The bimodal distribution of response probability along the axis of the first principal compo-
nent indicates that this neuron responded to two categories of multi-electrode stimulation; one
category that produced a positive projection onto this axis, and one with a negative projection
onto this axis. For all cells, stimuli with a positive projection onto the axis produced a stimulus
at the cell’s location whose net effect was anodic-first, regardless of the fact that some electrodes
may have been stimulated with cathodic-first pulses. The opposite was true for the negative
projection. We therefore wondered if there may be differences in the one-dimensional stimulus
subspace to which the cell responded, between net anodic-first and net cathodic-first stimula-
tion. If so, the PCA analysis would only find the average direction of these two one-dimen-
sional subspaces. To address this we used the PCA initial estimate of the subspace to break the
stimulus space up into positive and negative regions determined by whether the stimuli had a

positive or negative projection onto v!1. By separating the data into the two regions, two elec-

trical receptive fields (ERFs), w!þ and w!�, corresponding to net anodic-first and net cathodic-
first stimuli, were estimated (Fig 3B). The ratio of spike-eliciting stimuli to total stimuli was
then used to determine a spike probability.

Fig 7C illustrates the spike probability for the sample cell. The raw data was projected onto

w!þ and w!� (×) and the nonlinear curve from Eq (5) (solid line) was fit to the data. All cells
obtained high r2 (coefficient of determination) values for the nonlinear fit; the average r2 for all
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Fig 7. Recovery of model parameters for a sample cell. (a) The stimuli are projected onto the first two
principal components, v!1 and v!2 . The grey squares represent the spike probability, where a black value
represents 0 probability, and a white value represents a probability of 1. Plotted above and to the right are the
histograms of the stimuli (gray) and the spike-triggered stimuli (black) along each component axis. (b)
Eigenvalues of the spike-triggered stimuli recovered by principal component analysis (round circles) are
plotted. The eigenvalues are normalized by the variance of the input stimuli. The shaded region represents
the 95% confidence interval from the statistical hypothesis test. The hypothesis test recovered one significant
excitatory and one significant suppressive component. The red arrows show the distance between the two
most significant eigenvalues and the mean of the random distribution recovered from the first iteration of the
hypothesis test. The length of the arrows represent d1 and d2 from Eq (10). (c) The nonlinear function
recovered by fitting a double sigmoid to the spike probability projected ontow!þ andw!�. Open circles
represent the raw data and the solid line shows the nonlinear equation fit (r2 = 0.98). This cell had a positive
and negative threshold (parameters c+ and c

−

in Eq (5)) of 129 μA and -152 μA proportional tow!þ andw!�,
respectively. (d) The truew!þ andw!� (solid black) are compared to the root mean square (dashed line) of a
distribution ofw!þ andw!� (gray). Stars show which electrodes were significant. In this preparation, electrode
12 was not operational. (e) Representation of the amplitudes that generate the ERFs,w!þ (left) andw!�

(right). The large circles represent the electrode locations. A correlation coefficient of -0.97 was obtained
betweenw!þ andw!�. Three electrodes significantly affected the cell inw!þ and inw!�. In this experiment, the
retina was placed such that the optic disc was located around electrode 9. The stimulation return electrode
was placed distally above electrode 12. The green circle shows the approximate dendritic field of the
recorded cell. Stimulus amplitudes ranged up to ±300 μA; however, the range shown here is smaller to make
the differences in electrode amplitudes clearer.

doi:10.1371/journal.pcbi.1004849.g007
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cells was 0.92 (SD 0.04) (see Table 1 for summary). This suggests that a double sigmoidal curve is
appropriate to describe the nonlinear firing probabilities of RGCs to electrical stimulation.

Significant electrodes in w!þ and w!� were determined by comparing the electrodes to a dis-

tribution of w!þ and w!� generated in the signifcance test. Fig 7D shows the true w!þ (solid
black line) compared to the RMS of the distribution (dashed line). Up to three electrodes signif-

icantly affected this cell. To visualize the cell's ERF, the electrode amplitudes that generated w!þ

and w!� were plotted. Fig 7E depicts ERFs for the sample cell; the green dot shows the approxi-
mate location of the recorded cell soma. The filled circles represent the stimulus amplitudes on

the electrode that generate w!þ and w!�. Only significant electrodes are colored. For all cells,

w!þ produced a stimulus at the cell location that was anodic-first, while w!� produced a stimu-
lus at the cell location that was cathodic-first. In this example, the retina was oriented such that

the optic disc was approximately above electrode 9. w!þ and w!� for this cell had a correlation
coefficient of -0.91, indicating that the cell was influenced by the same set of electrodes when
the stimulus was net anodic or net cathodic-first. An estimate of the size of the ERFs was deter-
mined by calculating a weighted mean of the distance between the cell and electrodes, where
the distance was weighted by the ERFs. For this sample cell, D+ and D− were approximately
equal to 1 mm, which is also the separation of the electrodes.

We investigated the relationship between dendritic receptive field and ERF by comparing
the morphological reconstructions to the ERFs obtained from the model. Two sample cells are
shown in Fig 8A and 8B. In these images, the morphological reconstruction has been superim-
posed onto a photograph showing the stimulating array and the patch pipette during record-
ings. Using the estimate of the dendritic receptive field size obtained from the morphological
reconstruction, we plotted the ERFs along with the dendritic receptive fields for 21 cells (Fig
8C). Two cells where morphological reconstruction was possible were omitted due to uncer-
tainty of the location of the cell relative to the array. The dendritic fields were estimated by a
circle with a diameter equal to the major axis from the elliptical fit. The electrode colours repre-

sent the amplitude of w!þ and the stars represent the approximate location of the optic disc.

One cell (Fig 8C21) was only affected by cathodic-first stimulation and hence w!� is shown for
this cell. This cell was affected by both anodic- and cathodic-first stimulation in its long-latency
responses.

Data summarizing the model fit for the population of 25 cells is shown in Fig 9. The model
nonlinear fit recovers an estimate of a cell’s thresholds (c+ and c− in Eqs (6) and (7)). Most cells
had similar threshold values for both their net anodic-first and net cathodic-first regions (see
Table 1, Fig 9A), and no significant differences were found between or among ON, OFF or

ON-OFF cell types (t-test, p> 0.3). The correlation coefficient of the ERFs ; w!þ and w!�, for
the majority of cells was close to -1 indicating that the cell was influenced by same electrodes
for both net anodic-first and net cathodic-first stimulation (Fig 9B). Two OFF cells had a corre-
lation coefficient greater than -0.4 suggesting that the cell was differentially influenced by the
electrodes depending on whether the stimulus was anodic-first or cathodic-first. The size of the
positive ERF (D+) was estimated for 23 cells and compared to the dendritic field size (Fig 9C).
Cells were significantly influenced by only one (open circle), two (closed circle) or three

(square) electrodes. The mean size of the ERFs produced by both w!þ and w!� was approxi-

mately 1.2 mm, and no significant difference was found between the size produced by w!þ and

w!� (t-test, p>0.4).
The statistical hypothesis test showed that the spike-eliciting information was mostly con-

tained in the first PCA component ( v!1). For 17 cells, some information was also contained in
up to two additional components; however this information was relatively small, as the effect
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of omitting these higher components made little difference to the predicted result. We used a
ratio Gmeasuring how much of the variance in the response is accounted for by the first princi-

pal component ( v!1) compared to the next most significant component ( v!2). G was generally
much greater than one, signifying that for most cells a large proportion of the spike-triggered
variance is contained in the first principal component. A histogram of G for all cells is given in
Fig 9D, which shows that 18 of the 20 cells had a G value>4. Cells with a single dominant prin-
cipal component have spatial interactions between electrodes that are linear to a good
approximation.

Model validation
80% of the data was used to recover the model parameters and the remaining data was used to
validate the model prediction. Fig 10A compares the validation spike probabilities and the
model predicted probabilities for all cells (grey curves). For clarity, we show the curves without
error bars. Also shown is the model prediction for one cell with standard error bars (black solid
line). The model accurately predicted the responses of the RGCs to electrical stimulation. Small

Fig 8. Dendritic and electrical receptive fields. a-b) Sample cells depicting the stimulating array (large
black discs) and the patch-clamp recording electrode (denoted by a *). Overlaid on the images are the
morphological reconstructions of the cells. The sample cell in (a) is also shown in (c) 16. The sample cell in
(b) is also shown in (c) 20. Note that the stimulating electrodes appear large, but the exposed area is only
400 μm. Also visible are the lycra threads used to keep the retina affixed and the stimulating electrode tracks.
c) The electrical receptive fields shown together with the dendritic receptive field estimates. The electrodes
with stars above them show the approximate location of the optic disc for each preparation.

doi:10.1371/journal.pcbi.1004849.g008
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deviations in the prediction could likely be explained by modeling errors due to omission of
some significant components. Using a different set of data to validate the model gave slightly
different deviations, and slightly different estimates of the error. However, in all cases the
model still accurately predicted the responses. The average ERMS for all cells was 6.3% error,
with a maximum error of 11.7% (see Table 1).

There were 17 cells that recovered two or more components that fell outside the 95% confi-
dence interval in the statistical hypothesis test. To test for improvements in the prediction by
including higher components, we fit a two-dimensional surface to the probability data (e.g. Fig
7A). The same validation data used from the one-dimensional model was used to compute the
error from a two-dimensional model. Note that for some cells the training data was under-
sampled in regions that were sampled with the validation data. These points were omitted
when calculating the model error. The model error for the two-dimensional model (ERMS2)
was compared to the error from the one-dimensional model (ERMS1). For most cells, little
improvement was found in model error, and a few cells resulted in a higher error (Fig 10B). A
slightly higher error for a few cells is likely due to over fitting to increased noise, which occurs
due to undersampling of the two-dimensional surface fit. For the two cells that had a low value

Fig 9. Population data. (a) Threshold recovered from the nonlinear function for positive and negative
regions for all cells; no significant differences were found between cell types (p > 0.3). (b) The correlation
coefficients of the positive and negative electrical receptive fields (w!þ andw!�). (c) Radius of electrical
influence for 21 cells. Shown is the approximate range of electrical influence for anodic-first stimulation (D+)
and the dendritic field size for each cell. Cells were only significantly influenced by one (open circle), two
(closed circle) or three (square) electrodes in the ERF. (d) Histogram showing the value ofG (Eq (10)) for all
cells. 20 of the 25 cells recovered a v!1 that was 4 or more times larger than v!2.

doi:10.1371/journal.pcbi.1004849.g009
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of G, the model error was reduced by approximately half (9.8% to 4.2%) for one cell and
changed very little for the other (3.3% to 3.5%) (See the two circled points in Fig 10B).

Long latency responses
We examined if the model could also be applied to the long-latency responses to predict
responses that were most likely of presynaptic network activity. Understanding the secondary
effects of electrical stimulation is important in a clinical setting to understand differences
between the perceived and expected responses. Responses originating from presynaptic origin
can have excitatory or suppressive effects on postsynaptic RGCs. Fig 11A illustrates the positive

ERF (w!þ) for the sample cell (same cell from Fig 7) that had an excitatory long-latency
response. The negative ERF was almost the same in magnitude and location as the positive
ERF and hence is not shown. In this preparation, the optic disc was placed above electrode 9. It
is this electrode that most strongly influences the long-latency response in this neuron. The
accuracy of the model was assessed in the same way as the model error for the short-latency
responses. For this cell, the model predicted the long-latency response accurately (error
approximately 7%) (Fig 11B). It is evident from the corresponding eigenvalues (Fig 11C) that
there is an excitatory and suppressive component that affects the long-latency responses. Excit-
atory or suppressive effects applied through the retinal network can be investigated by analysis
of long-latency responses. Fig 11D illustrates an example of a cell that was very responsive in
its short-latency responses; however, it became suppressed by high amplitude stimulation in its
long-latency responses. The corresponding eigenvalues are shown in Fig 11E. Although our
results on short-latency responses showed that RGCs were largely indifferent to the pulse
polarity, analysis on the long-latency responses could produce responses that favored a particu-
lar pulse polarity. Fig 11F shows an example of a cell that was sensitive to both polarities of
short-latency stimulation but its long-latency response resulted largely from cathodic-first
stimulation. The corresponding eigenvalues are shown in Fig 11G.

Application to efficient stimulation
When little is known about the neural system, a naive stimulation strategy might be to activate
multiple nearby electrodes such that the amplitude of stimulation across the electrodes is

Fig 10. Model validation. (a) The predicted probability compared to the actual probability from the validation data for all cells (gray). For clarity this data is
shown without error bars. The validation of the sample cell from Fig 7 with standard error bars (black solid line) is also shown. The root mean square error for
this cell was 0.056. (b) The 2-dimensional model error (ERMS2) is compared to the 1-dimensional model error (ERMS1) for all cells where the hypothesis test
recovered 2 or more significant components.

doi:10.1371/journal.pcbi.1004849.g010
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equal. However, the ERF recovered from the model gives an insight into the stimulus that
improves the efficacy of a response in the neuron. To compare a naive stimulation strategy to

stimulation using currents on electrodes that are proportional to w!þ, we used the recovered
model to compare the response probabilities for both strategies. Fig 12A compares stimulation
on one, two, or three of the electrodes closest to the sample cell, to stimulation with currents

proportional to w!þ. To make an unbiased comparison, comparisons were made while keeping
the total power fixed. Since all of the electrodes were of the same geometry, this was equivalent

to keeping a constant norm on the stimulation vector St
!
. For this example, a stimulus on three

of the closest electrodes, where the current amplitudes on each electrode were equal, resulted in
better efficacy than stimulating on only one or two electrodes. However, the efficacy was

Fig 11. Model applied to long-latency responses. (a) The positive electrical receptive field for long-latency
responses of the same cell as in Fig 7. This cell is largely influenced by electrode 9, which in this preparation
was below the optic disc. (b) The predicted response vs. the actual response probability for the cell in (a). The
root mean square error between prediction and actual response probability was 0.07. (c) The eigenvalues of
the long-latency spike-triggered stimuli with one large excitatory and suppressive component evident. (d) An
example of a cell with a suppressive response for long-latency (LL) responses. This cell fired with fewer
spikes when the stimulus was stronger along the first or second principal component. Also shown is the short-
latency (SL) response for comparison. (e) The corresponding eigenvalues for the long-latency responses in
(d). (f) An example of a cell with a preferred stimulus polarity for long-latency responses. This cell responded
with a greater number of spikes when the stimulus was cathodic-first, and very few spikes when the stimulus
was anodic-first. Also shown is the short-latency response for comparison. (g) The corresponding
eigenvalues for the long-latency responses in (f).

doi:10.1371/journal.pcbi.1004849.g011
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further improved when stimulating proportionally to w!þ. Fig 12B compares the threshold

from a naive strategy (SN), to the threshold of a stimulus proportional to w!þ for all cells. Here,
we compare only SN resulting in the lowest threshold, single electrode (star), two electrodes

(triangle), or three electrodes (circle). In all cases, stimulation proportional to w!þ results in a

higher efficacy for a given power. On average, stimulation proportional to w!þ resulted in a
threshold 0.8 (SD 0.2) times the threshold of the SN resulting in the lowest threshold.

Discussion
The research presented here is motivated by the goal to improve the fidelity of neural prosthe-
ses by improving stimulation strategies through the use of predictive models of neural response
to electrical stimulation. The model we present describes a method to predict the response of
neurons to patterns of concurrent electrical stimulation. It is simple to construct and evaluate,
and could be applied clinically and throughout the nervous system.

Mathematical model
The model we present here was adapted from well established Gaussian white noise models
developed to describe light responses in the retina [16,18,20,22]. With minor modifications, we
have shown the application of this type of model to describe responses to electrical stimulation.
The model is scalable and can be used to also describe retinal responses to electrical stimulation
using small, high density electrodes, or to describe long-latency responses.

RGC responses to concurrent electrical stimulation across multiple electrodes could be
accurately modeled by a nonlinear transformation of a linear spatially filtered stimulus. Simul-
taneous biphasic pulses were applied to all electrodes, with the stimulation amplitude on each
electrode randomly sampled from a Gaussian distribution. The model's linear filter character-
izes the neuron's electrical receptive field. The nonlinear function characterizes the neuron's
intrinsic nonlinear firing properties. Stimulus-evoked spikes in the recorded neurons were ana-
lyzed using principal component analysis to determine the linear filter and reduce the
dimensionality of the spike-triggered stimuli.

Fig 12. Comparison of stimulation along w!þ to a multi-electrode, constant amplitude strategy. (a) The response probability when stimulating along
w!þ is compared to a naive strategy that uses only one electrode, or equal amplitude currents on two or three electrodes. (b) The naive strategy (SN) is
compared to stimulating alongw!þ. Only the SN resulting in the lowest thresholds are shown; single electrode (star), two electrodes (triangle) or three
electrodes (circle).

doi:10.1371/journal.pcbi.1004849.g012
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For most cells a single linear filter was sufficient to predict the neural response to a good
approximation, indicating that interactions between concurrently stimulated electrodes are
predominantly linear. High coefficients of determination for the nonlinear function fits were
obtained (lowest r2 = 0.83), demonstrating that the double sigmoid function is an accurate
description of the nonlinearity. The model was trained with 80% of the data, with the remain-
der used for validation. The spike probability from the validation data was compared to the
predicted probability, which resulted in an average error of 6.4% across the population (maxi-
mum error 11.7%).

For many cells, short-latency responses were within 2–3 ms from the stimulation offset.
While the origin of the spikes were not investigated, the latencies are consistent with latencies
attributed to direct activation of RGCs in response to 1 ms pulses [38]. Four cells showed over-
lapping short- and long-latency clusters with spike latencies of up to 6 ms (Fig 6D). It is possi-
ble that some of the spikes in the four cells with overlapping clusters might have had a mixture
of direct and indirect (network mediated) activity. Despite this, the model was able to accu-
rately predict the response. The technique could also be applied to investigate the long-latency
responses driven by synaptic activity. The effects seen in the long-latency responses can be
excitatory, suppressive (also observed in [38]), or polarity-selective. Importantly, a separate
analysis of long-latency responses produced distinct electrical receptive fields compared to the
short-latency responses. Long-latency responses in the retina are mediated via the activation of
retinal interneurons and might result in high acuity vision [39]. The techniques described can
be used to gain a deeper understanding of the retinal network and the effects of electrical stim-
ulation at distant sites. Investigation into the long-latency responses can give insight into the
secondary effects of stimulation and how these might influence perception.

Comparison to previous studies
Models recovered from white noise stimuli have been used to characterize light responses in
the retina [16,18,20] and cortex [40], electrical responses in the retina [26,41], subthreshold
responses in squid axons [42], and to characterize information transfer from the sensory
periphery [43]. The advantage of estimating models with Gaussian white noise is that the neu-
rons can be presented with a wide range of possible inputs and adaptation is reduced compared
to more regularly structured stimuli. These properties make these models more suitable for
characterizing neural responses to spatiotemporal patterns of electrical stimulation. Addition-
ally, analysis techniques for white noise stimulation have been extensively explored in the ret-
ina to describe light responses [16,18,20,21]. We have used a spike-triggered covariance model
and demonstrated that it can be accurately applied to describe electrical responses.

Jepson et al. [44] demonstrated the versatility of a piecewise linear model in capturing neu-
ral response probabilities to electrical stimulation. Their study used a high-density array with
small electrode diameters and combined stimulation across two or three electrodes to achieve
spatial selectivity. Only fixed ratios of stimulus amplitudes were explored. In contrast, our sti-
muli consisted of Gaussian white noise that allowed the exploration of a vast range of stimulus
inputs across all available electrodes, to find an estimate of the cell’s ERF. This has the potential
to be more efficient when simultaneously recording from multiple neurons, as the same stimuli
can be used to generate the model parameters for all recorded neurons. Our study also used
large diameter electrodes due to their relevance to clinical visual prosthesis stimulation arrays
[45].

No strong correlation between the area over which the cell was affected (D+ or D−), and the
size of the dendritic field was found. It is possible that much of the relationship is lost when
using large diameter electrodes, or that the stimulation was largely axonal. The spatial ERFs

Neural Response Model for Multi-electrode Stimulation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004849 April 1, 2016 22 / 26



were generally as might be expected: i.e. the electrodes closest to the cell significantly affected
the response. However, some unexpected results were apparent. For example, cells in Fig 8C17
and 8C18 both had a small dendritic field and they were located in a similar location in relation
to the stimulating array. However, cell 17 only had two significant electrodes, whereas cell 18
had three. While the origin of these differences are unknown, complexities in ERF shapes have
been previously observed [39,46]. As suggested by Sim et al. [46], the complex shapes could be
due to axonal stimulation. Our results demonstrate the utility of our technique in identifying
even complex ERFs.

Freeman et al. [26] explored single electrode stimulation of the retina using binary white
noise to recover a temporal spike-triggered average stimulus. This study demonstrated that
electrical white noise models can be used to estimate the temporal relationship between the
stimulus and response, while our model describes the spatial relationship across electrodes. We
assume that the effect of temporal interactions at 10 Hz is small, an assumption that might
account for some of the error in prediction. A model that also incorporates temporal effects is
desirable, especially when considering higher stimulation frequencies, but technical challenges
remain. A similar model to Chichilnisky [16] could be modified for electrical stimulation and
incorporate spatiotemporal ERFs, but the accuracy of the model would decrease as the number
of frames increased. The stimulus artefact could also be a problem when stimulating at high
frequencies. To obtain longer recordings, one solution is to record extracellular potentials,
which is also the only practical solution for patient testing. In this case, the stimulus artefact
would be larger than the spike signal, making spike identification more challenging. At low
stimulus frequencies, the stimulus artefact could be removed by artefact removal techniques
[39,47,48], allowing detection of short-latency spikes.

Relevance for neural prostheses and clinical applications
Amajor goal of our work is to develop models that can be applied in real-time, closed-loop
applications. The applications of closed-loop systems to modern technology are vast. There are
several potential advantages to the development of neuroprostheses that make use of neural
feedback. An obvious advantage of neural feedback is much tighter control of evoked neural
activity, when that activity can be measured and the stimulus adjusted to match a desired out-
come. A second advantage is automation of patient fitting procedures, minimizing the need for
time-consuming psychophysics. Furthermore, many stimulation algorithms are limited to
stimulation with one electrode at a time, in part because the time required to test myriad possi-
ble combinations of simultaneous electrode stimulation is prohibitive using a psychophysical
approach. Closed-loop neural stimulation models can also take advantage of control theory
and can be designed to adapt to changes in the system being controlled. Open-loop strategies
cannot adapt to changes such as changes at the electrode-tissue interface.

The model we present is simple and appropriate for real-time computation; however, tech-
nical challenges remain. A requirement of in vivo or patient tests of closed-loop control is to
obtain high density extracellular neural recordings. Devices that can combine stimulation and
recording on the same electrode need to balance high surface area and charge capacity for stim-
ulation, with electrodes of low geometric surface area for single-unit recordings [45]. Recent
new materials have led to the development of flexible electrode wires capable of stimulation
and recording [49]. However, a high density array capable of stable recordings and stimulation
remains to be developed.

Our model can be extended by increasing the number of recording electrodes, to describe
the response of multiple neurons across the array, thus making it a multi-input multi-output
system. Multi-input multi-output control is a widely researched area of control and could be
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applied to achieve patterns of activation across the array. In a visual prosthesis, a desired pat-
tern of activation could be obtained from RGC activation models in response to patterned light
[16,50]. Our model can be fit to individual patients based on recorded responses and used to
develop control strategies that are patient specific. Devices that can record and stimulate can
then be used to try and address some of the more complex problems in the field, namely that of
relating stimulation to visual percept [51].
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