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Abstract

For more than a decade, biometric moderation models have been used to examine whether genetic 

and environmental influences on individual differences might vary within the population. These 

quantitative gene × environment interaction (G×E) models not only have the potential to elucidate 

when genetic and environmental influences on a phenotype might differ, but why, as they provide 

an empirical test of several theoretical paradigms that serve as useful heuristics to explain etiology

—diathesis-stress, bioecological, differential susceptibility, and social control. In the current 

manuscript, we review how these developmental theories align with different patterns of findings 

from statistical models of gene-environment interplay. We then describe the extant empirical 

evidence, using work by our own research group and others, to lay out genetically-informative 

plausible accounts of how phenotypes related to social inequality—physical health and cognition

—might relate to these theoretical models.

For decades, biometric modeling of genetically informative family data was able to provide 

the relative magnitude of genetic and environmental influences on variables related to social 

inequality: constructs as diverse as mental health, physical health, well-being, family 

functioning and even income and morbidity. We know that almost any psychologically 

important variable related to social inequality that differs between people, like mental health 

or well-being, has a significant, non-zero heritability (proportion of variance in a phenotype 

that is due to genetic differences between individuals; Turkheimer, 2000). Interestingly, even 

putatively “environmental” variables, like education, employment, and wealth, have genetic 

influences (Kendler & Baker, 2007; Rowe, 1981). This explains why in recent years 

researchers have begun to search for the molecular genetic underpinnings of constructs like 
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educational attainment (Martin et al., 2011; Rietveld et al., 2013b), economic and political 

preferences (Benjamin et al., 2012) and self-employment (van der Loos et al., 2013).

Potentially more interesting, however, than simply knowing whether there are genetic 

influences on indicators of social inequality would be to understand how the interplay 

between genes and environment shapes individual differences in social inequality over the 

lifespan. Biometric moderation models, introduced more than a decade ago, are able to 

provide estimates of genetic and environmental influences that are personalized to (i.e., 

dependent on) an individual's standing on a variable other than the phenotype (i.e., observed 

trait or behavior) of interest. Take for example, findings from our recent work on health; if 

we average across the population, we estimate the genetic influences on self-reported 

physical health at 16%; but, if we look at physical health as a function of marital relationship 

quality, we see that genetic influences are much higher among those with either very happy 

or very distressed relationships (South & Krueger, 2013). In the current manuscript, we 

review how these statistical models of gene-environment interplay align with existing 

theoretical models of development to lay out genetically-informative plausible accounts of 

how social inequality develops. We then describe how the existing evidence, including but 

not limited to work by our own research group, lines up with those accounts. We argue in 

this manuscript that these quantitative models provide a tool for testing long-standing 

theories about the development of individual differences. We conclude our review by 

summarizing what these findings imply about determining risk for indicators of social 

inequality based on a person's relative standing on important risk factors in the population, 

and we posit ways in which future research can build on this work to move toward 

investigating the interplay between measured genes and environments in the development of 

social inequality.

Behavior Genetic Methods: Classic Approaches and Models for Gene × 

Environment Interplay

Behavior genetic approaches were vital in demonstrating that almost every psychologically 

important individual difference variable, particularly personality and mental health, was a 

function of both genes and environment (that is, nature and nurture at play). An unexpected 

and important further contribution of this family of methods was to demonstrate that even 

putatively environmental or socio-cultural variables that are generally included under the 

larger umbrella of ‘social inequality’ had a heritable component; in other words the variance 

in things like income, wealth, education, and well-being could be explained, at least in part, 

by genetic differences within the population (Kendler & Baker, 2007). In this section, we 

first describe the classic behavior genetic approaches before moving on to newer models that 

allow for examination of quantitative Gene × Environment interaction (quantG×E).

Classic Approaches

Behavior genetic methods utilize genetically-informative data sets (e.g., twins, adopted 

children and parents) to estimate genetic and environmental variance in a phenotype (i.e. 

observed variable). In essence, these methods are able to estimate the contributions of nature 

and nurture to variance in the population. The well-known and frequently discussed 
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heritability statistic is often used as evidence of “genes” determining a variable; however, the 

true definition of this quantity requires some precision. Heritability, by definition, is the 

proportion of total variance in a variable, in a specific sample drawn from a larger 

population, which is due to genetic variance in that sample. In other words, an individual 

difference variable differs along a spectrum in the population, from more to less, and 

heritability is an estimate of how much of that variance is due to genetic differences between 

people.

Rough estimates of heritability can be calculated using the difference in twin correlations 

between identical (monozygotic, MZ) and fraternal (dizygotic, DZ) twins (i.e., h2= 2*(rMZ-

rDZ); Falconer, 1965). It is also possible to decompose the total phenotypic variance of a 

phenotype using structural equation models. There are three sources of variance: additive 

genetic influences, usually abbreviated (A); influences siblings in the same family share in 

common and which make them more similar, abbreviated (C); and the unique environment, 

influences that siblings do not share and which make them different from other family 

members, abbreviated (E). Thus, the acronym “ACE model” is often used to describe 

biometric modeling of twin data.

Findings from classic biometric modeling had important implications for theoretical 

understandings of etiology; for instance, knowing that a phenotype has a significant non-

zero heritability led to a large investment in the search for the molecular genetic 

underpinnings of social science constructs including subjective well-being (Rietveld et al., 

2013a), self-employment (van der Loos et al., 2013) and educational attainment (Rietveld et 

al., 2013b). The limitation of the basic univariate ACE model is that it says nothing about a) 

what, specifically, those nonshared environmental influences were (Turkheimer & Waldron, 

2000), or b) how genetic influences and environmental influences mediated relationships 

between variables. One attempt to answer these questions was to use extended ACE models 

that included multiple variables. The advantage of these multivariate models is that in 

addition to estimating genetic and environmental influences on each variable, it is possible 

to estimate the genetic and environmental overlap between two or more variables. For 

instance, the bivariate (Cholesky) decomposition can determine how much of the phenotypic 

correlation between two variables (e.g., well-being and education) is due to genetic 

influences shared in common between the two variables (i.e., bivariate heritability). Another 

way of looking at overlap is to estimate a genetic correlation. Like a phenotypic correlation, 

a genetic correlation (and commensurate estimates for shared and nonshared environmental 

correlations) range from -1 to +1 and indicate how much the genetic influences on one 

phenotype (e.g., well-being) overlap with the genetic influences on another phenotype (e.g., 

education). In this vein, Weiss et al. (2008) examined the relationships among subjective 

well-being and domains of the Five Factor Model/Big Five Model of personality using a 

Cholesky decomposition. They concluded that all of the genetic variance in subjective well-

being was shared in common with genetic influences on Neuroticism, Agreeableness, 

Extraversion, Conscientiousness, and Openness.

These extended multivariate models did answer some questions. First, they were able to 

determine whether two variables that are phenotypically correlated share the same 

underlying genetic basis. For instance, finding that, among boys, intelligence was 
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etiologically related to antisocial behavior through genetic overlap (Koenen, Caspi, Moffitt, 

Rijsdijk, & Taylor, 2006) suggests the same genes may affect both IQ and delinquent 

behavior. Second, these models also pointed toward possible sources of the nonshared 

environment, which are anonymous latent constructs in biometric modeling. The fact that 

the nonshared environmental influences on marital satisfaction overlap with wives' positive 

mental health implicates the husband as that very source of nonshared environment (Spotts 

et al., 2005). What this work could not inform, however, is the ways in which genetic 

influences and environmental contexts worked in tandem to produce a phenotypic outcome. 

For that, new statistical models were needed.

Quantitative Models for Gene × Environment Interplay

The heritability statistic and commensurate estimates of environmental influences (both 

between-family E influences and within-family C influences) are limited in two important 

ways. First, these estimates are presumed to be independent—that is, obtaining the relative 

magnitude of genetic vs. environmental influences on social inequality presumes that these 

two influences do not interact. These models say nothing about the interplay between genes 

and environment. Second, these estimates average across the entire (sample-specific) 

population. Many people, particularly lay individuals, misunderstand the concept of 

heritability, interpreting a 50% estimate to mean that 50% of their depressive tendency, for 

instance, is attributed to genetics. In fact, this type of individual-level heritability is not 

possible with quantitative modeling of twin data. The correct interpretation of heritability, in 

that case, is to say that 50% of the variation in depression, in a specific sample drawn from 

one population, is due to genetic differences between individuals in that sample. But, again, 

this heritability value tells us nothing about how different environments may affect that 50% 

estimate.

For over a decade now, however, modeling of biometric moderation in a structural modeling 

framework has made it possible to differentiate estimates of genetic and environmental 

influences dependent on a person's standing within the population (Purcell, 2002; Rathouz, 

Van Hulle, Rodgers, Waldman, & Lahey, 2008; van der Sluis, Posthuma, & Dolan, 2012; 

van Hulle, Lahey, & Rathouz, 2013). Biometric moderation models allow for different ACE 

estimates depending on a person's standing within the population on a “moderator” variable

—hence the term moderation model. That is, instead of estimating one heritability 

coefficient that averages across all differences within a sample drawn from a population, 

biometric moderation models allow heritability to differ within the population. This is not a 

completely new concept; biometric sex limitation models, for instance, provide for a 

statistical test of whether genetic and environmental influences on a phenotype are the same 

for men and women. While still not able to individualize to the etiology of one specific 

person, we are now able to get closer and closer to understanding how certain risk factors 

can change the etiology of important outcomes for people within the population. To use one 

illustrative example, would the heritability of health differ depending on a person's 

socioeconomic status? The short answer is yes—at low levels of income, genetic influences 

on physical health are greater than at high levels of income (Johnson & Krueger, 2005a).
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A path model of the bivariate moderation model (Purcell, 2002) is shown in Figure 1. This 

model is an extension of a bivariate decomposition, in which the variance in two variables, 

and the covariance between them, is partitioned into three sources as noted above (i.e., 

genetic effects (A), common or shared environmental effects (C), and nonshared 

environmental effects (E). In the moderation model, the six paths leading to the downstream 

variable include extra parameters (aC+βXacM) that allow for estimation of genetic and 

environmental variance at different levels of the moderator variable. This parameterization 

of the model makes it possible to estimate ACE influences at any possible level of the 

moderator (M). Another advantage of the model in Figure 1 is that it is also possible to 

estimate the genetic and environmental overlap between the two variables in the form of 

genetic and environmental correlations, ranging from -1 to +1 in the usual way, and these 

correlations will also differ depending on the level of the moderator. To utilize this model, 

however, the moderator must be a variable that is unique to each twin (e.g., income as adults, 

marital status, relationship satisfaction, etc.). If the moderator is a variable that is necessarily 

shared between twins (e.g., neighborhood SES as children), then it is necessary to use an 

alternative, univariate model that “controls” for gene-environment correlation by regressing 

out the effect of the moderator on the outcome but still allows for separate ACE estimates at 

different levels of the moderator (Purcell, 2002; van der Sluis et al., 2012).

Because these models estimate whether the total latent (unmeasured but assumed) genetic 

influences on a phenotype differ depending on a person's standing on a second, putatively 

environmental, variable, they are commonly referred to as quantitative estimates of Gene × 

Environment interaction (quantG×E, to distinguish from measured gene × measured 

environment interactions, discussed below). Theoretically, the presence of G×E could mean 

that the genetic effects on a phenotype only become apparent in the right environment; or, 

conversely, environmental effects on a phenotype are dependent on a person having the right 

genotype. Earlier attempts to statistically model G×E using twin data would stratify the 

sample by level of the moderator variable and examine genetic and environmental influences 

as a function of these subgroups (Cleveland, 2003). For instance Heath and colleagues 

(1989) found that genetic influences on alcohol consumption varied from 31% in young, 

married women to 76% in older, unmarried women, demonstrating that an important 

sociodemographic variable, marital status, can have a moderating effect on the etiology of 

alcohol use. The newer biometric moderation models have several advantages over previous 

methods to examine G×E in genetically informative family data (e.g., stratification of twin 

correlations). First, it is possible to formally test the presence vs. absence of moderation 

using a variety of well-validated fit indices. Second, both the univariate and bivariate 

versions model the main effect of the moderator on the phenotype, either by including a 

direct path or by decomposing the effect of the moderator on the outcome (thus accounting 

for gene-environment correlation). Finally, it is possible to obtain ACE estimates of the 

phenotype along the full spectrum of the moderator. For these reasons, the popularity of this 

model has led to a growth in quantG×E studies over the last decade. We next turn to 

discussing how these results fit with work on measured gene × measured environment 

interactions.
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Gene × Environment Interaction: Measured vs. Latent Genetic Influences

Gene × environment interaction has long been theorized for complex human behavioral 

phenotypes, including personality, psychopathology, and cognition. If found, G×E would 

imply that the effect of the environment on a phenotype would depend on a person's 

genotype; or alternatively that the expression of a genotype would depend on the right 

environmental context. The idea of G×E lines up nicely with many developmental theories. 

For instance, the diathesis-stress model of psychopathology posits that a diathesis (possibly 

genetic) for mental illness will only be trigged in the right environmental context (Monroe & 

Simons, 1991), a topic we return to again, below. Empirical studies of G×E, however, have 

only begun in earnest in this century, following recent statistical and methodological 

advances. We first discuss candidate molecular G×E before returning to consider quantG×E.

Measured Gene × Measured Environment Interaction

Candidate G×E (or cG×E) studies are distinguished from quantG×E by the use of both a 

measured environment and a measured gene. In the most common use of this technique, a 

candidate gene is chosen based on a known or suspected mechanism of action and an 

environmental context is ideally selected based on evidence that it elicits variable responses 

among different individuals and affects a neurobiological system underlying the trait of 

interest (Moffitt, Caspi, & Rutter, 2006). Genes are specific protein coding segments of 

DNA and can be anywhere from a few hundred to thousands of base pairs in length. Genes 

at the same location on the genome (locus) can differ in specific physical ways, between 

persons. For example, a cG×E interaction could be posited such that an environmental risk 

factor only has its effect on the phenotype in the presence of the greatest genetic risk (e.g., in 

persons with two copies—homozygous—of the risk allele).

The increase in cG×E research followed from the rather disappointing lack of significant and 

replicable main effects for specific genetic polymorphisms on individual differences and 

major mental disorders. Normative personality traits, for example, have approximately 50% 

heritability (Bouchard & Loehlin, 2001) but candidate gene studies failed to find any 

significant, replicable loci with an appreciable effect size (Munafo et al., 2003). 

Explanations for the failure of candidate gene studies include generally underpowered 

studies and the fact that many relevant polymorphisms may not be in the protein coding 

region of the genome, but instead outside of well-characterized genes that were 

hypothesized as potential candidates (Duncan, Pollastri, & Smoller, 2014). A huge 

technological advance in gene-hunting techniques, genome-wide association studies 

(GWAS) were able to search across first thousands and currently millions of single 

nucleotide polymorphisms (genetic variants). GWAS led to much more successful 

replication, but the total percentage of variance explained by this technique was still much 

lower than the total heritability of phenotypes as estimated by twin and family methods 

(Manolio et al., 2009). Several explanations have been proposed to explain this “missing 

heritability” (for a review, see Manuck & McCaffery, 2014). First, the molecular genetic 

architecture of most studied phenotypes could be due to a larger number of common variants 

of much smaller effect size than previously thought, requiring larger than anticipated 

samples to identify these variants. Second, complex phenotypes (e.g, psychiatric disorders) 
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may be due to structural variants (e.g., copy number variants, such as deletions or insertions) 

or rare variants (alleles present in <1% of the population) of large effect size that are not 

well captured by GWAS, which tends to include DNA markers that are fairly common in the 

population. Third, the accuracy of heritability estimates could have been affected by 

nonadditive genetic effects (dominance or epistasis).

Another possibility is that genes influencing complex diseases/disorders might only be 

expressed in the right environmental circumstances. In a seminal paper, Caspi and 

colleagues (2002) showed that the likelihood of depression and number of depressive 

symptoms was greatest among those with both a positive history of environmental risk and 

the risky (two copies of the short version of the allele) version of the serotonin gene 5-
HTTLPR. Since that study was published, the cost of genotyping has decreased 

substantially, allowing researchers to add molecular genetic data to everything from highly 

focal lab-based studies (Burt, 2009) to larger, ongoing studies like the Health and Retirement 

Study (The Health and Retirement Study: A Longitudinal Study of Health). Over the past 

decade, there has been a wealth of published cG×E papers, examining the likelihood of an 

outcome as a function of risk allele and environmental risk factor (for recent reviews, see 

Duncan et al., 2014; Manuck & McCaffery, 2014). Unfortunately, the problems with 

replicability found for candidate gene, linkage, and association studies are also an issue for 

cG×E. Indeed, numerous replication attempts have been made of the original Caspi et al. 

(2002) findings on 5-HTTLPR and life stress on depression; as reviewed elsewhere (Duncan 

et al., 2014), two meta-analyses have failed to support the original finding (Munafò, Durrant, 

Lewis, & Flint, 2009; Risch et al., 2009), and the one meta-analysis in support of the 

interaction (Karg, Burmeister, Shedden, & Sen, 2011) has been criticized on methodological 

grounds (Duncan & Keller, 2011). A recent review found 103 cG×E studies in the first 

decade of research; only 6 had two or more replication attempts, and of these none had 

unequivocal support for the initial finding (Duncan et al., 2014). Like candidate gene 

studies, cG×E studies may be underpowered. Further, one report suggests publication bias in 

favor of positive cG×E for reports of novel findings as compared to much lower rates for 

replication attempts (Duncan & Keller, 2011). The replication failures of both candidate 

gene and cG×E studies led the editor of Behavior Genetics to establish strict new guidelines 

for consideration of publication, including: submission of a well-powered replication study, 

or a novel finding with adequate power; exploratory or novel finding meeting statistical 

criteria for genome wide significance; or meta-analysis of the same genetic variant and/or 

environmental variable and behavioral outcome (Hewitt, 2012).

Quantitative Gene × Measured Environment Interaction

Like measured G×E, quantG×E work also includes an environmental “moderator” but 

estimates genetic risk from known degrees of similarity among different types of relatives. 

As with classic behavior genetic approaches, quantG×E does not identify which genes are 

involved at a molecular level. Instead, biometric modeling suggests the presence of 

quantG×E when genetic influences differ as a function of the moderator; we then infer that 

the effect of additive genetic influence across all genes that directly impact the phenotype 

(most likely many loci of very small effect size) will depend on the level of the moderator. 
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Even though quantG×E is not testing the moderating influence of a specific gene, however, 

there are advantages to quantG×E over cG×E.

First, quantG×E allows for estimation of aggregate genetic and environmental effects, 

instead of focusing on the environmental interaction with a specific candidate gene that may 

turn out to be spurious. Findings from genome-wide association studies (GWAS) suggest 

that the genetic architecture of complex human behavioral phenotypes, from mental illness 

to educational attainment, consists of hundreds if not thousands of genes of very small effect 

size (Chabris et al., 2013). If the main effects of genetic influences are the result of so many 

different individual genes, it stands to reason that when G×E occurs, it is the expression of 

many genes that is being moderated by the environmental context. Thus, quantG×E, which 

identifies aggregate moderation of all additive genetic influences, has a statistical and 

methodological advantage over cG×E, which by definition will only examine the interaction 

at one gene.

Second, quantG×E tests for not only variation in heritability but in environmental influences 

as well. For example, some quantG×E studies have found non-zero estimates of shared 

environment at extreme ends of the moderator variable (e.g., Krueger et al., 2008; South & 

Krueger, 2008), and shared environmental influences are notoriously difficult to find in 

“classic” twin modeling. Identifying contexts in which the shared or unique environmental 

influences on a phenotype are notable influences on etiology has important implications for 

designing and implementing new forms of prevention or intervention.

Third, there are many existing twin databases that have many nuanced and careful measures 

of the environment, have very large sample sizes, and could be used to conduct quantG×E 

studies; cG×E studies are often underpowered (Duncan & Keller, 2011), make use of 

existing genetic information in a database instead of collecting genes based on a priori 

hypotheses of biological mechanisms (Young-Wolff, Enoch, & Prescott, 2011), or require 

returning to an already-existing sample to collect new genetic data. That is not to say that 

issues of power and sample size are straightforward when it comes to quantG×E. For 

instance, there has been a healthy debate in the literature surrounding the different quantG×E 

models and how they relate to false positives (van der Sluis et al., 2012; van Hulle et al., 

2013). van der Sluis and colleagues suggest that the extended univariate moderation model 

has greater power to detect significant moderation compared to the bivariate moderation 

model, as long as the moderation is not on the covariance common to the moderator and the 

outcome. Further, some warn that what looks like significant moderation may actually be 

masking nonlinear effects of the moderator on the outcome (van Hulle et al., 2013). Van 

Hulle et al. articulated procedures for formally testing quantG×E moderation against 

nonlinear main effects and conducted simulations with samples of 500 pairs and 2000 pairs. 

For example, rejecting a quantG×E model with nonlinear main effects in favor of the 

bivariate moderation model with moderation only on A would take a sample of up to 910 

twin pairs for 90% power; much smaller sample sizes were required for omnibus tests of 

moderation on A, C, and E, which is what is often done and reported in the literature. They 

reported that with samples of 2000 twin pairs it was generally possible to reject a model that 

was not the “true” model (whether it was the Purcell moderation model or not), but 

concluded that tests for GxM are generally underpowered. The model simulations reported 
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by Van Hulle et al. are complex, as they considered several competing models (with or 

without G×E, with or without nonlinear main effects) and moderation on all, some or none 

of the ACE parameters. We agree with their recommendation for always reporting parameter 

estimates from quantG×E studies as part of any research report; the size of the moderation 

effect in different samples drawn from different populations will aid in issues such as 

determining power and sample size for model fit indices (e.g., likelihood ratio tests and 

BIC).

Having elucidated the differences between quantG×E and cG×E, we can now turn to 

describing how, instead of seeing these methods as competing, they are really best thought 

of as complimentary. From a practical standpoint, quantG×E is a way of determining where 

to direct the time and money necessary for molecular genetic inquiry. Studies now show that 

the heritability of alcohol use is greater among adolescents with peers who use alcohol (Dick 

et al., 2007), in urban areas versus rural ones (Legrand et al., 2008; Rose et al., 2001), 

among girls with less parental closeness (Miles et al., 2005), in women without a religious 

upbringing versus women with such an upbringing (Koopmans et al., 1999), and in 

unmarried women versus married women (Heath et al., 1989). Our own work has shown that 

genetic influences on alcohol use are higher among individuals with low levels of SES 

(Hamdi, Krueger, & South, in press) or with distressed marriages (Jarnecke & South, 2014). 

These studies of quantG×E point toward particular segments of the population which may 

prove to be more fruitful for gene-finding efforts. Further, establishing a replicable effect 

using quantG×E may then reduce the chances of obtaining a null effect with cG×E. As noted 

above, cG×E are notorious for difficulties with replication. To our knowledge, there has been 

no comprehensive meta-analysis of all quantG×E studies conducted since Purcell's (2002) 

model was published. A review of quantG×E for alcohol and related phenotypes found 

significant quantG×E for almost all studies reviewed (14 of 16), and for all studies that used 

twin data to examine qunatG×E, the pattern was in the same direction (greater genetic 

influences in more permissive environments). As we review below, replication of one of the 

first studies in this area, moderation of heritability for IQ by SES (Turkheimer, Haley, 

Waldron, D'Onofrio, & Gottesman, 2003), has been less straightforward. However, the 

existence of similar phenotypes and environmental measures across different already 

existing twin studies suggests that it would be feasible to attempt numerous replications 

using quantG×E before moving to the more expensive step of molecular genetic work.

We use the example of physical activity and genetic influences on body mass index to show 

how quantG×E can effectively direct molecular genetics research. Classic biometric 

modeling approaches have shown that BMI is robustly heritable, with heritability estimates 

ranging from .45 to .84 in men and .64 to .85 in women in a sample of 37,000 twin pairs 

ranging from age 20 to 39 (Schousboe et al., 2003). Using biometric moderation to examine 

quantG×E, studies have shown that heritability of BMI is moderated by certain 

environmental factors, including physical activity (Mustelin, Silventoinen, Pietilainen, 

Rissanen, & Kaprio, 2009). Recently, a new study demonstrated that genetic risk for BMI, as 

measured by a risk score across 12 SNPs in obesity-susceptibility loci, was moderated by 

physical activity, such that the association between genetic risk score and BMI was greater 

in sedentary individuals (Li et al., 2010). We see this as a blueprint for future work that 

combines quantG×E and cG×E; the wealth of data from existing twin and family studies 
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alone on measured environmental variables and phenotypes of interest to social scientists 

could be used to help narrow the scope of focus for molecular genetics researchers.

Conceptual Models and Corresponding Quantitative G×E Model

In this section, we describe four broad theoretical models that have been posited to explain 

myriad phenotypes related to social inequality (e.g., personality, psychopathology, health). 

For each, we describe how such a theoretical model would be supported empirically by 

biometric moderation modeling. We then illustrate how work to this point has, or has not, 

supported each theory. We focus on variables of particular importance to social inequality—

cognition and physical health. Table 1 provides a brief summary of each of the four theories 

as well as a theoretical origin paper and an empirical example of quantG×E. Note that even 

though we present these models as distinct, it is entirely possible that more than one model 

will be necessary to explain the pattern of G×E found for a specific combination of 

moderator and phenotype. That is, these models are best thought of as useful heuristics that 

can be used to interpret the effects found in these quantG×E studies, but the findings from 

any one specific study may suggest the plausibility of more than one model.

Diathesis-Stress

The diathesis-stress model is particularly well known in the field of psychopathology, but 

has been broadened to include outcomes as diverse as subjective well-being (Burns & 

Machin, 2013), academic achievement (Jaekel, Pluess, Belsky, & Wolke, 2014), and even 

chronic pain (Turk, 2002). This model posits that a diathesis, or predisposition in the form of 

premorbid risk factors, for the phenotype (generally an undesirable outcome) lies dormant 

until it is triggered by some sort of stressor. The diathesis can be genetic, biological, or even 

cognitive, and the stressor can range from major, acute life event to minor, chronic daily 

hassles (Monroe & Simons, 1991). This fits well within the context of G×E, if we think of 

additive genetic influences as a “distal” diathesis and a measured environment as a stressor 

which triggers the expression of those genetic influences; indeed, Shanahan and Hofer 

(2005) have referred to this as contextual triggering. It is important to remember, however, 

that the diathesis itself may have an effect on whether the environment is experienced at all. 

This is known as gene-environment correlation (rGE), of which there are three types: active 

rGE, in which a person's genetically influenced characteristics lead them to choose certain 

environments; evocative rGE, in which those same traits evoke a reaction from others in the 

environment; or passive rGE, in which the genetically-influenced characteristics of one's 

parents influence the environment that a person experiences growing up, such that the family 

environment and the genotype one inherits are correlated. Gene-environment correlation 

cannot be directly tested in classic twin study approaches or the univariate moderation 

model, although the extended Purcell (2002) moderation model does estimate genetic and 

environmental overlap between the moderator and outcome, which can be used to infer rGE.

Diathesis-Stress in quantG×E Modeling—The diathesis-stress model would be 

supported if biometric modeling demonstrated that genetic influences were greater in the 

riskier environment. A possible hypothetical example is presented in Figure 2 (Panel A). As 

shown, our theoretical environmental moderator is on the X axis in standard deviation units, 

South et al. Page 10

J Pers. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from a very risky environment marked by high levels of stress (-2 SD) to very low risk 

environment with little or no stressors (+2 SD). The environmental moderator variable could 

range from a more global risk factor that sits more distally in each individual's ecosystem 

(e.g., socioeconomic status) to a more proximal variable that affects the person's 

microsystem (e.g., relationships with romantic partners, friends, parents). Following from 

the diathesis-stress model, additive genetic influences are greatest in the environment 

marked by the most stress (at -2 SD from the mean) and decrease from high to low levels of 

stress. Conversely, the nonshared environment (E) and the shared environment (C) increase 

from high to low levels of stress. Of note, these are standardized proportions of variance, 

such that the total variance in the phenotype has to total to one at every level of the 

moderator. Purcell (2002) recommended also plotting and presenting the results of the 

unstandardized variance components. Shown in Figure 2 (Panel B) is one possible example 

of the raw ACE variance components that lead to the standardized proportions of our 

imaginary example in panel A. The raw genetic variance still peaks at the riskiest end of the 

moderator, and decreases until it is lowest at the “least stressful” levels of the moderator. 

Note, however, that the total amount of variance in the phenotype is greatest in the most 

stressful end of the population. This is found rather commonly in quantG×E models that use 

a moderator specifically designed to assess maladaptive contexts, like conflict with parents 

or stressful life events (e.g., Hicks, South, DiRago, Iacono, & McGue, 2009). It makes 

intuitive sense that there would simply be more variation in the outcome variable when the 

environment is marked by greater stress. Because there is more variation at the highest levels 

of environmental stress, even though the raw nonshared environmental variance decreases 

from high to low levels of stress and the shared environmental variance is essentially flat 

(Panel B), the standardized proportions of variance for both increase (Panel A). Again, this 

shows the importance of plotting and presenting both raw and standardized variance 

components.

Illustrative Example: Body Mass Index—Much of the support for the diathesis-stress 

model in quantG×E comes from work on an important indicator of physical health—body 

mass index (BMI). In early work in this area, Johnson and Krueger (2005a, 2005b) used the 

bivariate Purcell (2002) biometric moderation model to examine whether body mass index 

and number of chronic illnesses were affected differentially by genetic and environmental 

influences dependent on income and perceived life control. Analyses were conducted using 

the twin sample from the Midlife in the United States Study (MIDUS; Kessler, Gilman, 

Thornton, & Kendler, 2004), notable for being one of the few nationally representative adult 

twin samples in the US. They found greater genetic variance in BMI at lower levels of 

income (used as a proxy for socioeconomic status), even after controlling for education level 

and presence vs. absence of insurance coverage. When perceived control was the moderator, 

genetic variance in BMI decreased from low to high levels of perceived control and shared 

environment increased slightly at higher levels of control. The authors concluded that the 

risky environment (one marked by low income and low control) is the stressor that 

ultimately changes a physiological mechanism, leading to the expression of a genetic 

predisposition to poor health. Of course, finding that genetic variance is greater in “riskier” 

environments does not necessarily mean that a stressful environmental context (e.g., low 

income) is triggering genetic influences. Indeed, it is possible that the less risky environment 
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(e.g., high income) is acting to compress genetic variance (Johnson & Krueger, 2005a; see 

also Social Control and Social Compensation, below).

Subsequent work has largely acted to solidify these earlier findings on BMI across a variety 

of moderators. For instance, Mustelin and colleagues (2009), using the FinnTwinn16 sample 

(age range 22-27), found that the genetic variance in BMI decreased with increasing 

physical activity. In a study of adult twins from the University of Washington Twin Registry, 

researchers examined quantG×E for BMI as a function of sleep duration (Watson et al., 

2012). They found significant moderation of genetic and shared environmental parameters, 

such that the proportion of variation due to genetics was greatest at the lowest levels of sleep 

duration and decreased as sleep duration increased, while shared environmental influences 

increased from low to high levels of sleep. Not all findings have replicated perfectly, 

however; using the Danish Twin Registry, Johnson and colleagues (Johnson, Kyvik, Skytthe, 

Deary, & Sorensen, 2011) examined education as a moderator of BMI. In partial replication 

of previous findings, they found that genetic variance was greater for women, but not men, 

with lower levels of education; in both genders, shared environmental variance decreased 

from low to high levels of education, resulting in a heritability of BMI that was greater at 

higher levels of education for both men and women (a finding in contrast to what would be 

expected for the diathesis stress model). The authors suggested that partial replication of 

previous work (particularly Johnson & Krueger, 2005a, 2005b, using the MIDUS study) 

could be due to several factors: lack of power resulting from the smaller US sample, cultural 

differences between the US and Denmark, or differences in the two moderators (income vs. 

education). An important take-home message for researchers from this early work may be 

the importance of combining data across samples, in order to increase sample size and to 

take into account possible cultural differences in the phenotypes (both moderator and 

outcome) of interest. For instance, the IGEMS (Interplay of Genes and Environment across 

Multiple Studies; Pedersen et al., 2013) consortium was recently formed to combine data 

across eight longitudinal twin studies. We look forward to the progress they make in 

examining a multitude of outcomes as a function of various factors related to social 

inequality, including early life adversity.

Bioecological Model

The bioecological model predicts that genetic influences are maximized in stable and 

adaptive environments (Bronfenbrenner & Ceci, 1994). Specifically, the model assumes that 

stable environments permit positive and enduring interactions—termed proximal processes
—between individuals and their immediate surroundings, which enable them to actualize 

their genetic potentials. Two things should be noted about this theory. First, the authors were 

most interested in the development of effective physiological functioning, and what 

environments would allow individuals to flourish. Indeed, Shanahan and Hofer (2005) 

specifically refer to a G×E interaction in which the environment leads to an adaptive or 

beneficial outcome as “social context as enhancement.” Not surprisingly, many quantG×E 

studies that operate from this paradigm are interested in adaptive functioning (e.g., cognitive 

ability, see below), but many other studies have appeared in the literature that examine how 

genetic potential for maladaptive processes may be actualized under certain environmental 

contexts (e.g. genetic influences on psychopathology based on SES; South & Krueger, 2011; 
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Tuvblad, Grann, & Lichtenstein, 2006). In this case, what researchers are examining is the 

“genetic potential not for expressing dysfunctional outcomes but for buffering against and 

thus reducing them” (Bronfenbrenner & Ceci, 1994, p. 582). Second, the authors approached 

this theory with a heavy emphasis on heritability, and as such had a very specific hypothesis 

about how genetic influences would be affected by the environment. In a low-risk, enriched 

environment, that is, one marked by lower levels of social inequality (poverty, poor access to 

health care and education) we would expect less variability in the phenotype and greater 

genetic influences. This idea is also consistent with the conceptually related “social push” 

model (Raine, 2002), which posits that genetic influences on maladaptive behavior are more 

evident in the absence of environmental risk factors that push individuals towards such 

behavior.

Bioecological Model in quantG×E Modeling—From Bronfenbrenner and Ceci's 

(1994) writings on the bioecological model, we can derive explicit hypotheses about the 

pattern of findings from quantG×E. As they hypothesized, when proximal processes (e.g., 

parent-child relationship) are strong, heritability will be greater. Figure 2 (Panel C) presents 

a hypothetical example of findings from a quantG×E model supporting the bioecological 

theory. As shown, the genetic influences on the outcome increase from an environment 

marked by risk to an environment that is relatively more enriched, while nonshared 

environmental influences are greatest at the riskiest levels of the environmental moderator. 

For illustrative purposes we have plotted the proportion of shared environmental variance 

such that it increases somewhat from high to low levels of risk; it is possible that shared 

environmental influences may not change as a function of the moderator (particularly in 

adult twins). One advantage of biometric moderation models is that they allow for an 

empirical test of whether moderation is significant only for the A and E variance 

components but not C. What we would expect for the bioecological model is a crossing of A 

and E influences, with E showing greater expression at the risky end of the moderator and A 

showing greater expression in the enriched end of the moderator.

Illustrative Example: Cognition—There is a long and extensive history of research 

examining the genetic and environmental influences on cognitive ability, particularly 

intelligence. Indeed, intelligence is one of the most consistently heritable individual 

difference phenotypes that has ever been studied, routinely demonstrating heritability 

coefficients ranging from 60-80% (Plomin, DeFries, Knopik, & Neiderhiser, 2012). More 

than a decade ago, however, researchers made headlines for a study that suggested the 

genetic influences on intelligence may differ as a function of socioeconomic status (SES). 

Using a large sample that was notable for including children from families at the extreme 

low end of SES, the researchers (Turkheimer et al., 2003) showed that the genetic influences 

on intelligence were greatest among individuals in the highest SES (a linear combination of 

occupational status, parental education, and income), while for individuals at the low end of 

SES, most of the variance in intelligence could be explained by nonshared environmental 

factors. The authors interpreted this finding as evidence of Bronfenbrenner and Ceci's (1994) 

bioecological sensitivity to context model—that genetic influences on a phenotype will be 

most expressed in an environment that allows for flourishing. There had been previous 

studies that examined whether genetic influences on cognitive ability varied as a function of 
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aspects of SES (as reviewed in Hanscombe et al., 2012), but the Turkheimer et al. study was 

the first to use Purcell's (2002) moderation model.

Since Turkheimer and colleagues (2003) published their findings, many research groups, 

including some of the original authors, have attempted to replicate these findings in different 

samples that vary in age, assessment of “intelligence” or “cognition”, and measure of SES. 

For instance, successful replications of the moderation of genetic variance have been found 

for cognitive ability in children as young as age 2 (Tucker-Drob, Rhemtulla, Harden, 

Turkheimer, & Fask, 2011), for math ability in 2- and 4-year old children (Rhemtulla & 

Tucker-Drob, 2012), and for cognitive outcomes (from the National Merit Scholastic 

Qualifying Test) in middle- to upper-class 17-year old twins as a function of parental income 

(but not necessarily parental education; Harden, Turkheimer, & Loehlin, 2007). In a test of 

the moderation of ACE influences in an adult sample (ranging in age from 24-84), 

researchers found that childhood SES moderated total and genetic variance in intelligence 

measured in adulthood, with the greatest phenotypic and genetic variance in intelligence 

found at the highest levels of childhood SES (Bates, Lewis, & Weiss, 2013).

There have also been failures to replicate Turkheimer and colleagues' original (2003) 

findings. Using a large sample of twins from the Twins Early Development Study based in 

the United Kingdom (Hanscombe et al., 2012), researchers examined the moderation of 

ACE influences on cognitive ability at eight different ages (2, 3, 4, 7, 9, 10, 12, 14) as a 

function of different indices of SES (a variation of parent education, occupation, and 

income). Out of 17 possible models (three SES indices at different ages), only one showed 

evidence of genetic moderation (age 10), and it failed to replicate when alternative SES 

indices were used. Instead, the greatest support across ages and indices of SES was for 

moderation of shared environmental variance, with less shared environmental variance found 

at the highest levels of SES. Similarly, another study in an adult sample drawn from the 

Netherlands Twin Registry also failed to find evidence of moderation of genetic influences 

on IQ, using both more distal (parents education level) and proximal (partner's education 

level, urbanization level, mean real estate price of residential area) indices of SES (van der 

Sluis, Willemsen, de Geus, Boomsma, & Posthuma, 2008); there was some evidence, 

however, that shared environmental influences were greater at higher levels of SES for older 

male twins. In a study using an all-male sample from the Vietnam Era Twin Registry, there 

was no evidence of moderation of genetic or environmental influences on an index of 

general cognitive ability (the Armed Forces Qualification Test) as a function of parental 

education (Grant et al., 2010).

In the most recent replication attempt, Kirkpatrick and colleagues (2014) used a combined 

sample of twins and non-twin sibling pairs from the United States. They used rearing-parent 

data from these offspring to determine family-level SES variables (parents' occupational 

status, educational attainment, annual household income) and examined all possible 

combinations of moderation on the A, C, and E paths to IQ. They concluded that there was 

moderation on genetic influences, no moderation of the shared environment, and moderation 

on the nonshared environment was equivocal at best; genetic moderation was such that 

genetic influences were greatest among those with highest family-of-origin SES. Moderation 

effects were not age dependent, meaning there was no evidence that moderation on certain 
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parameters might be present in children but disappear by adulthood. They also suggested 

that differences in findings across the different studies to date could mean that the 

moderation of genetic influences on IQ is a result specific to a certain nationality (US) and 

SES variable (income). We point to the similarity in mixed findings for SES and BMI (see 

above), in which significant genetic moderation found when income and a US sample were 

used (Johnson & Krueger, 2005a) was not fully replicated when education and a European 

sample were used (Johnson et al., 2011). This again cements the importance of synthesizing 

both the outcome and the environmental measure in order to accurately compare and 

contrast results across studies.

Differential Susceptibility

What if the diathesis-stress and bioecological models are both right, for the same phenotype 

and environmental moderator? It is possible that the risky end of an environment (e.g., very 

low SES) allows for the expression of genetic vulnerability to poor outcomes, and that the 

enriched end of the environment (e.g., very high SES) also allows for the genes for good 

outcomes to “will out.” Ellis and Boyce (2008) refer to this model as the biological 

sensitivity to context model, or the Orchid hypothesis; like that very particular flower, some 

individuals may need just the right combination of variables in the environment to flourish, 

while others, like a dandelion, will do well in any environment. Belsky and Pluess (2009) 

have described the differential susceptibility model as one in which the same individual who 

may be genetically predisposed to suffer the most from risky environments may also benefit 

the most from environments without adversity. In other words, human beings differ in their 

plasticity to environments, with some being far more susceptible to the effect of both 

positive and negative environments. As an example, they point to the findings from the Caspi 

et al. (2003) study on depression, life stress, and 5-HTTLPR. While the focus of the findings 

was on greater depression in those with a combination of the risk allele and life stress, the 

results also demonstrated that individuals at lowest risk were those with the risk allele and 

no history of life stress. Belsky and Pluess suggest that these cross-over interactions, in 

which those who demonstrate the greatest likelihood of the outcome when they have the 

presence of genetic risk and environmental stressor also have the lowest likelihood of the 

outcome in the absence of either risk or stressor, are demonstrative of the differential 

susceptibility model. More recently, other researchers have laid out more explicit criteria for 

distinguishing diathesis-stress from differential susceptibility, with the concern that some 

findings may be incorrectly interpreted as diathesis-stress because they fail to evaluate for 

the cross-over inflection point (Roisman et al., 2012).

Differential Susceptibility in quantG×E Modeling—To our knowledge, there are no 

known guidelines for establishing differential susceptibility in quantG×E models. Since 

genes influence individuals' plasticity, individuals with certain genetic variants can have the 

worst outcomes in negative environments yet enjoy the best outcomes in positive 

environments, compared to individuals with other variants of the same gene. Extending the 

plasticity model to predictions about the cumulative effect of all genes, the model would 

predict that aggregate genetic influences are greatest at both ends of the environmental risk 

continuum. As shown in Figure 2 (Panel D), we would expect that genetic influences on the 

phenotype would be highest at the most extreme ends of the moderator variable, forming a 
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U-shaped curve. In our example, we have artificially constrained C to be essentially flat 

across all levels of the moderator; because the total proportion of variance must add up to 

100, nonshared environmental influences would parallel genetic influences in the opposite 

direction, increasing at the average levels of the moderator but decreasing at the extreme 

ends.

Illustrative Example: Marital Satisfaction and Physical Health—To date, there has 

been only one empirical example in quantG×E that supports the differential susceptibility 

hypothesis, along the guidelines we laid out above. Using the MIDUS adult twin sample, 

South and Krueger (2013) demonstrated that the etiological components of physical health 

differ depending on a person's marital relationship quality. The heritability of physical 

health, as measured by subjective perceptions of health, was greatest among those with very 

distressed marriages (h2=.38) and with very satisfying marriages (h2=.30). Nonshared 

environmental influences (as a proportion of total variance) were most elevated at average 

levels of marriage quality, and shared environmental influences actually increased from low 

to high levels of marital quality. Increases in the shared environment at the extremes of the 

moderator have also been found for parent-child conflict and adolescent personality (i.e., 

positive emotionality; Krueger, South, Johnson, & Iacono, 2008), and marital quality 

moderating internalizing psychopathology (South & Krueger, 2008) again suggesting that a 

notable benefit of these quantG×E models is the ability to identify when aspects of the 

rearing environment have the greatest impact on development.

Social Control and Social Compensation

So far, we have reviewed a model that focuses on genetic expression in a risky 

environmental context (diathesis-stress), genetic expression in an enriched environment 

(bioecological), and genetic expression at the extremes of a moderator that ranges from very 

bad to very good. Our final model focuses on dampening of genetic expression in the 

presence of the right environmental contexts. Here we group together two types of 

interaction posited by Shanahan and Hofer (2005) as they are conceptually overlapping and 

result in similar quantG×E results. Both involve the presence of a genetic diathesis and a 

context that prevents the expression of that diathesis. In the case of social control, the 

environment is one where constraints are imposed by structural processes or social norms. 

For social compensation, the environment is one that is notable either for the absence of 

stress or the presence of enriching properties. In essence, the control/compensation models 

result in the same pattern as the diathesis-stress model, but focusing on the opposite end of 

the interaction. Whereas the diathesis-stress model emphasizes the combination of genetic 

predisposition and presence of stress, control/compensation focuses on the circumstances 

that inhibit or lower genetic influences on an undesirable outcome. Thus, a quantG×E model 

supporting control/compensation would look much like Panel A in Figure 2. But instead of 

an environmental risk factor where the environment is a stressful trigger (e.g., delinquent 

peers) we could substitute an environmental context that constrains the possibility of the 

outcome for any individual (e.g., parental monitoring). In the case of an outcome like 

adolescent smoking, we would posit that at high levels of parental monitoring (+2 SD of the 

X axis) fewer individuals in general would smoke and any genetic influences on smoking 

would be dampened by the constraints imposed by the environment. In fact, this is exactly 
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what happens; genetic influences on adolescent smoking decrease from low to high levels of 

parental monitoring (Dick et al., 2007). Again, there are many similarities between the 

diathesis-stress and control/compensation models, and determining whether the findings 

from a quantG×E study support one versus the other may be dependent on the environmental 

measure, and whether it assesses a putatively stressful or maladaptive risk factor or a 

protective factor that either constraints or possibly enriches individuals in that context.

Implications for Theory and Research

In this review, we have argued for the continued relevance of biometric modeling techniques, 

even in this age of increasingly common molecular genetic studies, particularly as applied to 

phenotypes related to social inequality. Specifically, we contend that biometric moderation 

modeling of latent genetic and environmental influences as a function of measured 

environmental contexts has the potential not only to inform the search for measured genes 

for things like personality, psychopathology, well-being and other indicators of social 

inequality, but also to add to our knowledge base of developmental phenotypes related to 

social inequality through theory testing. In this section, we lay out our final thoughts on how 

the study of social inequality can incorporate quantG×E to test theory and ultimately 

develop interventions that can be applied at multiple levels.

We have reviewed how early failures and mixed findings from candidate gene studies led to 

the search for cG×E. There are many practical advantages of quantG×E over cG×E, and 

given the turn in the field toward much stricter scrutiny of cG×E, quantG×E might fit well as 

a first step for identifying the presence of genetic moderation and the environmental context 

of that moderation. We readily acknowledge that more recent work in molecular genetics is 

faring much better than early linkage, candidate, and association studies (Sullivan, Daly, & 

O'Donovan, 2012). Unlike these earlier techniques, GWAS search across the genome for 

differences in single nucleotide polymorphisms (SNPs) and are unbound from a priori 

hypotheses about candidate genes. GWAS studies have improved upon previous methods 

and have produced replicable results for physical health (e.g., the FTO gene link to body 

mass index, Frayling et al., 2007) and psychiatric disorders (Sullivan et al., 2012). For 

instance, one of the most recent studies of schizophrenia used genome-wide genotype data 

from 36, 989 cases and 113,075 controls and identified 128 significant associations across 

108 loci; of note, most (75%) were in protein-coding regions of the genome and many had 

strong expression in the brain or in tissues with important roles in immunity (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014).

Finding individual genetic variants that contribute to the outcome of interest remains 

challenging, but studies suggest the importance of sets of polymorphisms that collectively 

contribute to variance in the phenotype (e.g., Purcell et al., 2014). Earlier, we briefly 

mentioned the use of polygenic risk scores—these composite scores are a sum across a 

number of genetic markers (i.e., risk alleles) that may not achieve significance on an 

individual basis in reasonably sized samples, but as a group are significantly related to a trait 

or outcome of interest (for a more complete review of this method, see Wray et al., 2014). 

The genetic markers for the polygenic score are often chosen based on having the strongest 

p values in a GWAS discovery sample (and are often weighted according to effect size), so 
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determining the initial composite still requires the time and resources of large discovery 

samples. Further, results will be limited by the size of the sample (some may be 

underpowered to detect effects) and the percentage of variance in the trait explained in that 

sample (Dudbridge, 2013). The advantage of polygenic scores is that once the composite is 

determined (possibly from markers identified from previous GWAS) that composite score 

can be tested in a new target sample of individuals; further, the alleles chosen for inclusion 

in the polygenic risk composite do not have to meet the stringent criteria often required for 

GWAS significance (and in fact, risk scores at times include all SNP scores, some of which 

may simply be noise). To date, polygenic scores have been used to examine the variance 

explained in personality, psychopathology, and cancer (Dudbridge, 2013; Wray et al., 2014). 

Only very recently, researchers have begun to test whether the effect of these “gene sets” on 

a phenotype are moderated by a measured environmental variable (Li et al., 2010; Salvatore 

et al., online ahead of print). We see this as directly analogous to quantG×E; both examine if 

environmental contexts change the relative importance of a genetic composite, whether it is 

all genes (quantG×E) or a subset of genes that may or may not contribute to the phenotype 

under study (polygenic G×E). Indeed, quantG×E may serve as an important first step in a 

program of research that aims to determine when and where to direct molecular genetic 

efforts.

Ultimately, any gene finding efforts directed to variables related to social inequality are 

interested in identifying the biological pathways and mechanisms that lead to things like 

poverty, poor physical and mental health, and subjective well-being, among other outcomes. 

Studies of quantG×E can help with this, not only as a step in identifying genetic variants, but 

also by empirically testing theoretical models of gene-environment interplay. In this article, 

we have reviewed four developmental paradigms that lead to specific predictions about the 

pattern of quantG×E that would be found for each model. Three models—diathesis-stress, 

bioecological, and differential susceptibility—each posit the expression of genetic influences 

(i.e., higher levels of heritability) as a function of the right environmental contexts. The 

fourth, social control/compensation, shares the same shape as the diathesis-stress model, but 

focuses on how genetic influences might be dampened or diminished as a function of an 

environmental moderator. Thus, the pattern of moderation found when examining a 

phenotype of interest and an environmental context of interest can be matched to one of 

these models as a direct test of how genetic influences exert an effect on the outcome. We 

readily acknowledge two important caveats to these theoretical models. First, most have 

explicit predictions about how genetic influences would change as a function of an 

environmental moderator, but are silent as to how or why environmental influences would 

change depending on context. For instance, we have found support for the diathesis-stress 

model such that genetic influences on internalizing psychopathology are diminished among 

those in high-quality marriages; instead, the variance in internalizing among those with 

satisfying marriages is mainly explained by individual differences in the family and 

nonshared environment (South & Krueger, 2008). What those particular environmental 

influences are has been a point of contention among behavior geneticists for decades 

(Turkheimer & Waldron, 2000), and we can only speculate as to what environmental 

conditions might lead to depression and anxiety among individuals in a happy marriage 

(e.g., work strain, physical health problems, caring for elderly parents). The second caveat is 
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that future work may find patterns of moderation that are more complex than a simple linear 

increase or decrease of genetic or environmental influences across the range of the 

moderator. Briley and colleagues (in press) recently introduced a new nonparameteric 

approach to testing for nonlinear G×E. As an example, they demonstrated that genetic 

variance in kindergarten reading achievement peaked between 0 and 1 standard deviations 

above the mean of SES (on a z-score scale), before dropping dramatically by +2 SD. Their 

local structural equation modeling (LOSEM) application of nonparametric techniques is 

currently only available when the moderator is shared between family members, but they 

recommend extension to situations where the moderator differs between twins. To address 

these two important caveats, future researchers in this field should test hypotheses about how 

genetic and environmental influences are changing in these models of quantG×E. In doing 

so, it is worth being open minded about the possibility of complex (e.g., non-linear) relations 

that may not be optimally captured by all G×E models.

As with any method, replication across different samples that include different 

developmental periods will be paramount. To date, most quantG×E studies have been cross-

sectional or have examined aspects of the childhood environment on now-adult twins. An 

important next step will be to examine the pattern of quantG×E over time, ideally using the 

same sample measured for the same constructs over time. This would serve several 

purposes: 1) finding the same pattern of quantG×E in constructs measured over time would 

be strong evidence that the effect is not due to Type I error; and 2) determining whether a 

pattern of quantG×E persists throughout development or is only apparent at certain stages 

would speak to the importance of sensitive developmental periods; and 3) testing G×E 

longitudinally will identify if something that looks like a diathesis-stress effect at one point 

might be differential susceptibility, for instance, at another (Roisman et al., 2012). Key to 

determining the distinction between the models will be measuring the entire spectrum of the 

environment. Too many studies focus on evaluating the risk end of the spectrum; a 

commensurate focus on positive aspects of these relationships is necessary to capture all 

possible forms of G×E. Going forward, researchers should also attempt to utilize the same 

phenotype and environmental moderator across different studies of quantG×E. It is 

important to determine, when there are mixed findings across studies, if the effect is not 

replicating because it truly is not there or because it is specific to one type of moderator (i.e., 

income instead of education as a proxy for SES).

The four models that we have outlined provide researchers with theory with which to ground 

future predictions about specific combinations of phenotypes and outcomes. The difficulty, 

however, is that the predictions of competing models may seem equally plausible a priori. 

For instance, even though most of the studies examining biometric moderation of BMI 

support a diathesis stress model, one could easily imagine predicting a priori that genetic 

predispositions for good health would be most expressed in an enriched environment (i.e., a 

bioecological model). To guide thinking on how environments may impact the etiology of an 

outcome, it may be necessary to think about the functionality of that trait, particularly from 

an evolutionary standpoint. Johnson and Krueger (2005b) suggested that the direction of 

effect found for a particular combination of moderator and trait might be related to the 

relative adaptiveness of a trait. As they posited, if the trait in question is relatively adaptive, 

like high IQ, then favorable environments will allow for genetic expression of that trait and 
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unfavorable environments will suppress genetic influences (our addition in italics). If the 

trait is not adaptive, like mental illness or physical disability/disease, favorable environments 

will suppress genetic expression and unfavorable environments will allow genetic influences 
to will out. To their original interpretation we would add the corollary that there may be 

times when a genetic predisposition has the potential for being both adaptive and 

maladaptive (see the arguments that mental illness may have persisted evolutionarily 

because it brings certain advantages; (Keller & Miller, 2006), leading to genetic influences 

being expressed in favorable and unfavorable environments.

Ultimately, we would hope that testing quantG×E would lead to applied work that will 

reduce social inequality. The past ten years have seen a surge in the use of these biometric 

moderation models since they were first introduced, particularly for a handful of phenotypes 

(e.g., cognition, BMI, behavioral and substance use disorders). The findings from some of 

this work have direct practical applications; for instance, findings from quantG×E for 

cognition and related phenotypes suggest that environmental interventions are best aimed at 

those from the lowest SES groups. We see the potential for an expansion of this work into 

more phenotypes that have relevance to social inequality. Researchers could examine, for 

instance, what the pattern of quantG×E is for education, income or career attainment, and 

overall well-being. Many existing twin databases can provide a wealth of resources for 

examining quantG×E for these phenotypes, and more importantly, have excellent measures 

of the environment from greatest risk to most positive enrichment. Further, an exciting 

aspect of quantG×E models is the potential to inform interventions at the individual level. 

Again, we emphasize that quantG×E does not tell us how important genes are for any one 

specific person, but it does get us closer and closer to identifying, for specific subsets of 

individuals, the relative importance of genetics and environment. The administration of the 

current President of the United States has recently announced an investment in “precision” 

or “personalized” medicine, in which interventions are tailored to a patient based on 

individual differences in lifestyles, genetics, and environment. In this vein, we see results 

from work using quantG×E leading to the identification of certain “sensitive periods” during 

development (e.g., Roisman et al., 2012), when genetic influences are most susceptible to 

lifestyle and environmental contexts, and when interventions for the most at-risk members of 

the population can do the most good. We are still not at the point of being able to estimate an 

“individual heritability” but these models of G×E interplay are getting us closer and closer to 

a form of personalized medicine for social science phenotypes.
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Figure 1. 
Bivariate moderation model.

The model is shown for only one member of a twin pair. Genetic and environmental 

influences on the Outcome Variable vary by level of the Moderator Variable. A=additive 

genetics, C= shared environmental influences, and E=non-shared environmental influences. 

AC, CC, and EC are variance components underlying the Moderator that also influence the 

Outcome (i.e., “common components”), and AU, CU, and EU represent residual (“unique”) 

variance in the Outcome after accounting for the variance in common with the Moderator. β 
coefficients index the direction and magnitude of moderation. When all β coefficients are set 

to zero, this represents no moderation effects. Total phenotypic variance in the Outcome can 

be calculated by squaring and summing all of the paths leading to it: Var(Outcome) = 

(aC+βacM)2 + (aU+βauM)2 + (cC+βccM)2 + (cU+βcuM)2 + (eC+βecM)2 + (eU+βeuM)2.
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Figure 2. 
Example of patterns of quant G×E for different theoretical models. Genetic (A), shared 

environmental (C) and nonshared environmental (E) components of variance for an outcome 

are plotted as a function of an environmental moderator variable, shown on the X axis at five 

different levels: -2, -1, 0, 1, and 2 Standard Deviations from the Mean.

Panel (A): Diathesis-stress model plotted with standardized variance components.

Panel (B): Diathesis-stress model plotted with raw variance components.

Panel (C). Bioecological model.
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Panel (D). Differential susceptibility model.
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