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Abstract

Synthesis and in vitro evaluation of [18F](R)-N-(4-bromo-2-fluorophenyl)-7-((1-(2-

fluoroethyl)piperidin-3-yl)methoxy)-6-methoxyquinazolin-4-amine ((R)-[18F]FEPAQ or [18F]1), a 

potential imaging agent for the VEGFR2, using phosphor image autoradiography are described. 

Synthesis of 2, the desfluoroethyl precursor for (R)-FEPAQ was achieved from t-butyl 3-

(hydroxymethyl)piperidine-1-carboxylate (3) in five steps and in 50% yield. [18F]1 was 

synthesized by reaction of sodium salt of compound 2 with [18F]fluoroethyl tosylate in DMSO. 

The yield of [18F]1 was 20% (EOS based on [18F]F−) with >99% radiochemical purity and 

specific activity of 1–2 Ci/μmol (n = 10). The total synthesis time was 75 min. The radiotracer 

selectively labeled VEGFR2 in slide-mounted sections of human brain and higher binding was 

found in surgically removed human glioblastoma sections as demonstrated by in vitro phosphor 

imager studies. These findings suggest [18F]1 may be a promising radiotracer for imaging 

VEGFR2 in brain using PET.
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A key protein in the regulation of angiogenesis and vasculogenesis is vascular endothelial 

growth factor (VEGF), which is overexpressed in virtually all human tumors.1–6 In addition 

to tumors, VEGF exerts neuroprotective actions directly through the inhibition of 

programmed cell death (PCD) or apoptosis, and the stimulation of neurogenesis.7–9 Apart 

from angiogenesis, VEGF is a mediator of multiple processes enhancing blood brain barrier 

(BBB) permeability for glucose, and antioxidant activation, which indirectly results in 
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neuroprotection.10 VEGF protects against neuronal death from hypoxia and glucose 

deprivation.7,8,11,12 VEGF signaling through VEGFR2 was also shown to be required for 

antidepressants (fluoxetine, desipramine) to increase cell proliferation. Chronic 

antidepressant administration increases VEGF expression in both neurons and endothelial 

cells in the hippocampus. 13–45 Thus, VEGF is a key component in the regulation of neuron 

and vessel growth in brain and other pathologies. There are excellent reviews that detail the 

therapeutic potential of VEGF and its receptors in CNS.6,7,16,17 VEGF effects are mediated 

by a family of receptor tyrosine kinases (TKs), including VEGFR-1 (Flt-1), VEGFR-2 

(KDR or Flk-1) and VEGFR-3 (Flt-4).7,18 Of these, VEG-FR-2 appears to mediate almost 

all of the known cellular responses to VEGF. Antagonism of the VEGF pathway results in 

inhibition of angiogenesis and tumor growth in a number of tumor model systems. 19–21 

Although there has been significant advance in the imaging of tumors, there is a lack of 

agents for imaging and quantifying indices of angiogenesis. Inhibiting VEGF expression and 

interfering with angiogenesis may be a useful treatment target for tumors. It is reported that 

tumor perfusion changes dynamically during anti-VEGF treatment and that specific 

molecular markers in tumors and vasculature can be correlated with these perfusion 

changes.22–25 Noninvasive imaging of VEGFR2 is of great potential clinical importance, as 

it may identify factors contributing to tumor resistance. Positron Emission Tomography 

(PET) imaging of VEGFR2 in tumor patients at baseline and in response to chemotherapy 

treatment may also provide novel information about the mechanisms that contribute to 

therapy resistance, and allow more effective use of VEGF inhibition. The multimodality 

molecular imaging of VEGF and VEGFR with radiotracers have recently been 

reviewed.26–28 Efforts to image VEGF/VEGFR first focused VEGFR-specific uptake and 

the dynamic nature of the receptor expression in tumors as well as biological responses on 

tracing the distribution of the ligand by targeting with anti-VEGF antibodies labeled with 

124-I and 89-Zr.29–31 VEGFR-specific uptake and the dynamic nature of the receptor 

expression in tumors as well as biological responses to myocardial infarction and ischemia 

have been successfully demonstrated using these tracers.31–33 However, imaging the 

expression of a ligand in circulation using long-lived antibodies as imaging probes requires 

waiting days until the unbound tracer has cleared sufficiently from the blood and the 

nonspecific uptake has declined sufficiently for good target/nontarget contrast. Mutated-

VEGF121 (VEGFDEE) has also been developed to increase specificity for VEGFR2 and the 

results obtained were promising for potential translation to clinical studies. 34 However, 

these peptide ligands do not cross BBB and hence the tracers are limited to imaging studies 

outside the brain. An understanding of the potential therapeutic value associated with 

binding to VEGFR2 in brain requires development of selective non-peptide PET ligands. 

Therapeutic drugs that act by binding to VEGFR2 can be evaluated and their therapeutic 

dose determined by an occupancy study using such a specific PET tracer. A specific PET 

tracer could also serve as a biological marker for angiogenesis and for the evaluation of 

diseases in which changes in VEGF receptor binding occurs. For example, VEGFR2 

changes in tissue proliferation or angiogenesis can be quantified in vivo using PET. 

However, there is currently no good radiotracer for the measurement of VEG-FR2 binding 

expression in tumors and to monitor their role in angiogenesis. Racemic [11C]PAQ was 

reported as the first VEGFR2 selective PET tracer which was proved specific for kidney 

tumors in rodents.35 Radiolabeling of racemic [18F]sunitinib, [11]vandetanib and 
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[11C]chloro-vandetanib has been recently reported, however, biological evaluation of these 

tracers are not reported yet.36 All these radiotracers are 4- or 3-piperidinyl analogues of 

vandetanib (rINN, Caprelsa ZD6474), the first VEGFR2 drug approved by FDA.37,38 

Moreover, it has been reported that the (R)-enantiomer of vandetanib is 10-fold more active 

than (S)-enantiomer, also there is a better selectivity of (R)-enantiomer with respect to 

EGFR and VEGFR1.39 Herein we report the synthesis and evaluation of (R)-enantiomer of a 

viable [F-18]analogue of PAQ [18F]fluoroethyl PAQ ([18F]FEPAQ, [18F]1) as a potential 

candidate for VEGFR2 imaging with PET.

We synthesized (R)-fluoroethyl-PAQ ((R)-FEPAQ) and the corresponding desfluoroethyl-

PAQ with appropriate modifications of literature methods (Scheme 1).35,39 In brief, reaction 

of 4-hydroxy-6-methoxyquinazolin-7-yl benzoate (5) with POCl3 and N,N-diisopropylethyl 

amine and the coupling of the intermediate choroquinoline formed with 4-bromo-2-

fluoroaniline (6) in one pot, afforded 4-((4-bromo-2-fluorophenyl)amino)-6-methoxy 

quinazolin-7-ol (7) in 70% yield.39 Compound 7 upon reaction with (R)-tert-butyl 3-

((tosyloxy)methyl)piperidine-1-carboxylate (4), which in turn was obtained by the tosylation 

of commercial (R)-tert-butyl 3-(hydroxymethyl)piperidine-1-carboxylate (3), resulted in the 

isolation of BOC protected precursor using column chromatography (2–3% methanol in 

methylene chloride). The BOC protection was removed by treatment with trifluoro acetic 

acid in methylene chloride (1:1) to afford the radiolabeling precursor (R)-desfluoroethyl-

PAQ (2) in 50% yield.35 The nonradioactive standard (R)-FEPAQ (1) was obtained by 

reaction of compound 2 with fluoroethyl-bromide in 60% yield.48 The VEGFR2 binding 

affinity (IC50) of compound 1 was found to be 40 nM based on VEG-FR2 incubation 

mobility-shift KDR kinase assay using microfluidic chip to measure the conversion of a 

fluorescent peptide substrate to a phosphorylated product.49 The radiolabeling of compound 

1 was achieved in two steps (Scheme 1).40 The radiolabeling was attempted under several 

conditions and the optimal method we adopted is present here. [18F]Fluoroethyl tosylate 

([18F]FE-OTs) is prepared first by reacting [18F]F− with ethylene glycol ditosylate using a 

modified procedure reported elsewhere.41 The crude product was purified using solid phase 

extraction using C-18 Sep-Pak® to yield 70% of [18F]FE-OTs. The [18F]FE-OTs obtained is 

azeotropically dried and reacted with freshly prepared sodium salt of 2 in DMSO. The 

radiolabeled product was further purified using semi-preparative HPLC to afford [18F]1 in 

20 ± 5% yield (n = 10). The chemical identity of [18F]1 was confirmed by co-injecting with 

nonradiolabeled (R)-1 by HPLC technique. The total time required for the radiosynthesis 

was 75 min. The radiochemical purity of [18F]1 was found to be >99% and the specific 

activity in the ranges of 1–2 Ci/μmol (EOB).

After synthesizing the radioligand in consistent yield and sufficient specific activity, [18F]1 
was tested in surgically removed human glioblastoma using phosphor image 

autoradiography to determine its binding to VEGFR2 (Fig. 1).42 We choose glioblastoma 

model for the evaluation of [18F]1 because it is the most common brain malignancy, with 

high levels of VEGF and VEGFR2 expression when compared to other non-neural solid 

cancers.43–45 Additionally, studies in animal models have shown that VEGFR2 inhibitors 

suppress the growth of gliomas in vivo and cause regression of blood vessels.46,47 Frozen 

brain sections were used for the phosphor image study in quadruplicate. Slide-mounted 
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sections were incubated in Tris buffer (pH 7.4) containing 0.18 nM of [18F]1 for 60 min at 

room temperature. Adjacent sections were incubated with ZM-323881 or (R)-PAQ, the two 

known selective VEGFR2 antagonists (1 μM) to determine nonspecific binding. After the 

incubation, sections were washed with ice-cold buffer and slides were quickly dried under a 

stream of cold air and exposed to a phosphor-imaging screen with high- and low-activity 

standards for 60 min. Screens are scanned with a Packard Cyclone phosphor-imaging system 

and analyzed with OptiQuant Acquisition and Analysis software (Packard). Displacement of 

total binding was observed with both VEGFR2 ligands as evident from Figure 1.

In summary, we successfully synthesized [18F]1, a potential imaging agent for VEGFR2. 

The total time required for the radiosynthesis was 75 min from EOS using [18F]FE-OTs in 

DMSO. [18F]1 was obtained in 20 ± 5% yield (EOS) with excellent radiochemical purities 

and specific activity. Phosphor image studies indicate that this newly developed [18F]1 
ligand binds to VEGFR2 in surgically removed human glioma. The results obtained indicate 

the feasibility of using [18F]1 as a potential imaging agent to visualize VEGFR2 in brain 

using PET.
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Figure 1. 
Phosphor image of [18F]1 in glioma sections. T: total binding; NS1: nonspecific binding 

defined by blockade with ZM-323881; NS2: nonspecific defined by blockade with (R)-PAQ.
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Scheme 1. 
Synthesis and radiosynthesis of (R)-FEPAQ and (R)-[18F]FEPAQ. Reagents and conditions: 

(i) (Ts)2O, THF, 6 h; (ii) POCl3, CH2Cl2; (iii) K2CO3, THF; (iv) 4, K2CO3, THF; (v) TFA, 

CH2Cl2; (vi) fluoroethyl bromide/[18F]FEOTs, DMSO.
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