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Abstract

The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-

seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and 

depression. The involvement of the VTA in these various behaviors and disorders is paralleled by 

its diverse signaling mechanisms. Here we review recent advances in our understanding of 

neuronal diversity in the VTA with a focus on cell phenotypes that participate in ‘multiplexed’ 

neurotransmission involving distinct signaling mechanisms. First, we describe the cellular 

diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or 

GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, 

we describe the complex synaptic architecture used by VTA neurons in order to accommodate the 

transmission of multiple transmitters. We specifically cover recent findings showing that VTA 

multiplexed neurotransmission may be mediated by either the segregation of dopamine and 

glutamate into distinct microdomains within a single axon or by the integration of glutamate and 

GABA into a single axon terminal. In addition, we discuss our current understanding of the 

functional role that these multiplexed signaling pathways have in the lateral habenula and the 

nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission 

in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various 

psychopathologies including drug addiction and depression.
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Introduction

Midbrain dopamine neurons (DA) are most often associated with reward processing of both 

natural rewards (e.g., food, water, etc.) and drugs of abuse (Schultz, 2002; Wise, 2004; 

Sulzer, 2011). Over fifty years of intense research has led to the proposal that neurons 
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belonging to the ventral tegmental area (VTA), which includes but is not limited to DA 

neurons, are paramount to reward processing. Many hypotheses have been put forward 

regarding the specific function of VTA DA neurons in reward processing, such as decision 

making (Salamone & Correa, 2002; Saddoris et al., 2015), flexible approach behaviors 

(Nicola, 2010), incentive salience (Berridge & Robinson, 1998; Berridge, 2007), and 

learning or the facilitation of memory formation (Adcock et al., 2006; Steinberg et al., 

2013). However, several studies have also shown that VTA DA neurons are involved in the 

processing of aversive outcomes (Laviolette et al, 2002; Young, 2004; Pezze & Feldon, 

2004; Brischoux et al., 2009; Lammel et al., 2012; Twining et al., 2014; Hennigan et al., 

2015), fear (Abraham, Neve, & Lattal, 2014), aggression (Yu et al., 2014a,b), depression 

(Tidey & Miczek, 1996; Tye et al., 2013), and drug withdrawal (Grieder et al., 2014). Other 

hypotheses have proposed that VTA DA neurons play a more general role in processes such 

as associative learning (Brown et al., 2012), arousal (Horvitz, 2000), or general motivational 

salience and cognition (Bromberg-Martin et al., 2010).

The functional diversity associated with the VTA may be mediated, in part, by different VTA 

subpopulations of neurons. A particular advancement that may subserve the functional 

diversity of the VTA is the recent discovery of neurons that are capable of signaling using 

one or more neurotransmitters. In the present review, we cover recent literature on the 

diversity of VTA neuronal phenotypes as they relate to ‘multiplexed neurotransmission’. We 

refer the reader to recent comprehensive reviews detailing VTA cellular composition, VTA 

efferent and afferents, and VTA functions(Oades & Halliday, 1987; Fields et al., 2007; 

Ikemoto, 2007; Nair-Roberts et al., 2008; Morales & Pickel, 2012; Trudeau et al., 2014; 

Morales & Root 2014; Pignatelli and Bonci, 2015; Saunders et al., 2015; Luthi and Luscher, 

2014). Moreover, the present review does not cover co-transmission of neurotransmitters and 

neuropeptides, which has long been known and recently reviewed (Morales & Pickel, 2012). 

Here, we use the phrase “multiplexed neurotransmission” to describe neurons that are 

capable of signaling using two or more neurotransmitters. In many circuits, our 

understanding of the specific mechanisms by which neurons utilize multiple 

neurotransmitters is limited. Thus, we have chosen the term multiplexed neurotransmission 

to encompass known and unknown mechanisms of co-release and co-transmission (e.g., 

Nusbaum et al., 2001; Mestikawy et al., 2011), while also allowing for the possibility of 

independent release of individual neurotransmitters either in time or space.

Cellular Diversity in the Ventral Tegmental Area

Following the discovery of DA as a chemical neurotransmitter in the brain (Montagu, 1957), 

the DAergic neurons in the “ventral tegmental area of Tsai” (Nauta, 1958) were identified by 

formaldehyde histofluorescence (Carlsson et al., 1962). These neurons, along with other 

catecholaminergic and serotonergic neurons throughout the brain were shown to comprise 

twelve discrete cell groups (labeled as A1-A12 groups; Dahlström & Fuxe, 1964). One 

feature of the A10 group, in particular, is the heterogeneous morphology among its neurons. 

Based on cytoarchitecture, the A10 region has been divided into two lateral nuclei [the 

Parabrachial Pigmented Nucleus (PBP) and Paranigral Nucleus (PN)], and three midline 

nuclei [the Rostral Linear Nucleus of the Raphe (RLi), Interfasicular Nucleus (IF), and 

Caudal Linear Nucleus (CLi)]. Traditionally, the VTA has been considered to include just 
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the lateral nuclei (PBP, PN) (Swanson, 1982), however, modern conceptions of VTA 

function have often included the midline nuclei (RLi, IF, CLi) as subnuclei of the VTA 

(Ikemoto, 2007; Nair-Roberts et al., 2008; Morales and Root, 2014). Thus, in this review, we 

use the term VTA to define the midbrain A10 structure containing lateral (PBP, PN) and 

midline nuclei (RLi, IF, CLi). The cellular heterogeneity within the VTA subnuclei, together 

with findings showing that a single A10 neuron rarely innervates multiple structures 

(Swanson, 1982; Takada and Hattori, 1987; Lammel et al., 2008; Hosp et al. 2015), suggests 

that the VTA utilizes highly specific projections from different sets of neurons.

Dopamine neurons, defined by the expression of tyrosine hydroxylase (TH) protein (Figure 

1), are interspersed throughout all VTA nuclei, but are most prevalent in the lateral PBP and 

PN (Swanson, 1982; Ikemoto, 2007; Li et al., 2013). In addition to the co-expression of TH 

and aromatic decarboxylase (AADC), the majority of rat lateral PBP and lateral PN neurons 

co-express the dopamine transporter (DAT), D2 receptor (D2R), and vesicular monoamine 

transporter 2 (VMAT2) mRNA (Li et al., 2013). More medially within the rat PBP and PN, 

as well as within the RLi, CLi, and IF, subsets of TH-expressing neurons either express or 

lack different combinations of DAT, VMAT2, or D2 receptor (Li et al., 2013, reviewed in 

Morales and Root, 2014). Our understanding of diversity among DAergic neurons in other 

species than the rat is less understood. However, recent studies have shown that, while all 

VTA neurons in the rat VTA expressing TH mRNA co-express the TH protein, some mouse 

VTA neurons expressing TH mRNA lack TH protein (Yamaguchi et al., 2015). In addition, 

ventrally to the VTA within the interpeduncular nucleus, there is in the mouse, but not in the 

rat, a subpopulation of neurons expressing TH mRNA, but lacking TH protein (Yamaguchi 

et al., 2015; Lammel et al., 2015). So far, detailed molecular characterizations of VTA 

neurons of nonhuman primates or humans has not been reported.

Rat TH-expressing neurons within the lateral PBP and lateral PN have also been 

electrophysiologically characterized (so-called ‘primary’ neurons) based on their long-

duration action potentials and hyperpolarization-activated cation currents (Grace & Onn, 

1989). However, recent findings have shown that not all VTA TH-expressing neurons share 

these electrophysiological criteria (Margolis et al., 2006). In addition, although lack of direct 

electrophysiological responses to the mu opioid receptor agonist DAMGO has been 

proposed as a property shared by VTA DAergic neurons (Johnson and North, 1992), the 

VTA has a subpopulation of TH-expressing neurons that are directly excited or inhibited by 

DAMGO (Margolis et al., 2014). So far, it seems that hyperpolarization-activated cation 

currents, spike duration, inhibition by D2R agonist and other electrophysiological properties 

are unreliable predictors for the identification of all VTA DAergic neurons (Margolis et al., 

2006), further supporting the heterogeneity of VTA DAergic neurons.

Along with DAergic neurons, γ-aminobutyric-acid (GABA) neurons are also present in the 

VTA (Nagai et al., 1983; Kosaka et al., 1987). These GABAergic neurons are relatively less 

prevalent than the DAergic neurons, and are identified by their expression of glutamic acid 

decarboxylase (GAD) 65 or 67 mRNA, isoforms of the enzyme involved in the synthesis of 

GABA. GABAergic VTA neurons are also identified by their expression of vesicular GABA 

transporter (VGaT) mRNA. Electrophysiologically, putative VTA GABAergic ‘secondary’ 

neurons have been characterized based on the observation that these cells are hyperpolarized 
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by mu opioid agonists (Johnson and North, 1992). As with VTA DAergic neurons, VTA 

GABAergic neurons are pharmacologically and electrophysiologically heterogeneous. For 

example, approximately 60% of VTA GABAergic neurons are inhibited by the mu opioid 

receptor agonist DAMGO, but all seem to be unaffected by the GABA-B agonist baclofen 

(Margolis et al., 2012). GABAergic neurons in the VTA are known to establish local 

inhibitory connections on DAergic neurons (Johnson & North, 1992; Omelchenko & Sesack, 

2009), but have also been shown to project outside of the VTA to the ventral striatum (nAcc; 

Van Bockstaele & Pickel, 1995) basal forebrain (Taylor et al., 2014), the prefrontal cortex 

(Steffensen et al., 1998; Carr & Sesack, 2000), the lateral habenula (LHb; Stamatakis et al., 

2013; Root et al., 2014a; Taylor et al., 2014; Lammel et al., 2015), lateral hypothalamus, 

preoptic area, and amygdala, as well as to structures in the thalamus, midbrain, pons and 

medulla (Taylor et al., 2014). GABAergic neurons are scattered throughout the A10 region, 

and although a detailed subregional mapping of these neurons has not been yet reported, a 

dense group of GABAergic neurons has been identified in an area ventro-caudal to the VTA, 

referred as the ‘tail of the VTA’ (tVTA; Kaufling et al., 2009) or the rostromedial tegmental 

area (RMTg; Jhou, 2005, 2009a, 2009b; Geisler et al., 2008; Lavezzi & Zahm, 2011). The 

GABAergic neurons of the tVTA/RMTg provide a major inhibitory control to VTA DAergic 

neurons (Kaufling et al., 2010; Matsui et al., 2011).

In addition to VTA DAergic and GABAergic neurons, early electrophysiological studies of 

the midbrain suggested the possibility of glutamatergic signaling by some VTA neurons 

(Wilson et al., 1982; Mercuri et al., 1985; Sulzer et al 1998; Joyce & Rapport, 2000; 

Chuhma et al., 2004; Ungless et al., 2004; Lavin et al., 2005; Chuhma et al., 2009). 

Anatomical identification of glutamatergic neurons has recently become possible due to the 

cloning of three distinct vesicular glutamate transporters (VGluT1, VGluT2, and VGluT3; 

Bellocchio et al., 1998; Bai et al., 2001; Fremeau et al., 2001, 2002; Fujiyama et al., 2001; 

Hayashi et al., 2001; Herzog et al., 2001; Takamori et al., 2000; Varoqui et al., 2002; Gras et 

al., 2002). By in situ hybridization, it has been demonstrated that some neurons within the 

VTA (Kawano et al., 2006; Yamaguchi et al., 2007; 2011), substantia nigra and retrorubral 

field (Yamaguchi et al., 2013) express VGluT2 mRNA, but not VGluT1 or VGluT3. The 

VTA-VGluT2 neurons are present in all A10 nuclei, but are particularly prevalent within 

midline nuclei (Yamaguchi et al., 2007, 2011). In fact, glutamatergic neurons outnumber the 

DAergic neurons in the rostral and medial portions of the VTA (Yamaguchi et al., 2007, 

2011). Thus, these neurons represent a major subpopulation in certain parts of the VTA. 

Similar to VTA GABAergic neurons, VGluT2-glutamatergic neurons in the VTA establish 

local and extrinsic synapses (Dobi et al., 2010; Yamaguchi et al., 2011; Zhang et al., 2015; 

Wang et al., 2015). Specifically, glutamatergic VTA neurons establish local asymmetric 

synapses with both DAergic and non-DAergic neurons (Dobi et al., 2010; Wang et al., 

2015). Additionally, glutamatergic VTA neurons project to other regions of the brain 

including the LHb (Root et al., 2014a,b), nAcc (Zhang et al., 2015), amygdala, basal 

forebrain, and prefrontal cortex (Hnasko et al., 2012; Taylor et al., 2014).

Moreover, increasing evidence indicates that subpopulations of VTA neurons are capable of 

releasing DA and GABA, or DA and glutamate (Kosaka et al., 1987; Sulzer et al., 1998; 

Rayport, 2001; Dal Bo et al., 2004; Trudeau, 2004; Seutin, 2005; Lapish et al, 2006; 

Yamaguchi et al., 2007, 2011; Hnasko et al., 2010; Tritsch et al, 2012; Li et al., 2013; 
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Mingote et al., 2015). Recent work from our laboratory has shown that there is a subset of 

VTA neurons capable of co-releasing DA and glutamate or glutamate and GABA (Zhang et 

al., 2015; Root et al., 2014a).

Multiplexed neurotransmission by some VTA neurons and associated circuits is a property 

shared by other brain structures. For instance, glutamate and GABA co-neurotransmission 

has been reported in epilepsy models within mossy fiber terminals (Gutiérrez et al., 2003, 

Gutiérrez 2003, 2005; Trudeau & Gutiérrez , 2007; Münster-Wandowski et al., 2013), 

developing medial trapezoid body terminals from the lateral superior olive (Gillespie et al. 

2005; Noh et al., 2010), entopeduncular nucleus projection to the LHb (Shabel et al., 2014), 

and cortex (Fattorini et al., 2015). In addition, there is evidence for GABA and DA co-

transmission in by substantia nigra pars compacta neurons as well as retinal amacrine 

neurons (Tritsch et al. 2012; Hirasawa et al., 2012). Other forms of neurotransmission 

include GABA and histamine by hypothalamic neurons (Yu et al., 2015), glutamate and 

acetylcholine co-transmission in striatal interneurons or medial habenula neurons (Gras et 

al., 2008; Ren et al., 2011; Higley et al., 2011; Nelson et al., 2014), GABA and acetylcholine 

co-transmission in corticopetal globus pallidus neurons (Saunders et al., 2015).

Based on the discovery that some VTA neurons exhibit multiple vesicular transporters, we 

have applied ultrastructural and electrophysiological approaches to determine the possible 

cellular mechanisms by which multiple neurotransmitters are released at the synaptic level. 

In the process of answering this question, we have revealed ultrastructural architectures 

suggesting that glutamate and GABA neuronal signaling by VTA neurons can be integrated 

into a single complex terminal with spatially distinct synaptic release sites for glutamate or 

GABA (Fig. 1) (Root et al., 2014a). We have also revealed that DA and glutamate neuronal 

signaling by VTA neurons can be segregated to distinct microdomains within the same axon 

(Fig 2), allowing for the spatially distinct release of DA or glutamate (Zhang et al., 2015).

Multiplexed Signaling by VTA-GluT2 Neurons

Following the discovery of VTA-VGluT2 neurons, further characterization of these neurons 

demonstrated that they are very diverse in their molecular composition, signaling properties 

and neuronal connectivity. Whereas many VTA-VGluT2 neurons lack both DAergic and 

GABAergic markers, there are subpopulations of VTA-VGluT2 neurons that co-express 

molecules responsible for the synthesis or vesicular transport of either DA or GABA (Li et 

al., 2013; Root et al., 2014a). Although the distinct targets for VTA-VGluT2 neurons 

remains to be determined, emerging evidence suggests preferential target sites for specific 

subsets of VTA-VGluT2 neurons. For instance, by a combination of retrograde tract tracing 

and in situ hybridization, it has been demonstrated that VTA VGluT2(+)/GAD(+) neurons 

provide the major mesohabenular input to the LHb (Root et al., 2014a), and by contrast, 

VTA VGluT2(+)/TH(+) neurons largely target the nAcc shell (Yamaguchi et al., 2011). While 

the molecular characterization of mesohabenular and mesoaccumbens neurons provides 

support for multiplexed signaling by some VTA neurons, this characterization does not 

provide information on the cellular mechanisms by which these neurons release more than 

one neurotransmitter. As discussed below, recent findings obtained by a combination of cell-

type specific anterograde tract tracing and immuno-electron microscopy have demonstrated 
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that the VTA-VGluT2 neurons establish unique synaptic architectures for multiplexed 

signaling in both the LHb (Root et al., 2014a) and the nAcc (Zhang et al., 2015).

Multiplexed Signaling by Mesohabenular VGluT2 neurons

Recently available viral vectors and transgenic mice have facilitated the elucidation of the 

cellular mechanisms by which some VTA neurons use two distinct signaling molecules. To 

determine the synaptic ultrastructural features of mesohabenular axons we have taken 

advantage of the cell-specific viral tagging of VTA-VGluT2 neurons through the Cre-

dependent expression of mCherry tethered to channelrhodopsin (ChR2) under the regulation 

of the VGluT2 promoter in VGluT2::Cre mice). By applying cell-specific tagging we 

estimated that more than 70% of mesohabenular axon terminals within the LHb co-express 

VGluT2 and VGaT (Root et al., 2014a). Moreover, we estimated that within the LHb both 

VGluT2 and VGaT are present in half of the total population of axon terminals, some of 

which derive from brain structures others than the VTA (e.g., from the basal ganglia; Shabel 

et al., 2014). While the presence of VGluT2 and VGaT within the same axon terminal has 

been established by immuno-electron microscopy, it remains to be determined whether each 

vesicular transporter is integrated into the membrane of distinct vesicles or in the same 

vesicular membrane. However, ultrastructural findings of the synaptic composition of 

individual VGluT2(+)/VGaT(+) axon terminals show that the plasma membrane of single 

VGluT2(+)/VGaT(+) axon terminals participates in the formation of both asymmetric and 

symmetric synapses, suggesting that glutamate-signaling is segregated to the asymmetric 

synapse and GABA-signaling to the symmetric (Figure 2).

In addition to the suggestion that asymmetric synapses participate in excitatory 

neurotransmission (Peters and Palay, 1996), GluR1-containing AMPA receptors are located 

in the membrane postsynaptic to the mesohabenular asymmetric synapses, but not to the 

symmetric synapses (Root et al., 2014a). In contrast, consistent with the suggestion that 

symmetric synapses participate in inhibitory neurotransmission (Peters and Palay, 1996), 

GABA-A receptors are located postsynaptically to the mesohabenular symmetric synapses, 

but not to the asymmetric synapses (Root et al., 2014a). The selective postsynaptic 

distribution of GluR1 to VGluT2(+)/VGaT(+) mesohabenular terminals making asymmetric 

synapses and GABA-A to those making symmetric synapses indicates that VGluT2(+)/

VGaT(+) terminals release glutamate at the asymmetric synapse, and GABA at the 

symmetric synapses (Root et al., 2014a). Besides the formation of asymmetric and 

symmetric synapses by individual VGluT2(+)/VGaT(+) axon terminals, both synapses may 

target separate postsynaptic dendritic spines or dendritic shafts or share a common 

postsynaptic dendrite. These ultrastructural findings underlie the multiplexed signaling and 

potential neuroplastic capacity endowed by dual VGluT2(+)/VGaT(+) axon terminals from 

the VTA to the LHb.

Multiplexed Signaling by Mesoaccumbens VGluT2-DA neurons

Pioneering electrophysiological in vitro studies demonstrated that dopamine neurons in 

primary culture have the capability to release glutamate, which lead to the hypothesis that 

midbrain neurons co-transmit DA and glutamate (Sulzer et al., 1998; Joyce and Rayport 

2000; Bourque and Trudeau, 2000). Since then, anatomical studies demonstrated that subsets 
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of TH-positive neurons co-express VGluT2 mRNA throughout the brain (Stornetta et al., 

2002; Kawano et al., 2006), including some TH-neurons within the midline nuclei of the 

VTA in rats (Yamaguchi et al., 2007, 2011) and mice (Yamaguchi et al., 2015). Moreover, 

findings from optogenetic electrophysiological ex vivo recordings have shown that the 

VGluT2(+)/TH(+) mesoaccumbens neurons use glutamate as signaling molecule (Stuber et 

al., 2010; Tecuapetla et al., 2010; Zhang et al., 2015; Mingote et al., 2015), and recent in 
vitro voltammetry measurements have shown that VGluT2-TH co-expressing neurons that 

project to nAcc release DA (Zhang et al., 2015).

So far two opposing hypotheses have been proposed to mediate the dual glutamate and DA 

signaling by VGluT2(+)/TH(+) mesoaccumbens neurons. One of them proposes that 

glutamate and DA coexist (and are co-released) from the same pool of vesicles (Hnasko et 

al., 2010, 2012). This hypothesis has been based on the co-immunoprecipitation of VMAT2 

and VGluT2 from nAcc preparations (Hnasko et al., 2010). In clear contrast, a recent study 

has shown lack of VMAT2 and VGluT2 co-immunoprecipitation when ultrastructurally 

confirmed pure nAcc synaptic vesicles were used (Zhang et al., 2015). These recent findings 

have led to the hypothesis that dual VGluT2(+)/TH(+) mesoaccumbens neurons contain 

independent pools of vesicles for the accumulation of either DA or glutamate. Moreover, 

immuno-electron microscopy findings from intact brain tissue have shown that TH and 

VGluT2 do not coexist in the same axon terminal in the nAcc of either adult rats (Berube-

Carriere et al., 2009; Moss et al., 2011) or mice of any age (Berube-Carriere et al., 2012). 

These immuno-electron microscopy findings are consistent with nAcc structural studies 

published over the last 40 years showing that axonal compartments engaged in excitatory 

signaling do not overlap with axonal compartments engaged in DA signaling (reviewed in 

Morales and Pickel, 2012). The lack of overlap between DA-vesicles and glutamate-vesicles 

may result from their segregation into two different sets of axons or segregation into micro-

domains within the same axon. Although the possibility of vesicular segregation to different 

axons has not been discarded, recent immuno-electron microscopy findings indicate that 

VGluT2-vesicles from VGluT2(+)/TH(+) neurons are located in axon terminals that establish 

asymmetric synapses, and that axonal segments adjacent to these VGluT2-axonal terminals 

contain TH, VMAT2 and DAT (Zhang et al., 2015). The segregation between glutamate-

vesicles and DA-vesicles within the same axon appears to be highly regulated, as in vivo 
overexpression of VMAT2, in the rat, does not disrupt the segregation between these two 

different types of vesicles. Moreover, the vesicular segregation by VGluT2(+)/TH(+) 

mesoaccumbens neurons is maintained in the nAcc of transgenic mice expressing ChR2 

(following their viral mediated expression in VTA neurons under the regulation of either the 

TH-promoter or VGluT2-promoter; Zhang et al., 2015).

In summary, the characterization of mesoaccumbens and mesohabenular ultrastructural 

features together with the characterization of their electrophysiological and chemical 

properties have provided evidence for multiplexed signaling by VTA-VGluT2 neurons. 

These findings have demonstrated that dual rodent mesoaccumbens VGluT2(+)/TH(+) 

neurons have adjacent cellular compartments that participate in independent glutamate-

signaling and DA-signaling (Zhang et al., 2015). In contrast, the dual rodent mesohabenular 

VGluT2(+)/GABA(+) neurons concentrate both glutamate-vesicles and GABA-vesicles 

within a single axon terminal that establishes both excitatory and inhibitory synapses (Root 
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et al., 2014a). Future studies are necessary to determine the molecular and signaling 

mechanisms involved in the sorting and retention of VGluT2-vesicles, GABA-vesicles 

(VGaT) and DA-vesicles (VMAT2) to specific microdomains within the same axon. 

Additional studies are also necessary to determine the extent to which the multiplexed 

signaling by VTA neurons is affected in brain disorders, such as addiction and depression.

Functional Diversity by VTA Neurons

The functional diversity of VTA neurons has been constantly updated (Unlgess, 2004; 

Stamatakis et al., 2013; Root et al., 2014b; Mejias-Aponte et al., 2015; Eddine et al., 2015; 

Kotecki et al., 2015; Beier et al., 2015). As detailed above, the multiplexed 

neurotransmission of the VTA-VGluT2 neurons is an emerging factor involved in the 

complexity of VTA function. Based on observations that different combinations of 

neurotransmitters are multiplexed throughout the brain (Trudeau 2004; Gillespie et al. 2005; 

Zhou et al., 2005; Gras et al., 2008; Noh et al., 2010; Higley et al., 2011; Tritsch et al. 2012; 

Hnasko and Edwards, 2012 Münster-Wandowski et al., 2013; Nelson et al., 2014; Root et 

al., 2014a; Shabel et al., 2014; Qi et al., 2014; Zhang et al., 2015; Fattorini et al., 2015; 

Saunders et al., 2015), we suggest that multiplexed neurotransmission conveys distinct 

messages depending on the neurotransmitter content of each circuit, momentary singular or 

multiplexed signaling, and perhaps even the time scale of neurotransmitter function. 

Furthermore, we speculate that changes in the influence of one or more of the multiplexed 

neurotransmitters, by way of either presynaptic of postsynaptic changes, may result from 
and result in observable changes in behavior. Recent advances in the functional diversity 

within the VTA neurons targeting the LHb or nAcc will be presented in the following 

paragraphs.

Functional Diversity by VGluT2 Mesohabenular Neurons

An example of the circuit specific nature of multiplexed neurotransmission is found in the 

LHb. By combination of optogenetics and electrophysiology, we have shown that activation 

of the mesohabenular pathway evokes release of GABA and glutamate, and that the co-

transmitted GABA is capable of shunting the co-transmitted glutamate-mediated currents 

(Root et al., 2014a). Therefore, the simultaneous release of glutamate and GABA may be a 

mechanism by which the glutamatergic excitation within the LHb is autoregulated by the co-

transmitted GABA. In vivo recordings of LHb neurons following ChR2 activation of 

mesohabenular fibers have shown that this activation results in GABA-induced decreases in 

the firing rates of most recorded LHb neurons, and in glutamate-induced increases in firing 

rates in fewer neurons. In addition, secondary firing patterns are often observed in which 

initial increases in firing rates are followed by decreased firing rates or initial decreases in 

firing rates are followed by increased firing rates. The in vivo recordings of LHb neurons 

suggest that stimulation on mesohabenular fibers induces predominantly GABAergic 

neurotransmission. Nevertheless, the observed secondary firing patterns suggest that 

signaling might also occur over multiple time-scales or that the contribution of each 

neurotransmitter might be shifted in response to specific stimuli. For instance, rat depression 

models reduce GABA signaling from the multiplexed glutamate-GABA inputs to LHb from 

entopeduncular neurons (Shabel et al., 2014).

Barker et al. Page 8

J Chem Neuroanat. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, findings from combinations of optogenetics and behavioral analysis have shown 

that mesohabenular stimulation of fibers from different pools of VTA neurons, including 

multiplexed signaling neurons, promotes different behaviors. For instance, a LHb GABA 

receptor-mediated reward is evoked by mesohabenular stimulation of fibers expressing 

ChR2 under the TH-promoter (Stamatakis et al., 2013), likely to include activation of fibers 

from VGluT2(+)/GAD(+)/TH(+), VGluT2(+)/TH(+)/GAD(−), and VGluT2(−)/GAD(+)/TH(+) 

mesohabenular neurons. However, a mild reward is evoked by mesohabenular stimulation of 

fibers expressing ChR2 under the GAD2-promoter (Lammel et al., 2015), likely to include 

activation of fiber from VGluT2(+)/GAD(+)/TH(+), VGluT2(+)/GAD(+)/TH(−), 

VGluT2(−)/GAD(+)/TH(−), and VGluT2(−)/GAD(+)/TH(+) mesohabenular neurons. In 

contrast, a LHb glutamate receptor-mediated conditioned place aversion is evoked by 

mesohabenular stimulation of fibers expressing ChR2 under the VGluT2-promoter (Root et 

al., 2014b; Lammel et al., 2015), likely to include activation of fibers from VGluT2(+)/

GAD(+)/TH(−), VGluT2(+)/GAD(+)/TH(+), and VGluT2(+)/GAD(−) neurons. These 

behavioral findings underlie the need for targeted intersectional approaches to dissect the 

behavioral contributions of each mesohabenular neuronal phenotype.

Multiplexed neurotransmission may affect neuronal regulation over multiple time scales, for 

instance “prolonged slow-actions” by monoamines (i.e., serotonin or dopamine) and “fast 

short actions” provided by the concomitant release of glutamate or GABA. This multiple 

time scale neurotransmission, by neurons endowed with the capacity for multiplexed 

signaling, may be found in a single DA-glutamate mesoaccumbens axon establishing 

segregated postsynaptic targets for DA- or glutamate-signaling (Zhang et al., 2015). 

Although the extent to which these mesoaccumbens DA-glutamate fibers participate in the 

neurobiology of drugs of abuse remains to be determined, we speculate that these axons may 

participate in the regulation of neuronal activity in cocaine self-administration. Specifically, 

electrophysiological recordings have shown that nAcc neurons exhibit rapid phasic firing 

patterns to related cues and actions to obtain the drug (Peoples et al., 1998; Ghitza et al., 

2003, 2004, 2006; Fabbricatore et al., 2009, 2010; Coffey and Barker et al., 2015). The nAcc 

neurons also exhibit slow-phasic and tonic changes in firing rate that correlate with the 

pharmacological effects of cocaine, and do not correlate with the rapid phasic firing patterns 

(Fabbricatore et al., 2010). Furthermore, slow phasic pharmacologic and rapid phasic 

behavioral firing patterns are similarly processed in downstream accumbal targets (ventral 

pallidum and lateral preoptic area; Root et al., 2012, 2013; Barker et al., 2014). These 

dissociable fast and slow signaling patterns in the accumbens are consistent with findings 

suggesting that glutamate and dopamine each have specific roles in addiction-associated 

behaviors (Birgner et al., 2010; Alsiö et al., 2011).

Functional Diversity by TH Mesohabenular Neurons

Phenotypic characterizations of VTA-TH neurons have revealed the heterogeneous 

expression of several transcripts, some of which may be expressed transiently during 

development or may be induced in the adult brain in response to insults (e.g., drugs, stress, 

illness). In addition, some of these transcripts may not be translated into detectable protein 

levels under normal conditions, instead, this translation may depend on VTA circuit activity 

or be induced as a result of various brain insults (e.g., Bayer and Pickel, 1990, 1991; Garcia-
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Perez et al., 2014). For instance, we have identified a subset of VTA neurons, in wild type 

mice, that express TH mRNA, but lack detectable levels of TH-protein in cell bodies, 

dendrites and axons. Some of these neurons send projections to the LHb (Yamaguchi et al., 

2015). In agreement with these findings, revealing TH-mRNA(+)/TH-protein(−) 

mesohabenular neurons in wild type mice, viral-induced expression of reporter genes (i.e., 

green-fluorescent-protein under the regulation of the TH-promoter) within the VTA of 

TH::cre mice has shown expression of fluorescent fibers without detectable TH-protein in 

the LHb (Stamatakis et al., 2013; Lammel et al., 2015; Stuber et al., 2015). These findings 

underlie the need to better characterize the VTA cellular composition in wild type mice, and 

reveal that expression of reporter genes in the mouse under the control of the TH-promoter 

does not guarantee the selective manipulation or mapping of DA projections.

In contrast to the mouse TH-mRNA(+)/TH-protein(−) mesohabenular neurons, subsets of rat 

mesohabenular neurons contain detectable levels of TH-protein in the cell bodies, dendrites 

and axons (Root et al., 2015). However, these rat TH-protein(+) mesohabenular neurons 

rarely co-express VMAT2-mRNA in their cell bodies or VMAT2-protein in their axon 

terminals in LHb (Root et al., 2015). The lack of VMAT2 within mesohabenular neurons has 

also been documented in the mouse (Stamatakis et al., 2013; Lammel et al., 2015). Overall, 

these findings provide crucial information when considering the functional properties of 

multi-neurotransmitter neurons, as they demonstrate that specific neuronal subsets have the 

capacity to synthesize DA but lack the capability to package DA into synaptic vesicles for 

traditional vesicular release. These finding are intriguing because DA has been detected in 

LHb homogenates (Phillipson and Pycock, 1982; Root et al., 2015), D2 receptors have been 

found in a subset of LHb neurons (Aizawa et al., 2012), and exogenous DA evokes currents 

in LHb neurons, currents that are eliminated by D2 or D4-receptor antagonists (Jhou et al., 

2013; Good et al., 2013: Root et al., 2015). However, recordings of LHb neurons from rats 

treated with toxins for either the elimination of VTA-TH neurons or noradrenergic fibers 

have demonstrated that noradrenergic habenular afferents specifically activate D4-receptors 

in the LHb neurons and that VTA TH-expressing neurons are not necessary for this effect 

(Root et al., 2015). Thus, it seems that the LHb effects on DA-receptors previously ascribed 

to DA release from mesohabenular fibers may be instead mediated by noradrenergic fibers.

Multiplexed transmission: Future directions and considerations for 

synaptic plasticity

Our ever-expanding knowledge of multiplexed signaling opens the door to new predictions 

about synaptic plasticity. For example, though activation of the mesohabenular projection 

results in glutamate and GABA release, firing patterns of LHb neurons indicate a 

predominant GABA-induced decrease in firing rate of LHb neurons in rodents (Root et al., 

2014a). Drugs of abuse, depression, and stress alter LHb function to favor glutamatergic 

excitation and demote GABAergic inhibition (Meshul et al., 1998; Li et al., 2011; Shabel et 

al., 2014), suggesting the potential for mesohabenular plasticity in mediating part of these 

effects. The ability of “neurotransmitter-switching” depending on circadian and seasonal 

variations has also been documented (Dulcis et al., 2013; Farajnia et al., 2014), and further 

investigation is necessary to determine if these factors influence multiplexed signaling.
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The postsynaptic signaling dominance by one neurotransmitter may also be used to balance 

signals from other neurotransmitters and maintain homeostasis. Indeed, it has been shown 

that the same neurotransmitter may elicit different responses depending on the overall 

extracellular environment (Laviolette et al., 2002; Twining et al., 2014). For example in the 

mesohabenular projection, depending on the membrane potential of the postsynaptic LHb 

neuron, mesohabenular stimulation results in GABA-A receptor or AMPA-receptor currents 

(Root et al., 2014b). With this in mind, we speculate that drugs of abuse, neurodegenerative 

diseases, or other circumstances that affect synapses capable of multiplexed 

neurotransmission may produce aberrant signaling and thus affect cognition and behavior. It 

is likely that the recent discoveries of unpredicted synaptic arrangements will lead to novel 

experimental approaches to have a better understanding of how neurotransmission shifts 

from homeostatic conditions, how certain neurotransmitters become amplified or silenced, 

and how multiplexed signals might be simultaneously sent and received.

Because many neurotransmitters have multiple postsynaptic and presynaptic effects, 

multiplexed neurotransmission expands the repertoire of synaptic capabilities of single 

neurons. In this regard, electrophysiological evidence indicates that DA is capable to affect 

GABAA-receptors (Tritsch et al., 2012; Kim et al., 2015; Hoerbelt et al., 2015). Thus, when 

glutamate and DA are multiplexed together—as they are in some mesoaccumbal projections 

(Zhang et al., 2015)—DA may act to modulate glutamatergic signaling, counter 

glutamatergic signaling, or might even behave differently depending on the postsynaptic cell 

(e.g., targeting of D1 receptor neurons or D2 receptor neurons). With this in mind, it is clear 

that novel technologies and intersectional genetic strategies will be necessary in order to 

decipher the unique contributions of each component of multiplexed signals (Pupe et al, 

2015).

A better understanding of the presynaptic and postsynaptic elements will allow better 

understanding of how these specialized synapses, described above, manage multiplexed 

neurotransmission in the presynaptic terminal and are subsequently integrated by the 

postsynaptic neuron. For example, these elements may work together to facilitate spike-

timing dependent mechanisms for plasticity (e.g., Watanabe et al., 2002), as it is known that 

neuromodulators can affect the temporal window necessary for spike timing dependent 

activation, or that neuromodulators can cause a switch from long-term potentiation to long 

term depression (Caporale & Dan 2008; Bissiere et al., 2003). Thus, the spatiotemporal 

relationship of segregated DAergic and glutamatergic signaling in the nAcc may act to 

enhance the probability of signal transduction when both transmitters are released within a 

short time window. A similar mechanism might apply to mesohabenular signaling, although 

the precise mechanism by which glutamate and GABA might work to facilitate or shunt one 

another is still unclear. One possibility is that the integration for either a GABAergic or a 

glutamate response by the post-synaptic cell would depend on the timing of other habenular 

afferents.

Overall, it is becoming clear that the VTA is far more complex than was initially realized. 

Indeed, many studies have reported heterogeneous responses of specific VTA neurons 

(Brischoux et al., 2009; Borgkvist et al., 2011; Margolis et al., 2014; Eddine et al., 2015; 

Mrejeru et al 2015; Mejias-Aponte et al., 2015), and it would seem likely that this diversity 
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is due (at least in part) to cells that are capable of multiplexed neurotransmission. With this 

in mind, it is clear that that the discovery of compound cell types has wide-reaching 

implications for our understanding of VTA circuit functions. Moreover, multiplexed 

signaling neurons are increasingly identified throughout the brain, suggesting that this 

unique type of signaling plays important roles in health and disease.
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Highlights

• The Ventral Tegmental Area contains neurons capable of multiplexing multiple 

neurotransmitters.

• Novel synaptic arrangements facilitate multiplexed neurotransmission.

• Balance shifts in multiplexed neurotransmission may accompany behavioral 

changes.
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Figure 1. Neurons in the ventral tegmental area (VTA) are capable of multiplexed 
neurotransmission
Detection of tyrosine hydroxylase (TH) immunoreactivity within the VTA, (low 

magnification, left panel). VTA combined immunohistochemistry and in situ hybridization 

showing at high magnification (right panel) neurons expressing TH (green cells), glutamic 

acid decarboxylase mRNA (GAD 65/67; purple cells), vesicular glutamate transporter 2 

mRNA (VGluT2; green or white grain aggregates) or combinations of these cell markers. 

Abbreviations. Left: RLi- Rostral Linear Nucleus, IF- Interfasicular Nucleus, PBP- 

Parabrachial Pigmented Nucleus, PN- Paranigral Nucleus, SNc- Substantia Nigra Pars 

Compacta, fr- fasciculus retroflexus, mp- Mammillary Peduncle, Right: TH- tyrosine 

hydroxylase, GAD- glutamic acid decarboxylase, VGluT2- vesicular glutamate transporter 

2.

Barker et al. Page 25

J Chem Neuroanat. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Ultrastructural immunolabeling reveals unpredicted mechanisms of neurotransmission 
within the mesohabenular and mesoaccumbal pathways
(a) Lateral habenula micrograph (left panel) showing a single mesohabenular axon terminal 

containing VGluT2 (scattered dark material detected by immunoperoxidase labeling) and 

VGaT (gold particles detected by immunogold; blue arrowheads). This single axon terminal 

forms both an asymmetric synapse (green arrow) and a symmetric synapse (blue arrow) with 

a common postsynaptic dendrite (De). Postsynaptic to a single axon terminal (middle panel), 

GluR1 receptors (green arrowhead) are found adjacent to asymmetric synapses (green 

arrows), while GABAA receptors (blue arrowhead) are found adjacent to symmetric 

synapses (blue arrow). (b) Nucleus Accumbens micrograph showing a messoaccumbal axon 

containing both VMAT2 (scattered dark material) and VGluT2 (gold particles). VMAT2 and 

VGluT2 are segregated within the same axon. Note that the VGluT2 microdomain 

corresponds to an axon terminal establishing an asymmetric synapse (arrow) with a 

postsynaptic dendritic spine (sp). All scale bars represent 200 nm.
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