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Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum
for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50mM) with or without Si (1.8mM) for 15
days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters
and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of
Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si
prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the
nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis
(2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that
Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with
nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated
nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against
salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.

1. Introduction

Salinity is a major abiotic stress that limits the growth
and yield of agricultural and horticultural crops worldwide.
Primarily, salinity hampers the osmotic balance in plants by
affecting the electrochemical gradients and vascular trans-
portation of solutes [1]. In higher plants, salt stress leads
to several physiological and metabolic modulations such as
retardation of photosynthesis, ion toxicity, oxidative burst,
and nutrient imbalance [2–5]. In addition, higher accumu-
lation of Na+ and Cl− ions during saline conditions hinders
the uptake of essential nutrients [6]. Furthermore, salinity
accelerates the production of harmful reactive oxygen species

(ROS) that cause oxidative damage to proteins, lipids, and
nucleic acids by affecting normal cellular metabolism [7].
Hence, an alternative strategy of silicon (Si) supplementation
to overcome the negative effects of salinity in plants can be
considered as a valuable approach.

Silicon is the secondmost abundant element in the Earth’s
crust, covering 27.70% of the lithosphere. The essential roles
of Si in plant systems have been extensively studied by
numerous plant biologists for several years, but by definition
Si is considered as a “quasi-essential” or nonessential element
for plants, because most plant species can complete their life
cycle without it [8]. However, there are several hypotheses
concerning the physiological functions of Si in monocots
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and dicots. Under abiotic stress like salinity, Si application
resulted in the alleviation of stress and enhancement of plant
growth [9, 10]. During salt stress, the apoplastic transport
of Na+ and Cl− ions was decreased by Si deposition [11,
12]. According to Zhu and Gong [13], the mechanisms
behind silicon-mediated alleviation of salt stress include the
following aspects: (a) maintenance of optimal water content;
(b) enhancement of photosynthesis and curbing transpiration
rate; (c) limiting oxidative stress by alleviating ion toxicity;
and (d) biosynthetic regulation of solutes and plant hor-
mones. In line with other researchers, Al-aghabary et al.
[14] observed increased activities of antioxidant enzymes and
enhanced photochemical efficiency of PSII under salt stress.

Although the beneficial effects of Si against abiotic
stresses are evident from previous reports, to date there is
a lack of understanding of the molecular regulation of Si-
mediated stress tolerance. In order to gain a deeper insight
into Si induced salt tolerance in pepper plants, proteomic
analysis based on two-dimensional gel electrophoresis-
(2DE-) mass spectrometry (MS) has been employed in the
present study. Moreover, proteomic strategies are considered
the best molecular approach to study the dynamics of pro-
teins, particularly the response of Si in a stressed environment
[15–18]. Therefore, to our knowledge, for the first time, the
current study has attempted to investigate the effect of Si on
the growth, physiology, antioxidant enzyme activities, nutri-
ent content, and protein expression in C. annuum under
salinity stress.

2. Materials and Methods

2.1. Plant Material and Treatments. Seeds of Capsicum
annuum “Bugwang”were surface sterilizedwith 0.5% sodium
hypochlorite for 10min followed by washing in double
distilledwater 4 times. After sterilization, the seedswere sown
on seed germination trays containing commercial Tosilee
medium (Shian PrecisionCo., Jinju, Republic of Korea). After
one week, the seedlings were subjected to salinity and Si
treatments. For the treatments, seedlings were transplanted
to magenta boxes containing 300mL of nutrient solution for-
mulated according to Soundararajan et al. [9]. Each magenta
box consisted of four plants, and silicon was supplemented in
the formof potassium silicate (K

2
SiO
3
).The excess potassium

introduced by the K
2
SiO
3
was deducted from potassium

nitrate and the nitrate loss was balanced by the addition of
nitric acid. Salinity stress was provided by the addition of
sodium chloride (NaCl) to the nutrient solution. The pH of
the nutrient solution was adjusted to 5.70. Totally, the exper-
iment consisted of four treatments such as control (basal
nutrients without NaCl or Si), Si alone (1.8mM), NaCl alone
(50mM), and Si + NaCl (Si-1.8mM; NaCl-50mM). All the
treatments were arranged in a randomized block design with
three replicates. The experiment was conducted in a glass
house at Gyeongsang National University, Jinju, Republic of
Korea, under normal daylight conditions with day/night set
temperature of 27/19∘C and relative humidity (RH) 60–70%.

2.2.Measurement of Growth andPhotosynthesis. After 15 days
of treatment, biomass and photosynthetic parameters were

measured.The net photosynthesis rate (𝑃
𝑛
), stomatal conduc-

tance (𝐺
𝑠
), and transpiration rate (𝑇

𝑟
) were measured using

a LI-6400 portable photosynthetic measurement system (Li-
COR, Inc, Lincoln, NE, USA). For the microscopic obser-
vation of stomata, the epidermal layer of photosynthetically
active second leaves in all the treatments were peeled and
stained with 0.01% toluidine blue O. After staining the stom-
atal structures were observed under a light microscope in 20x
magnification and photographed using Nikon Y-TV55.

2.3. Determination of Oxidative Stress Biomarkers. The level
of oxidative stresswas determined by estimation of electrolyte
leakage potential (ELP), malondialdehyde content (MDA),
and hydrogen peroxide levels.

For ELP measurements, the leaf discs (0.5 cm) were
washed with distilled water, immersed in 10mL distilled
water for 22 h, and autoclaved for 120min at 90∘C. Electrical
conductivity (EC) was measured before and after autoclaving
to determine the electrolyte leakage. The ELP % was calcu-
lated according to Campos et al. [18].

The lipid peroxidation level in the leaves was estimated
based on theMDA content according to Zhu et al. [7]. Briefly,
0.1 g of leaf samples was homogenized in trichloroacetic acid
(TCA) solution (0.1%, 5mL) and centrifuged at 18,000×g for
15min. The supernatant (0.5mL) was added to 5mL of 0.5%
thiobarbituric acid (TBA) solution prepared in 20%TCA.The
reaction mixture was incubated in a hot water bath (95∘C)
for 30min and the reaction was terminated by keeping the
mixture on ice. After 5min, the samples were centrifuged
for 5min at 10,000×g and the absorbance was determined at
532 nm. By subtracting the nonspecific values at 600 nm, the
MDA content was calculated using the extinction coefficient
(155mM−1 cm−1).

The spectrophotometric determination of H
2
O
2
content

was carried out according to Christou et al. [19]. Briefly, 0.1 g
of leaf sample was homogenized in 1mL of 0.1% TCA and
centrifuged at 10,000×g for 15min. Subsequently, 0.5mL of
supernatantwasmixedwith 10mMphosphate buffer (0.5mL,
pH 7.0) and 1mL potassium iodide (1M). The mixture was
incubated at 25∘C for 30min and the absorbance was mea-
sured at 390 nm. The H

2
O
2
content was determined from a

standard calibration curve.

2.4. Estimation of Antioxidant Enzymes Activity. For the anal-
ysis of antioxidant enzymes, 0.1 g of tissue was homogenized
in 50mM phosphate buffer (pH 7.0) containing 1mM EDTA,
0.05% triton X, and 1mM polyvinylpyrrolidone (PVP). Then
the homogenate was centrifuged at 10,000×g for 20min
at 4∘C and the supernatant was used for determination of
antioxidant enzymes activity.The activity of SODwas assayed
by following the nitro blue tetrazolium (NBT) inhibition
method of Giannopolitis and Ries [20]. GPX activity was
measured based on the amount of enzyme required for the
formation of tetraguaiacol per minute, according to Shah
et al. [21]. CAT enzyme activity was determined according
to the method of Cakmak and Marschner [22]. APX activity
was estimated by following the protocol of Nakano andAsada
[23]. The total protein content of the samples was estimated
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according to the Bradford method [24] using a bovine serum
albumin (BSA) standard curve.

2.5. Two-Dimensional Polyacrylamide Gel
Electrophoresis (2D-PAGE)

2.5.1. Protein Extraction. For 2D-PAGE analysis, protein
extraction was carried out by following the procedure of
Muneer et al. [25]. In detail, leaf tissue (0.1 g) was homog-
enized in liquid nitrogen using a prechilled pestle and
mortar. The proteins were extracted with a commercial pro-
tein extraction kit (Bio-Rad, Hercules, CA, USA) according
to the instructions provided by the manufacturer. For
total protein isolation, about 2mL of extraction buffer
[8M urea, 4% 3-[(3-cholamidopropyl) dimethylammonio]-
1-propanesulfonate (CHAPS), 40mM Tris, 0.2% bio-lyte (pI
3–10)] was mixed with lyophilized (0.1 g) leaf tissue. The
homogenate was vortexed and sonicated with an ultrasonic
probe to disrupt any interfering substances such as genomic
DNA and phenolics. After sonication, the samples were
centrifuged for 30min at 4∘C and the supernatant was trans-
ferred to new Eppendorf tubes.The resultant supernatant was
employed for isoelectric focusing after protein quantification
with the Bradford method using bovine serum albumin
(BSA) standard curve.

2.5.2. Two-Dimensional Gel Electrophoresis and Silver Stain-
ing. A total of 70 𝜇g of dissolved protein sample was sepa-
rated by 2DE in the first dimension by isoelectric focusing
on a 7 cm IPG strip (pI 4–7) (GE Healthcare, UK) and
the second dimension by SDS-PAGE on a Protean II unit
(Bio-Rad Hercules, USA), according to methods given by
Muneer et al. [25].The samples were rehydrated for 12 h (with
125 𝜇L rehydration buffer containing 70 𝜇g proteins) before
focusing. For the first dimension, the rehydrated strips were
focused at 20∘Cwith 50 𝜇A current per strip using a four-step
program: step and hold -300V for 30min, gradient, -1000V
for 30min, gradient, -5000V for 1 h 30min, and final step and
hold 1-2 h until the final voltage reached 10000V.The focused
strips were equilibrated twice for 15min in 10mg⋅mL−1
DTT and then in 40mg⋅mL−1 iodoacetamide prepared
in equilibration buffer containing 50mM Tris-HCl (pH
8.8), 6M urea, 30% (v/v) glycerol, and 2% (w/v) SDS. After
equilibration, strips were attached to the second dimension
gel (12.5%) with 0.5% low melting point agarose sealing solu-
tion. Electrophoresis was done at a constant voltage of 80V
for 4 h until the bromophenol dye front reached the end of the
gel.The protein spots in the analytical gels were stained using
a silver staining method [26].

2.5.3. Image Acquisition and Data Analysis. Three replicate
gels from each treatment were used for image acquisition and
data analysis. Spot detection, spot measurement, background
subtraction, and spot matching were performed using Proge-
nesis SameSpots™ 2D software (ver. 4.1, Nonlinear Dynamics,
Newcastle, UK) in automatic spot detection mode to review
the annotations of spots statistically using one-way ANOVA
analysis (𝑛 = 3, 𝑃 < 0.05) at a 95% confidence level. The
differentially expressed proteins spots were identified as spots

showing more than a twofold change in expression on
comparison with control.

2.5.4. In-Gel Digestion of Protein Spots. The differentially
expressed protein spots were excised manually from the gels
[27] and washed with distilled water three times. The protein
spots were chopped and destained with 30mM potassium
ferricyanide and 100mM sodium thiosulphate pentahydrate
(1 : 1) by incubating at room temperature for 30min. The
destaining reagent was removed and the gel particles were
treated with 100 𝜇L of 50mM NH

4
HCO
3
for 5min and

dehydrated in 30 𝜇L of acetonitrile for 5min. After dehy-
dration, the gel was covered with 100 𝜇L reduction solution
(10mM dithiothreitol in 50mM NH

4
HCO
3
) and incubated

for 45min at 56∘C. After the removal of reduction solution,
100 𝜇L of alkylation solution (100mM iodoacetamide in
50mM NH

4
HCO
3
) was added and incubated at 25∘C in the

dark for 30min. Finally, the gel pieces were washed with
30 𝜇L of 50mM NH

4
HCO
3
for 5min and dehydrated with

30 𝜇L of acetonitrile for 10min. After drying using a vacuum
centrifuge, the gel pieces were rehydrated in 5 to 10𝜇L of
25mM NH

4
HCO
3
containing 5 ng⋅𝜇L−1 trypsin (Promega,

Madison, WI, USA) at 37∘C for 30min. After incubation, the
excess trypsin solution was replaced with 5 to 10 𝜇L of 25mM
NH
4
HCO
3
and digestion was carried out for a minimum of

16 h at 37∘C.The digested peptides were subsequently pooled,
vacuum dried, and mixed with 3 𝜇L of sample solution (50%
acetonitrile and 0.1% trifluoroacetic acid).

2.5.5. Peptide Identification. For protein identification, the
tryptic digested peptide mixtures were targeted onto a
MALDI-TOF-MS plate and analyzed by a Voyager-DE STR
mass spectrometer (Applied Biosystems, Franklin Lakes, NJ,
USA), equipped with delay ion extraction. Mass spectra
were obtained over a mass range of 800–3500Da. Homology
search was executed by matching the experimental results
with both theoretical digests and sequence information from
public protein databases using Mascot software (http://www
.matrixscience.com/). Search parameters employed were as
follows: carbamidomethyl cysteine as a fixed modification
and oxidation of methionine as a variable modification,
one missed cleavage site, and peptide mass tolerance of
±100 ppm. NCBI-nr database with the taxonomy Viridiplan-
tae (green plants) was employed to identify regions of similar-
ity between sequences.The protein score employed was −10∗
log(𝑃), where 𝑃 is the probability that the observed match is
a random event. The spot identities were submitted to a gene
ontology (GO) retriever (http://www.agbase.msstate.edu/)
and the resulted annotations were summarized based on the
GOSlim set using a GOSlim Viewer.The hierarchical clusters
of the treatmentswere generatedwith theCluster 3.0 program
followed by a heat map analysis with the TreeView tool.

2.6. Statistical Analysis. To find the statistical significance
between treatments data collected were subjected to analysis
of variance (ANOVA) followed by Duncan’s multiple range
test at 𝑃 ≤ 0.05 and 𝐹-test using the SAS program (Statistical
Analysis System, V. 6.12, Cary, USA). All sets of data were
represented as the means of three replicates each.
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Table 1: Growth parameters of Capsicum annuum affected by salinity stress and Si supplementation.

Si
(mM)

NaCl
(mM)

Shoot length
(cm)

Shoot diameter
(mm) Root length (cm) Number of roots Fresh wt. (g) Dry wt. (g) Si content (mg⋅g−1 DW)

0 0 8.82 ± 0.18cz 1.58 ± 0.12c 7.04 ± 0.02c 22.40 ± 0.04e 1.22 ± 0.11b 0.15 ± 0.10a 0.47 ± 0.18c
50 6.80 ± 0.10d 1.12 ± 0.16d 13.56 ± 0.15a 23.20 ± 0.21e 0.91 ± 0.04c 0.09 ± 0.08bc 0.48 ± 0.07c

1.8 0 11.70 ± 0.15b 2.07 ± 0.05a 13.40 ± 0.02a 40.40 ± 0.10c 2.15 ± 0.10a 0.18 ± 0.11a 1.24 ± 0.6b
50 13.40 ± 0.08a 1.81 ± 0.07b 9.50 ± 0.03b 43.20 ± 0.03b 2.11 ± 0.12a 0.13 ± 0.05b 1.61 ± 0.31a

zDifferent letters in one measurement indicate statically significant difference at 𝑃 ≤ 0.05 by Duncan multiple range test.
Data are represented as mean ± SE from three replicates.

Control Si NaCl Si + NaCl

Figure 1: Effects of Si supplementation and salinity stress on the growth of C. annuum.

3. Results and Discussion

3.1. Analysis of Growth, Biomass, and Photosynthetic Parame-
ters. Hydroponically supplemented Si significantly increased
growth and alleviated salinity stress in C. annuum (Figure 1).
Growth parameters and tissue Si content measured after 15
days of salinity and Si treatments are shown in Table 1. The
deleterious effects of salt stress on the growth and biomass of
Capsicumwere significantlymitigated by Si supplementation.
The uptake of Si byC. annuumwas 1.24±0.6mg⋅g−1 DW in Si
treatment whereas during salinity stress the tissue Si content
was increased to 1.61 ± 0.31mg⋅g−1 DW. Besides the Si treat-
ments, negligible amount of Si was identified in control and
NaCl treatments. This could have been acquired during seed
germination, because the seedlings were irrigated with nor-
mal tap water during seed germination and grown in Tosilee
medium, a substratewith a negligible amount of Si.Moreover,
salinity treatment significantly decreased the net photosyn-
thesis rate, stomatal conductance, and transpiration rate by
41.3%, 23.8%, and 19.1%, respectively. However, Si treatment
alleviated the deleterious effect of salt on the photosynthetic
parameters (Figure 2). Stomatal observations illustrated that
in NaCl treatment the majority of the stomata were observed
in closed state, whereas plants in the Si alone and Si-
treated NaCl conditions contained prominent open stomata
consistentwith control plants (Figure 3). In linewith previous
reports [13, 14], salt stress impaired the physiology and mor-
phology ofCapsicum plants bymanifesting awater imbalance
which led to a reduction in growth and biomass.This damage

was recovered by application of Si in Capsicum. Si was
previously reported to improve growth, biomass, and pho-
tosynthesis by imparting mechanical strength to the plants
under stress conditions [11–14].

3.2. Evaluation of Oxidative Stress Biomarkers. The mem-
brane potential and oxidative burst induced by salinity treat-
ment in Capsicum was assessed by electrolyte leakage poten-
tial (ELP), malondialdehyde (MDA) content, and hydrogen
peroxide levels, respectively (Figure 4). Significant increase
in ELP levels in salt stress treatment by 38.1% illustrated the
NaCl induced cell membrane damage, which in turn was
reduced by 33.3% upon Si supplementation (Figure 4(a)).
Because of the imbalance in electrolyte leakage potential,
there was an increase in lipid peroxidation (Figure 4(b)) and
hydrogen peroxide content (Figure 4(c)) in salinity treat-
ments. However, the addition of Si mitigated the oxidative
damage by decreasing the MDA content by 29.4% and H

2
O
2

content by 25.6%. In general, higher NaCl concentration
causes dysfunction of cell membranes that leads to the excess
permeability of ions and electrolytes, which tend to increase
the oxidative burst in cells [7, 9]. Si-mediated alleviation of
oxidative damage by strengthening the structural integrity of
cell membranes, particularly during salinity stress, has been
reported in several plants [7].

3.3. Estimation of Antioxidant Enzyme Activities. Under salt
stress, Si significantly increased the activity of antioxidant
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Figure 2: Effects of Si nutrition and salinity stress on photosynthetic parameters of C. annuum. Different letters in one measurement indicate
statistically significant differences at 𝑃 ≤ 0.05 using Duncan’s multiple range test.

enzymes such as superoxide dismutase (SOD), guaiacol
peroxidase (GPX), catalase (CAT), and ascorbate peroxidase
(APX) (Figure 5). The enhancement of antioxidant enzyme
activities by Si under salt stress to protect the plant from
oxidative stress has been considered as one of the primary
mechanisms of salt stress alleviation induced upon Si supple-
mentation [9, 11]. However, our experimental plants in NaCl
treatment displayed the lowest antioxidant enzyme activities,
denoting a perturbation of antioxidant enzyme metabolism.
In contrast, salinity induced an enormous production of
harmful H

2
O
2
. Higher accumulation of H

2
O
2
during salt

stress impaired the defense of antioxidant metabolism, lead-
ing to an imbalance between the production and elimination
of ROS. However, the supplementation of Si controlled the
generation of H

2
O
2
and restored the balance between ROS

production and its scavenging by enhancing the activities of
antioxidant enzymes [7]. Briefly, Si treatment increased the
activity of SOD under salinity stress. SOD plays an important
role as the primary line of defense by catalyzing the dismuta-
tion of detrimental superoxide radical to hydrogen peroxide,
which is further detoxified by GPX, CAT, and APX at the cost
of different substrates [7]. In the Si added NaCl treatment the
detoxification of ROS by GPX, an antioxidant enzyme which
is important for the metabolism of polyphenols, has been

enhanced [28]. Similarly, the CAT enzyme which is a uni-
versal oxidoreductase responsible for the fine regulation of
H
2
O
2
for the signaling process [29] has been regulated by the

Si supplementation. In addition, the APX enzyme involved
in the reduction of H

2
O
2
via ascorbate-glutathione cycle by

utilizing ascorbate as the substrate electron donor [30] has
been improved by Si. Overall, the activities of antioxidant
enzymes were enhanced with the addition of Si in both nor-
mal and salinity stress conditions. Our results are concordant
with previous reports illustrating Si-mediated modulation of
antioxidant enzymes that contribute to the abiotic stress
tolerance [7].

3.4. Analysis of Capsicum Leaf Proteome under
Salinity Stress and Si Treatment

3.4.1. Investigation of 2DE Protein Profiles. In addition to the
above-mentioned physiological and biochemical factors, we
utilized proteomics tools to investigate the molecular effects
of Si on improving the resistance against salt stress. High
resolution 2DE patterns with protein spots resolved in a pI
range of 4–10 are shown in Figure 6(a).The comparative anal-
ysis of 2DE gels analyzed by Progenesis SameSpots TotalLab
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(a) (b)

(c) (d)

Figure 3: Effects of Si supplementation and salinity stress on stomata of C. annuum in 20x magnification. (a) Control, (b) Si, (c) NaCl
treatment with closed stomata that was denoted by the red circle, and (d) Si + NaCl treatment.

(Newcastle, UK) revealed that 245 protein spots were repro-
ducibly resolved amongst the three replicates. Amongst the
resolved spots, 129 protein spots were differentially expressed
with more than 2.0-fold change compared to control. More-
over, Si supplementation without NaCl stress significantly
upregulated 72 spots, and 57 proteins were highly expressed
in the control treatments. Significantly, salinity stress down-
regulated 83 spots and upregulated 46 spots. Interestingly, Si
supplementation during NaCl stress increased the regulation
of 67 protein spots (Figure 6(b)). Several proteins spots that
were detected only in control and Si treatments were absent
in the treatment with NaCl alone (Figure 7). The decrease
in protein expression in NaCl treatment can be due to the
progressive reduction of metabolic pathways associated with
signal transduction and gene regulation involved in protein
synthesis [31, 32]. In addition, the excessive production of
ROS, which leads to incorrect folding or assembly of proteins,
can be associated with consequent protein degradation in
salt-stressed Capsicum [33].

3.4.2. Peptide Identification Using Matrix-Assisted Laser
Desorption/Ionization Time-of-Flight Mass Spectrometry
(MALDI-TOF MS). From the 129 spots that were analyzed,
proteins from 40 spots were identified using MALDI-TOF
MS. Table 2 shows the list of identified proteins along
with the corresponding spot ID, nominal mass, theoretical
and calculated pI, accession number, MASCOT score,
and percentage of sequence coverage. The percentages of

sequence coverage of proteins identified in C. annuum were
in the range of 14–100%.The expression levels of the identified
protein spots have been listed in supplementary Figure S1 (see
Supplementary Material available online at http://dx.doi.org/
10.1155/2016/3076357). Si supplementation without salinity
stress upregulated the proteins involved in several metabolic
process. Adenylosuccinate synthase (spot 1), an important
enzyme in purine metabolism, was upregulated by Si.
Nucleotide metabolism plays a vital role throughout the
growth and development of plants [34]. The increased
expression of purine metabolism-related proteins by Si may
be attributed to the enhancement of growth and biomass inC.
annuum. In addition, Si treatment enhanced the expression
of E3 ubiquitin ligase (spot 2), which catalyzes the thirdmajor
step in the ubiquitination process. The enzyme E3 ligase
significantly influences several developmental processes such
as photo-morphogenesis, floral development, senescence,
and circadian rhythm of plants [35]. Similarly, Si increased
the expression of carbon fixation and photosynthesis-related
proteins such as RuBisCo (spot 5) and oxygen evolving
enhancer protein (spot 12), respectively. Spots 5 and 12
were repressed by salinity, representing the degradation of
photosynthesis and energy-related metabolic processes, as
reported in several plant species [15–18].

Si treatment caused the accumulation of a nucleoporin-
like protein (spot 7). Nucleoporins are involved in several
vital roles, especially plant disease resistance and hormone
signaling [36]. Probable calcium binding protein-CML17
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Figure 4: Si treatment and salinity stress on biochemical stress markers. (a) Electrolyte leakage potential (ELP); (b) malondialdehyde content
(MDA); and (c) hydrogen peroxide content (H

2
O
2
). Data are the mean ± SE from three replicates. Different letters in one measurement

indicate statistically significant differences at 𝑃 ≤ 0.05 using Duncan’s multiple range test.

(spot 9) and mitochondrial calcium uniporter regulatory
subunit MCUb-like isoform (spot 19) were found to be
increased by Si treatment. In general, calcium is consid-
ered a universal secondary messenger with well-defined
roles in several cellular responses, and calcium binding
proteins also act against several stresses [37, 38]. Thus, the
enrichment of calcium transportation-related proteins by Si
could benefit the plants during environmental stresses. Apart
from the above-mentioned proteins, Si supplementation also
enhanced the expression of RNA polymerase II transcription
subunit 11 (spot 16), ribosomal protein L16 (spot 17), and a
resistance protein candidate (spot 24). Salinity stress resulted
in the downregulation of several proteins; however it led to
the upregulation of zinc finger protein-160 (spot 3). Zinc
finger proteins have been widely known to control stomatal
aperturemovements to avoid excesswater loss during salt and
drought stresses [39].Therefore, an increase in the expression
levels of zinc finger protein can be interpreted as a stress
tolerance response activated in C. annuum to combat ROS
imbalance and water loss. Similarly, spot 37 corresponding
to glyceraldehyde-3-phosphate, a vital enzyme in several
metabolic processes including glycolysis, was upregulated in
NaCl treatment. According to Jeong et al. [40], the expression

of glyceraldehyde-3-phosphate was significantly increased by
abiotic stresses like salinity. Moreover, NaCl induced the
accumulation of molybdopterin synthase catalytic subunit
(spot 13), a key enzyme that catalyzes the synthesis of a
molybdenumcofactor in the abscisic acid (ABA) biosynthetic
pathway [41]. Thus, the increase in spot 13 emphasizes the
activation of ABA biosynthesis, which is a prominent stress
response observed in several plants [42]. Salinity also upreg-
ulated 𝛽-keto acyl reductase (spot 25), a rate limiting enzyme
involved in fatty acid metabolism [43], uncharacterized
protein LOC104086136 isoform X2 (spot 33), reverse tran-
scriptase (spot 34), eukaryotic translation initiation factor 3
subunit D (spot 35),minichromosomemaintenance 5 protein
(spot 36), Ras-related protein RABH1b-like isoform X3 (spot
39), and F-box/kelch-repeat protein (spot 40). Furthermore,
the combination of Si and NaCl treatments resulted in
enhanced accumulation of DEMETER-like protein-2 (spot
11), a key regulator of DNAmethylation, particularly under a
stressful environment [44]. MADS-box transcription factor
26 isoform X2 (spot 14) was enhanced by the combined
application of Si and NaCl. MADS-box transcription factors
are associated with wide range of functions, particularly in
growth and development [44]. Importantly, under salt stress
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Figure 5: Modulation of activities of antioxidant enzymes upon Si supplementation and salinity stress. Different letters in one measurement
indicate statistically significant differences at 𝑃 ≤ 0.05 using Duncan’s multiple range test.
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Figure 7: 2DE gels displaying the differential expression profiles of proteins across the treatments; (a) control, (b) Si, (c) NaCl, and (d) Si +
NaCl treatments.

conditions, addition of Si upregulated cullin 1D (spot 28)
and F-box protein 8-like (spot 29), which are vital proteins
involved in the ubiquitin-proteasome pathway. These pro-
teins are involved in the regulation of signal transduction,
light response, floral development, self-incompatibility, epi-
genetic regulation, and stress resistance [45]. Moreover, the
increase in ubiquitination-related proteins in Si-treated NaCl
conditions implies that, in order to remove the stress-induced
defective proteins, the ubiquitin-cascade-mediated protein
degradationmight be induced. In addition, the accumulation
of phosphoglycerate kinase (spot 23), ATP-synthase CF1𝛼
subunit (spot 27), disease resistance protein RPS2 (spot
15), and double-stranded RNA binding protein 2 (spot 30)
associated with major metabolic processes was increased in

Si + NaCl treatment. Thus, regulation of the above-men-
tioned proteins involved in the growth, development,
and stress resistance processes gives detailed information
about the improved physiology, photosynthesis, antioxidant
metabolism, and nutrient balance induced by Si, particularly
under salt stress conditions.

3.4.3. Gene Ontology (GO) and Clustering Analysis. The
biological processes of the identified proteins analyzed by
gene ontology (GO) are illustrated in Figure 8(a). The GO
results indicated that a large proportion of the differentially
regulated proteinswas involved inmetabolic processes (22%),
followed by cellular processes (17%), biological processes
(13%), biosynthetic processes (9%), nucleobase containing
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Figure 8: (a) Gene ontology analysis of the identified proteins from C. annuum leaves. (b) Hierarchical clustering analysis of the differentially
expressed proteins in response to Si supplementation and salt stress. The dendrogram of the spot clusters with the relative expression values
of individual proteins is displayed as a heat map. All quantitative information is transmitted using a color scale ranging from red for the
downregulation to green for the upregulation. Each row is representative of a single spot and each column indicates the treatment (C: Control;
S: Si; NS: Si + NaCl; N: NaCl).

compound metabolic processes (6%), photosynthesis (5%),
carbohydrate metabolism (5%), catabolic processes (5%),
cellular protein modification (3%), DNA metabolism (3%),
translation (3%), generation of precursor metabolites and
energy (3%), signal transduction (2%), transport (2%), cel-
lular component organization (2%), and protein metabolic
processes (2%). Of the 22% of proteins involved in metabolic

processes, most are involved in phosphorylation, oxidation-
reduction process, glycolysis and carbon fixation, reductive
pentose phosphate cycle, DNA replication,methylation, tran-
scription, translation, photorespiration, and AMP biosynthe-
sis.

In addition, majority of the differentially expressed pro-
teins were involved in nucleotide binding (23%), particularly
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ATP andGTP binding, followed by transferase activity (17%),
catalytic activity (14%), kinase activity (11%), protein binding
(6%), DNA binding (5%), chromatin binding (3%), RNA
binding (3%), structure molecule activity (3%), sequence-
specific DNA binding transcription factor activity (3%),
translation factor activity (3%), and hydrolase activity (3%)
(Figure S2A). Since the proteins were isolated from leaf
tissues, the cellular components (Figure S2B) of the proteins
were largely delineated to plastids (26%). Other locations
of the proteins were traced to intracellular (16%), cellular
component (16%), cell (11%), nucleus (11%), thylakoid (5%),
ribosome (5%), membrane (5%), and cytoplasm (5%). The
result of hierarchical clustering analysis of all the treatments
is represented as a heat map in Figure 8(b). Column 3 in the
heatmap representing the Si +NaCl treatment illustrated that
Si treatment induced the upregulation of proteins against salt
stress. In addition, the downregulation of proteins in NaCl
treatment was identified, in accordance with alfalfa [15].

Taken together, the results illustrate that Si significantly
mitigated salinity stress in Capsicum by maintaining the
physiology, biochemical parameters, and antioxidant enzyme
metabolism and regulated the expression of leaf proteins.

4. Conclusions

In conclusion, the present study reveals that Si protects
Capsicum from salinity stress by alleviating oxidative stress
and enhancing growth by regulating photosynthesis, integral
nutrient management, and antioxidant enzyme metabolism.
Supplemented Si induced the expression of proteins involved
in photosynthesis, cellular metabolism, and stress resistance
to mitigate the salt stress. Thus, our results indicate that
supplementation of Si plays an indispensable role in the
regulation of leaf proteins and alleviation of oxidative damage
caused by salinity stress in C. annuum.
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