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Abstract

Growth differentiation factor 11 (GDF11) and myostatin (MSTN or GDF8) are closely related 

members of the transforming growth factor β superfamily (TGFβ) and are often perceived to serve 

similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization 

and signaling, accumulating evidence suggests that these two ligands can have distinct functions in 

a number of situations. GDF11 is essential for mammalian development and has been suggested to 

regulate aging of multiple tissues, whereas MSTN is a well-described negative regulator of 

postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we 

discuss the biochemical regulation of GDF11 and MSTN and their functions in the heart, skeletal 

muscle, and brain. We also highlight recent clinical findings with respect to a potential role for 

GDF11 and/or MSTN in humans with heart disease. Finally, we address key outstanding questions 

related to GDF11 and MSTN dynamics and signaling during development, growth, and aging.
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GDF11, also known as bone morphogenetic protein 11 (BMP11), and its homolog MSTN, 

(also known as GDF8) are closely related members of the TGFβ superfamily1, 2. MSTN 

plays an evolutionary conserved role in antagonizing postnatal muscle growth, limiting both 

the number and size of individual muscle fibers1. Hence, disruption of the myostatin gene or 

targeted inhibition of MSTN protein triggers hyper-muscular phenotypes in many mammals 

and fish3-5. MSTN function also has been implicated in postnatal glucose metabolism and 

adipogenesis6. GDF11, in contrast, plays a broad role during mammalian development, 

regulating anterior/posterior patterning, formation of the kidney, stomach, spleen and 

endocrine pancreas, and olfactory neurogenesis2, 7-11. GDF11's functions in postnatal tissues 

are less explored, partly due to the perinatal lethality of Gdf11-knockout mice2, 7, which 

exhibit homeotic skeletal transformations, cleft palate, and renal agenesis (Table 1). Recent 

work identified GDF11 as a candidate hormonal regulator of aging in a variety of different 

organs. Consistent with this function, boosting levels of GDF11 protein in aged mice 

improves age-related phenotypes in the heart12, brain13, and skeletal muscle14. In addition, 

two studies recently implicated GDF11 as a negative regulator of erythroid differentiation in 

mouse aging and thalassemia models15, 16.

Further highlighting the differences in MSTN and GDF11, myostatin mRNA is 

predominantly detected in skeletal and cardiac muscle whereas GDF11 mRNA is detected 

broadly in numerous tissues17 and is most abundant in the kidney and spleen12. Both GDF11 

and MSTN are found in the bloodstream, and while the functional implications of their 

circulation are still under investigation, their systemic presence implies that these proteins 

may act as hormonal signals. Given their high sequence similarity, it was expected that many 

of the features and functions of these two ligands should overlap. However, a growing 

number of studies have described disparities in their actions, sparking debate over their 

respective involvement in particular physiological processes. Here, we discuss the molecular 

properties of GDF11 and MSTN, their roles in regulating different organ systems, and the 

challenges encountered in studying these proteins, which have contributed to recent 

controversies regarding their biological roles.

BIOCHEMICAL REGULATION OF GDF11 AND MYOSTATIN

The TGFβ family comprises more than 30 structurally related, yet functionally distinct 

ligands. This family can be subdivided into three subclasses: the TGFβs, bone 

morphogenetic proteins (BMPs), and activin/MSTNs. GDF11 and MSTN belong to the 

activin/MSTN subclass and share 90% sequence identity within their mature, signaling 

domain. Similar to other TGFβ proteins, both GDF11 and MSTN are synthesized as 

precursor molecules where an N-terminal prodomain is cleaved from a C-terminal signaling 

or mature domain by a furin protease (Fig. 1A). The mature ligands are propeller-shaped, 

disulfide-linked dimers that initiate signal transduction by engaging two Type II receptors 

and two Type I receptors using convex and concave surfaces, respectively18 (Fig. 2).

The molecular structure of MSTN has been extensively investigated, including two X-ray 

crystal structures of MSTN in complex with two known antagonists19, 20. In contrast, 

GDF11 is less well characterized, and much of what is known for MSTN has been inferred 

for GDF11. However, the unbound X-ray crystal structure of GDF11 was recently 
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determined revealing the classic propeller-shaped structure with subtle differences between 

myostatin and GDF11, particularly in receptor binding epitopes21. Therefore, while many 

structural and regulatory mechanisms are shared between these two ligands, growing 

evidence also points to unique features of GDF11 and MSTN biology.

Role of the Prodomain in Latency and Activation

While mature GDF11 and MSTN ligands share substantial sequence identity, their 

prodomains are only 52% identical (Fig. 3). Like other TGFβ members, the GDF11 and 

MSTN prodomains aid in folding of the mature dimeric ligand22, 23. However, unlike most 

TGFβ ligands, GDF11 and MSTN remain tightly bound to their prodomains after cleavage 

by furin-like proteases24-29, and are thereby held in a latent state, unable to bind receptors. 

Ligand activation requires additional cleavage of the prodomain by a Tolloid-like (TLD) 

metalloproteinase26, 27. Compared to other ligands, MSTN is inefficiently processed by 

furin, leaving a significant amount of unprocessed and presumably inactive protein24, 25. 

However, a SNP for the mutation K153R30 dramatically improves furin processing, but has 

no effects on TLD activation31 (Fig. 3B). Interestingly, this allelic variant was found at 

higher frequency in two centenarian cohorts, as compared to controls32, although the 

implications of this polymorphism in terms of longevity and maintenance of muscle mass 

and strength have yet to be definitively established32-41. While GDF11 has similar furin and 

TLD recognition sequences, it is not known if sequence variations, especially in the 

surrounding areas, which are more divergent, alter furin and/or TLD processing of GDF11 

(Fig. 3B).

Structural details of the latent state have yet to be described for GDF11 and MSTN. Still, 

despite differences in mechanism of activation (discussed below), the structure of TGFβ1 in 

complex with its prodomain42 offers general insight into the molecular interactions driving 

latency. The latent structure of TGFβ1 has a ring-like appearance orchestrated by a centrally 

positioned mature dimer blanketed by the prodomains from each monomer42 (Fig. 3A). 

Ligand inhibition is mediated through interactions of the helical N-terminus (α1) with the 

Type I receptor site and a ‘latency lasso’ where the prodomain wraps around the ligand 

fingertips toward the Type II receptor site42. Consistent with this structure, MSTN 

prodomain residues 43-115 are necessary and sufficient to inhibit ligand activity43, 44. 

Interestingly, this region contains the TLD proteolytic site17,18 and is highly conserved with 

GDF11, suggesting that it serves a similar role in regulating GDF11 (Fig. 3B).

Nonetheless, the mechanism for TGFβ activation differs from that of GDF11 and 

MSTN45, 46. The TGFβ latent complex exists in the extracellular matrix (ECM) covalently 

bound to the latent transforming growth factor β protein 1 (LTBP1) via N-terminal disulfide 

linkages, a feature not known to occur for GDF11 and MSTN47-49. Additionally, the apex of 

the TGFβ latent complex interacts with αVβVI integrin45, 46. The combination of these two 

interactions tether the latent TGFβ complex at both ends, such that cellular contractile forces 

release the mature TGFβ ligand from the prodomain42, 45, 46. Although there is no evidence 

that MSTN or GDF11 latent complexes are covalently bound to a LTBP, these latent 

complexes do interact with the ECM components LTBP3 and perlecan25, 50. The purpose of 

these interactions remains unknown, but possibly relates to ligand activation, as binding to 
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LTBP3 can prevent furin processing and overexpression of LTBP3 in skeletal muscle 

increase muscle mass25. Thus, interactions with ECM components may fine-tune the activity 

of MSTN and GDF11 and dissimilarities in GDF11 and MSTN prodomain sequences (Fig. 

3) could allow for unique ECM interactions across tissues.

Receptor Utilization by GDF11 and Myostatin

Similar to the activin-type ligands, both GDF11 and MSTN predominantly utilize the Type 

II receptors activin receptor kinase II-A (ActRIIA) and ActRIIB and the Type I receptors 

activin receptor-like kinase 4 (ALK4) and ALK5 to elicit signal transduction via SMADs 2 

and 328, 51, 52 (Fig. 2B). GDF11 also can signal through an additional Type I receptor, 

ALK7, although its biological role remains undetermined51.

Unlike the BMPs, the TGFβ and activin/MSTN sub-classes exhibit high affinity for the Type 

II receptor and low affinity for the Type I receptor18. The Type II receptors for the BMP and 

activin sub-classes bind on the concave surface of the fingers whereas TGFβs bind the Type 

II receptor more distally, towards the fingertips18. This positioning facilitates a cooperative 

binding interaction between the Type II and Type I receptor, as shown by the structure of the 

TGFβ3:TBRII:ALK5 receptor complex53. In contrast, the receptors bind BMPs on opposite 

sides of the fingers, and thus are unable to interact with one another, as described in the 

BMP2:ActRIIB:ALK3 complex54. The ternary receptor configuration for activin/MSTN has 

yet to be determined, as detailed binding and structural studies have been hampered by the 

low affinity for their Type I receptors18.

Using structural data as a guide to denote the approximate receptor interfaces53, 55-57, it is 

likely that GDF11 and MSTN bind Type II receptors similarly since residues in this location 

are identical (Fig. 4). However, residues in the Type I site, specifically the pre-helix loop and 

wrist helix (Fig. 4), are divergent between GDF11 and MSTN, suggesting that Type I 

receptor binding might differ, especially in the utilization of ALK7. Supporting this notion, 

introduction of the MSTN pre-helix loop into Activin A confers signaling through ALK520. 

Similar chimeric protein studies should help to reveal the biological consequences of 

sequence differences between GDF11 and MSTN at the receptor interface. Furthermore, 

with growing evidence indicating the importance of co-receptors in assembling TGFβ ligand 

complexes58-65, further studies are needed to define their roles in GDF11 and MSTN 

signaling.

Regulation of GDF11 and Myostatin by Extracellular Binding Proteins

Signaling by GDF11 and MSTN is regulated by extracellular binding proteins that are 

typically thought to function as antagonists. These include follistatin (FS), follistatin-like 3 

(FSTL3), decorin, and growth/differentiation factor associated serum proteins 1 and 2 

(GASP1, GASP2)28, 66-70. Structural studies indicate that two FS or FSTL3 molecules 

symmetrically embrace the ligand to block both receptor epitopes19, 20. FSTL3 and FS 

similarly contain an N-terminal domain followed by tandem follistatin domains. The N-

terminal domain binds in the concave Type I receptor slot where GDF11 and MSTN show 

the highest divergence19-21. However, mutagenesis studies and comparison to other FS-

ligand structures indicate that the FS N-terminal domain is highly plastic and can 
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accommodate diverse Type I interfaces19, 20, 71-73. Therefore, sequence differences likely 

have minimal impact on GDF11 and MSTN antagonism by FS. Sequence differences are 

also unlikely to impact the increased binding to cell surface-localized heparin/heparin sulfate 

and the subsequent acceleration of ligand degradation that occurs when FS is bound to 

MSTN20. This interaction is known to regulate MSTN signaling within skeletal muscle74, 75 

and a similar mode of regulation may exist for GDF11. Interestingly, FSTL3 does not bind 

heparin and therefore readily escapes the cell surface to enter circulation76. Thus, the distinct 

localizations of FS-type antagonists provide an intriguing mechanism for differentially 

modulating the actions of circulating versus locally produced GDF11 and MSTN.

In contrast to broad TGFβ ligand antagonism by FS-type molecules, GASP1 and GASP2 

selectively inhibit GDF11 and MSTN66, 77-80. GASP proteins contain six independent 

domains, a whey acidic protein domain, follistatin domain, Ig-like domain, 2 tandem kunitz 

domains, and a netrin-like domain66, 81. The follistatin domain is the primary driver of 

ligand antagonism80. Despite a similar domain layout, GASP1 binds MSTN in a unique 1:1 

ratio, forming an asymmetric complex, whereas GASP2 binds symmetrically in a 2:1 

ratio 68, similar to FS or FSTL319, 20, 77. Interestingly, C-terminal truncation of GASP1 

induces 2:1 binding and weaker affinity for MSTN, similar to that of GASP277, 79, 80. GASP 

proteins antagonize signaling by preventing ligand binding to the Type II receptor79, 82, an 

intriguing mechanism given that GASP maintains unique specificity for GDF11 and MSTN 

despite conservation of the Type II receptor epitope among the activin/MSTN subclass. This 

observation suggests that steric forces and/or additional molecular contacts (e.g. in the Type 

I epitope) are likely important in defining this unique ligand-antagonist relationship.

In summary, GDF11 and MSTN are regulated by specific and non-specific interactions at 

nearly every step from biosynthesis to engagement with their cognate receptors. Given that 

sequence divergence exists between the GDF11 and MSTN prodomains, and to a lesser 

extent in the mature domains, it remains important to determine if the distinct biological 

functions of these proteins are driven in part by these molecular differences.

Signaling by GDF11 and Myostatin

Canonical TGFβ signaling is mediated through a series of SMAD proteins. Receptor binding 

by either GDF11 or MSTN induces phosphorylation and activation of the receptor-regulated 

SMAD (R-SMAD) proteins SMAD2 and SMAD3. Subsequently, the phosphorylated R-

SMAD proteins assemble to form oligomeric complexes with the common SMAD 

(coSMAD) SMAD4, and this complex accumulates in the nucleus to regulate gene 

expression through direct and indirect DNA binding (Fig. 2B). Cellular responses to 

SMAD2/3 activation are highly context-dependent, and the presence or absence of particular 

transcriptional cofactors, DNA binding partners and chromatin modifiers can dramatically 

alter the ultimate output of ligand binding83, 84. GDF11 and MSTN may also signal through 

non-canonical (i.e., non-SMAD) pathways, including ERK, JNK, and p38 MAPK (Fig. 

2B)85-88, adding further complexity.

The transcriptional targets of GDF11 and MSTN signaling remain incompletely defined. A 

recent study compared gene expression changes following stimulation of human primary 

muscle cells with GDF11 or MSTN87. Only a few differentially represented transcripts were 
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identified, suggesting that GDF11 and MSTN gene regulation may be essentially identical87. 

However, this analysis was limited to a single cell type and neither ligand activated a robust 

gene-expression signature (the highest observed Fold Change values were only ~4-fold for 

either ligand). Thus, further experiments are needed to clarify potential differences in the 

transcriptional output of GDF11 and MSTN signaling in different cell types and 

physiological contexts.

GDF11 RELATED PATHWAYS IN THE HEART

The incidence of myocardial infarction and heart failure increases with age89, and aging 

increases mortality risk with any given infarction event90. TGFβ signaling regulates 

responses to myocardial ischemic injury91, 92, with recent studies suggesting possible roles 

for GDF11, MSTN and FSTL3 in the heart.

Myostatin in the heart

MSTN is best known for inhibiting skeletal muscle growth1, 3, but genetically engineered 

models have demonstrated an additional function in cardiac tissue. MSTN is expressed in 

fetal and adult hearts93 and its expression increases in patients with decompensated heart 

failure94 and congenital heart disease95. MSTN protein levels rapidly increase after 

ischemia96 and its circulating levels increase in mice after TAC-induced hypertrophy97. 

Germ-line inactivation of MSTN does not cause cardiac hypertrophy and does not attenuate 

cardiac fibrosis in dystrophin-deficient mice, indicating that MSTN does not function in 

cardiac muscle in a manner similar to skeletal muscle98. However, other experiments reveal 

that MSTN-null mice develop increased heart and body weights. MSTN−/− mice (28-30 

month-old) were reported to have increased normalized heart mass at death compared to 

MSTN+/+ and MSTN+/− mice99. Aged mice with MSTN deletion have improved fractional 

shortening, smaller left ventricle diastolic diameters and less fibrosis compared to aged wild-

type mice100. Heineke and colleagues compared deletion versus overexpression of MSTN in 

cardiomyocytes97. MSTN deletion in cardiomyocytes did not prevent left ventricular 

decompensation under pressure overload, whereas transgenic overexpression of MSTN in 

the heart inhibited cardiac growth97. Inducible genetic deletion of MSTN in adult mouse 

cardiomyocytes leads to dramatic deterioration of cardiac function and high mortality, as 

well as increased glycolysis and glycogen storage, revealing the importance of endogenous 

MSTN for adult cardiomyocyte metabolism101. Thus, MSTN likely participates in cardiac 

growth and metabolism, although the experimental findings have not been as consistent in 

the heart as in skeletal muscle.

Cardiac effects of GDF11

GDF11 is expressed in cardiac tissue102 but at lower levels compared to spleen, kidney and 

skeletal muscle in mice12. We reported an anti-hypertrophic effect of GDF11 in aging 

mice12. Using heterochronic parabiosis, we reported reduced cardiac hypertrophy in aging 

mice that shared a common circulation with young mice. We further devised a sham 

parabiosis procedure wherein mice were joined but did not share a chimeric circulation. 

With heterochronic sham parabiosis, hypertrophy in old mice was not reduced, implying the 

presence of a circulating factor that regulated cardiac size. Proteomic studies identified 
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GDF11 as a candidate for this anti-hypertrophic effect, and supplementing blood levels in 

old mice by daily intraperitoneal injection of recombinant GDF11 (rGDF11) protein reduced 

cardiomyocyte size and heart mass over 4 weeks12.

In contrast, Smith and colleagues reported recently that injections of the same quantity of 

rGDF11 employed by us in old mice (0.1 mg/kg, injected daily) did not alter cardiac 

structure or function103. These apparently contradictory results may be explained in part by 

the different sources of rGDF11 and by a potential dose-dependent effect of GDF11. 

Following the study by Smith and colleagues103, we performed a dose-response analysis, 

and demonstrated that for a given protein preparation, the reduction in cardiac mass by 

GDF11 is dose-dependent; for recent protein preparations with improved quality control of 

protein concentration, a dose of 0.5 mg/kg reduced cardiac mass in 9 days104. Injection of 

rGDF11 rapidly activates SMAD signaling in cardiac tissue of both young and old mice104, 

which together indicate that exogenous GDF11 can regulate cardiomyocyte size and 

hypertrophy and highlight that doses and protein preparations used could impact the results 

of in vivo studies105.

Given observations reported previously for genetic manipulation of MSTN 

expression88, 98, 99, it is likely that administration of recombinant MSTN could achieve a 

similar anti-hypertrophic effect, but this has yet to be tested. Furthermore, it remains to be 

determined if a similar effect can be achieved with other ligands that likewise activate the 

SMAD2/3 pathway, such as members of the TGFβs or activin sub-classes. Finally, while 

most studies to date have focused on SMAD activation as a readout of signaling activity, it 

will be interesting to determine if cross-talk with non-canonical pathways may achieve 

ligand-specific effects.

FSTL3 in cardiac tissue

FSTL3 is expressed in cardiac tissue106 and its expression increases in end-stage failing 

myocardium in humans107. Heart mass, left ventricular and systolic pressure, and systolic 

arterial pressure are increased in FSTL3-deficient mice compared to wild-type mice108. In 

addition, experimental cardiac injury induces myocardial expression of the prosurvival 

TGFβ ligand, activin A, and one of its antagonist regulators, FSTL3, where it is thought that 

the relative expression levels of these molecules dictate cell survival following insult. 

Interestingly, cardiomyocyte-specific deletion of FSTL3 reduces infarct size and apoptosis, 

suggesting a detrimental effect of endogenous FSTL3 on the heart, while overexpression of 

FSTL3 inhibits the prosurvival effect of activin A109. FSTL3 also regulates cardiac 

hypertrophy induced by pressure overload106. While no differences were seen between 

hearts of cardiac-specific FSTL3−/− and wild-type mice in standard physiological conditions, 

FSTL3−/− mice106 exhibited attenuated myocardial hypertrophy and reduced left ventricular 

dilatation, and systolic dysfunction and interstitial fibrosis were reduced106, 110 after 

transverse aortic constriction-induced pressure overload (TAC). These data suggest that 

endogenous FSTL3 regulates the heart in many circumstances and that induced expression 

of FSTL3 may have deleterious effects. It remains to be determined how cardiac insult and 

upregulation of FSTL3 may impact the heart over time with respect to GDF11 and MSTN 

levels, especially in the case for older populations where evidence suggests that GDF11 
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and/or MSTN levels decline with age104. Nevertheless, because FSTL3 inhibits multiple 

TGFβ family ligands111, cardiac effects of FSTL3 cannot be attributed to a particular ligand 

interaction at this time.

GDF11 RELATED PATHWAYS IN SKELETAL MUSCLE

Skeletal muscle is composed of multinucleated, non-dividing fibers. Repair of muscle fibers 

after severe damage invokes the regenerative activities of a unipotent population of muscle 

stem cells, known as satellite cells, which reside immediately adjacent to myofibers in adult 

muscle. Aging impairs both the homeostatic maintenance of muscle mass and muscle 

regenerative potential, and recent studies have focused on the potential role of GDF11-

related signaling pathways in these age-associated changes.

Myostatin in muscle homeostasis and repair

Prevailing views on GDF11 function in skeletal muscle and satellite cells have been greatly 

influenced by analogy to MSTN due to the high homology of their mature, C-terminal 

ligand domains (Fig. 4). MSTN is expressed almost exclusively in mature and developing 

muscle and negatively regulates muscle mass. Targeted disruption of MSTN in mice 

produces a near doubling of adult muscle mass, with an increase in both the size and number 

of muscle fibers1 and a shift toward more glycolytic fiber types1, 112. Whether the 

hypertrophic and hyperplastic phenotype of MSTN-null muscle reflects in part a release of 

MSTN-mediated inhibition on muscle satellite cells remains unclear. While some studies 

suggest that MSTN inhibits satellite cell proliferation113, 114, others have reported that it has 

no impact115, 116. Likewise, some groups have found increased numbers of satellite cells in 

MSTN-null muscle117, while others report slightly lower numbers115. MSTN overexpression 

and supplementation studies suggest that high levels of MSTN can drive rapid muscle 

atrophy118, 119, although more moderate increases in MSTN do not detectably alter muscle 

mass120. Conversely, treatment of mice with the inhibitory MSTN propeptide induces 

muscle hypertrophy121.

GDF11 effects in muscle

In contrast to the profound effects of MSTN deficiency, muscle phenotypes are not 

prominent in GDF11-null mice, which exhibit defects in a variety of mesodermal, 

endodermal and ectodermal lineages and die within 24 hours after birth2. Nonetheless, 

double mutants lacking both MSTN and GDF11 exhibit increased penetrance of renal, 

palatal and skeletal abnormalities7, suggesting that MSTN can compensate to some degree 

for loss of GDF11 in GDF11-null mice. Studies to similarly assess possible redundancy of 

GDF11 and MSTN function in regulating muscle mass have been challenging, due to the 

fact that GDF11-null mice die prior to the age at which MSTN-null mice begin to exhibit 

muscle phenotypes. However, analysis of mice with muscle fiber specific deletion of GDF11 

showed no changes in muscle mass or fiber type, and muscle-specific GDF11 deletion did 

not exacerbate the phenotype of MSTN-null animals7. These results suggest that GDF11 and 

MSTN may have distinct functions in skeletal muscle, or that GDF11's effects on muscle are 

mediated by GDF11 protein that is produced by non-muscle tissues.
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GDF11 has been implicated as a negative regulator of muscle development by studies in 

chick embryos and in cultures of differentiating C2C12 cells and primary human and mouse 

muscle myoblasts. In these systems, GDF11, like MSTN, can block myogenic 

differentiation87, 122-124. Yet, other data suggest that GDF11's role in myogenesis may be 

more complex. Gdf11 mRNA levels in mouse skeletal muscle appear to peak during the 

most rapid phase of postnatal muscle growth and are higher in males than in females, despite 

males having greater muscle mass124. Gdf11 expression is also increased in the muscles of 

MSTN-null mice, which nonetheless exhibit accelerated muscle growth and increased 

muscle mass124. These data raise the possibility that GDF11's actions in muscle may not 

fully overlap with those of MSTN such that GDF11 cannot compensate fully for the loss of 

MSTN in muscle. Whether this lack of functional redundancy reflects differences in the 

biochemical properties and signaling activities of GDF11 and MSTN, or differences in their 

absolute levels in muscle, remains to be determined. Interestingly, ectopic GDF11 can 

induce expression of FS122, which as discussed above inhibits both GDF11 and MSTN 

signaling. Thus, GDF11 can initiate a negative feedback loop that may antagonize its own 

activity, as well as that of other activin/MSTN ligands. The existence of such a feedback 

mechanism suggests the likely importance of maintaining signaling by these ligands within a 

tight physiological range.

Experiments employing heterochronic parabiosis recently implicated GDF11 as a candidate 

regulator of aging phenotypes in the heart, muscle and brain12-14. Consistent with this 

notion, satellite cells isolated from the uninjured muscle of aged mice that received daily 

intraperitoneal injection of rGDF11 for four weeks showed improved myogenic activity in 

ex vivo clonal assays and a reduced burden of DNA damage. In addition, aged animals 

supplemented with rGDF11 showed accelerated recovery from muscle injury in a cryoinjury 

model14. rGDF11 treatment in aged mice also improved neuromuscular junctions and 

myofibrillar and mitochondrial morphology, and increased average exercise endurance and 

grip strength without any detectable changes in muscle mass or fiber caliber14. Notably, the 

dosage of rGDF11 in these studies was similar to that reported previously to lack effects on 

muscle size in an in vivo rMSTN dosing study120. Interestingly, young mice in this study 

showed no differences in regenerative capacity following treatment with the same amount of 

rGDF11, suggesting that GDF11's beneficial effects on muscle were age-dependent.

In contrast to the studies summarized above, a subsequent paper questioned the beneficial 

effects of rGDF11 on muscle aging, reporting instead that supplementation of rGDF11 in 

aged mice has no effect and in young mice impairs muscle repair. Yet, it is important to note 

that the study design employed by this group87 differed significantly from that in the earlier 

studies14. From a reagent standpoint, the authors used rGDF11 from a different protein 

source and employed a different dosing regimen. Further, they assessed muscle regeneration 

in a more severe, cardiotoxin-mediated damage model, which ablates the majority of 

resident satellite cells125, 126 and shows distinct temporal and spatial features of regeneration 

in comparison to cryoinjury127, 128. Thus, the different outcomes obtained in the two studies 

may reflect differences in experimental design, and comparison of the methods employed 

could provide an avenue for discovering key mechanisms that determine GDF11's in vivo 
effects. For instance, the inability of rGDF11 to accelerate repair in the satellite-cell 

depleting cardiotoxin injury model87 suggests that sustaining a sufficient pool of 

Walker et al. Page 9

Circ Res. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regenerative satellite cells may be essential for a beneficial effect on regeneration in 

response to rGDF11. Likewise, the possible negative impact of higher doses of rGDF11 in 

young mice87 could indicate that rGDF11 exhibits antagonistic pleiotropy in young versus 

old animals, or that the precise timing and dosage of rGDF11 administration is critical in 

determining its in vivo effects.

It is also important to remember that rGDF11's impact on muscle repair in vivo likely 

represents the integrated effects of this growth factor on many different target cells. GDF11 

signaling has been implicated in a number of biological processes, including 

vasculogenesis13, a process clearly documented to influence the efficiency of muscle 

repair129. Indeed, if the primary actions of GDF11 in vivo are on vasculature, this may 

explain the coordinated responses to systemic administration of this protein seen in skeletal 

muscle, heart and brain, as each of these organs shows critical dependence on proper 

vascularization, a process which declines with increasing age130.

The potential effects of changing levels of MSTN on aging muscle have also been examined. 

As mentioned above, human genomics studies suggest an association of the K153R 

polymorphism, thought to increase MSTN activity by enhancing furin processing31, with 

longer lifespan32. Interestingly, homozygosity for the K153R allele is extremely rare, and 

most R allele-carrying centenarians are heterozygous for this variant, a genotype that does 

not appear to alter muscle phenotypes in aged individuals38, 39, 41. Studies in mice also 

suggest that alterations of MSTN signaling may impact lifespan. A recent study of male 

MSTN+/+, MSTN+/− and MSTN−/− mice (n=38-42 mice per group), revealed an increase in 

both median and maximum lifespan of heterozygous animals, which showed a 30% decrease 

in circulating MSTN levels, as compared to wild-type controls99. In contrast, the median and 

maximal lifespan of MSTN−/− mice did not differ from wild-type. Replication of this study, 

with inclusion of female animals, should be very illuminating, particularly as data from 

human subjects suggests sex-specific differences in the regulation of circulating MSTN 

levels with age131.

Analogous studies of lifespan in GDF11 mutant mice are complicated by the developmental 

phenotypes exhibited by both GDF11−/− and GDF11+/− mice. However, Pazdro and 

colleagues recently reported that levels of circulating GDF11 are heritable in genetically 

diverse inbred mouse strains and can be used to predict median lifespan, with higher GDF11 

levels at middle age associated with longer lifespan132. In addition, an overall positive 

impact of higher GDF11 and/or MSTN levels on lifespan, as well as muscle function, has 

been corroborated in invertebrate models. For example, overexpression of myoglianin, the 

fly ortholog of both GDF11 and MSTN, delayed the onset of age-related neuromuscular 

dysfunction and extended lifespan, while its inhibition hastened neuromuscular decline and 

caused premature death133. Studies in shrimp likewise implicate the ancestral form of 

GDF11/MSTN in supporting muscle growth and survival134.

In summary, although more research is clearly needed, evidence across species implicates 

GDF11 as a candidate regulator of muscle homeostatic and regenerative function during 

aging, and suggests that raising levels of circulating GDF11 might be helpful for some age-

related muscle pathologies. Emerging evidence also implicates both GDF11 and MSTN in 
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regulating longevity and suggests that even subtle variations in ligand activity can alter 

phenotypic outcomes. While the mechanisms underlying these effects remain unclear at 

present, these data raise the possibility that systemic GDF11 could provide a useful 

biometric for mammalian aging.

GDF11 IN THE BRAIN

TGFβ family ligands have diverse and pleiotropic roles in the development and maintenance 

of the nervous system, and their effects can vary between ligands, target cell types, and an 

animal's developmental stage or age. Neurological effects of GDF11 have been best 

characterized in the developing olfactory epithelium, spinal cord and retina where GDF11 

influences the timing and progression of neurogenesis as well as the ratios of different neural 

subtypes10, 11, 135. In the developing olfactory epithelium, GDF11 plays a critical role in an 

autoregulatory loop, wherein newly born olfactory receptor neurons (ORNs) and their 

immediate neuronal precursor cells (INPs) signal to neighboring cells to limit the production 

of more ORNs10. ORNs and INPs secrete GDF11, which drives cell cycle exit by inducing 

upregulation of the cyclin dependent kinase inhibitor p27Kip1. Loss of GDF11 augments 

proliferation of INPs and increases the number of differentiated neurons. Conversely, 

enhanced activation of GDF11 by genetic deletion of FS leads to sharp decreases in the 

numbers of both INPs and ORNs. In the spinal cords of mice lacking GDF11, neural 

progenitor cells fail to exit the cell cycle, the rate of neurogenesis is slowed, the ratios of 

neural subtypes are altered, and the positional identities of motor neurons are 

disrupted135-137. Interestingly, in the retina, GDF11 also controls the timing of neurogenesis, 

but through a mechanism that does not involve proliferation11. Instead, GDF11 controls the 

length of time that progenitor cells are competent to produce retinal ganglion cells, and 

thereby regulates the ratio of RGCs to photoreceptors and amacrine cells.

Compared to its role in the developing nervous system, less is known about the role of 

endogenous GDF11 in the mature nervous system. Northern blot analysis of tissues from 

adult rats (3-4 weeks of age) showed high expression of Gdf11 in dental pulp and brain17. In 

the same study, RNA in situ hybridization identified specific areas of Gdf11 expression in 

the brain, including the dentate gyrus of the hippocampus, the hypothalamus and the 

Purkinje cell layer of the cerebellum17. It was recently demonstrated that systemic 

administration of rGDF11 in aged mice alters brain physiology13. Heterochronic parabiosis 

experiments showed that young systemic factors could reverse age-related neurogenic 

decline by enhancing neural stem cell production and thereby increase adult neurogenesis 

and olfactory discrimination capacities. Furthermore, youthful blood factors induced 

remodeling of the aged vasculature, restoring cerebrovascular blood flow to its youthful 

levels. Systemic injection of rGDF11 recapitulated several beneficial effects of 

heterochronic parabiosis, including vascular remodeling of the aged blood vessels in the 

subventricular zone and increased numbers of neural stem cells in this area. rGDF11 also 

induced the proliferation of brain capillary endothelial cells and activated the SMAD2/3 

pathway in vitro. The in vivo effects of rGDF11 were not as prominent as those seen with 

heterochronic parabiosis, suggesting that additional factors may be present in the young 

circulation that exerts these CNS effects138. Future studies testing different concentrations of 
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rGDF11104, different treatment lengths and co-injection of factors such as IGF-1 or EGF 

that affect neural stem cell proliferation and/or vascular behavior may clarify this issue.

The CNS effects of rGDF11 are due to exogenous/circulating protein and not to brain-

derived GDF11, whose role in the adult/aged brain is not yet understood. It will be important 

to determine if systemically administered rGDF11 crosses the blood-brain-barrier and acts 

directly on neurons and neural stem cells, or if its effects on the CNS are a by-product of its 

cerebrovascular effects. It will likewise be exciting to determine if an auto-regulatory loop 

exists between circulating and endogenous GDF11 that could amplify its effects. 

Interestingly, the effects of systemic rGDF11 are consistent with a recent report that 

constitutive activation of ALK5, a type I receptor for GDF11 and multiple TGFβs, leads to 

increased adult neurogenesis and higher expression of c-Fos in newborn neurons in the adult 

hippocampus, more complex dendritic arborization, increased neural activity, and improved 

performance in memory tests139. In addition, TGFβ1 is neuroprotective in mouse models of 

Alzheimer's disease and excitotoxicity140, 141, and a recent study also reported that GDF10, 

which activates similar intracellular pathways as TGFβ1, β2, β3, and GDF11, improves brain 

vasculature, increases neurite outgrowth, and enhances performance in behavioral assays in 

a mouse model of stroke142.

CLINICAL IMPLICATIONS OF GDF11 and MSTN

Olson, Ganz and colleagues investigated whether GDF11 and MSTN might have similar 

cardioprotective properties in humans to those demonstrated in mice143. In 928 archived 

plasma samples in subjects with stable coronary heart disease (CHD) from the Heart and 

Soul prospective observational cohort, they measured circulating levels of ligand using 

modified aptamers as binding reagents143. This assay does not discriminate GDF11 from 

MSTN; thus the measured analyte is referred to here as GDF11+MSTN. The aims of the 

study were to characterize the association of plasma levels of GDF11+MSTN in humans 

with 1) age, 2) left ventricular hypertrophy and 3) cardiovascular events and all-cause 

mortality during a median 8.9 years of follow-up. The key findings were replicated in 971 

subjects with stable CHD from the HUNT3 Norwegian cohort, with a median follow-up of 

4.5 years.

GDF11, MSTN, and age

Analysis in patients revealed an inverse relationship of plasma GDF11+MSTN to age in the 

HUNT3 cohort (Fig. 5A), which was also observed in the Heart and Soul cohort143. Despite 

the narrower age range of these human subjects compared to the extremes of age reported in 

mice12, significantly lower levels of GDF11+MSTN were detected in older compared to 

younger individuals in both patient cohorts143. This cross-sectional analysis likely 

underestimates the decline in GDF11+MSTN with age, as GDF11+MSTN is inversely 

associated with all-cause mortality; thus, surviving older individuals enrolled in these 

cohorts likely had higher GDF11+MSTN concentrations than those older individuals who 

had died and whose potentially lower levels could not be captured. Although 

GDF11+MSTN levels were higher in males compared with females enrolled in this study, an 

age-related decline in GDF11+MSTN levels was detected in both sexes143. In support, a 

recent study used mass spectrometry to quantify circulating MSTN specifically in human 
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subjects without chronic disease, and likewise reported higher MSTN concentrations in 

younger men compared to younger women, but found sex-specific differences in the effects 

of age on MSTN levels (higher MSTN concentrations in older versus younger women and 

lower MSTN concentrations in older versus younger men)131. Circulating levels of the 

antagonist FSTL3 increased with age in both sexes131. Thus, while this latter study131 

analyzed a much smaller cohort (only 40 individuals of each age/sex), together these 

reports131, 143 highlight a potential influence of age, sex, and health status on 

GDF11+MSTN levels and are consistent with an age-related loss of function of these 

ligands in humans, either through diminished protein concentrations143 or increased 

inhibition of ligand activity131.

GDF11, MSTN, and cardiovascular and all-cause mortality

A relationship of plasma GDF11+MSTN levels to cardiovascular events (heart failure 

hospitalization, stroke and myocardial infarction), all-cause deaths and their composite end-

point were also demonstrated in 971 subjects in the HUNT3 cohort (Fig. 5B)143. In both the 

HUNT3 and Heart and Soul cohorts, there was a strong, graded relationship between plasma 

GDF11+MSTN and cardiovascular and mortality outcomes143. Participants in the highest 

quartile of GDF11+MSTN had markedly lower risk of individual types of events and their 

composite end-point than those in the lowest quartile, both unadjusted (Fig. 5B) and after 

multi-variable adjustment143.

GDF11, MSTN, and left ventricular hypertrophy

Of the 928 participants in the Heart and Soul cohort, 368 had left ventricular hypertrophy 

(LVH) by echocardiography143. There was a significant, inverse, graded relationship 

between GDF11/MSTN and LVH, with 31% of participants in the highest quartile of 

GDF11/MSTN having LVH compared with 46% in the lowest quartile143.

In sum, in two large independent cohorts of patients with stable CHD, lower levels of 

GDF11+MSTN were associated with notably higher rates of incident cardiovascular events 

and all-cause deaths as well as higher prevalence of LVH. Lastly, GDF11+MSTN levels are 

lower among older compared to younger individuals. Taken in the context of mechanistic 

studies in mice, these findings in humans support the hypothesis that GDF11 and/or MSTN 

protect against adverse cardiovascular events and all-cause deaths143. More broadly, these 

findings support the hypothesis that age-related decline in GDF11+MSTN contributes to 

cardiovascular aging and mortality in humans143 as it does in mice.

Future directions for clinical research

A significant interaction was present in the multi-racial Heart and Soul cohort between race 

and GDF11+MSTN for the composite cardiovascular and all-cause mortality outcome143. 

Whites compared to non-whites had both lower levels of GDF11+MSTN and a stronger link 

between plasma GDF11+MSTN and adverse outcomes. As noted previously, 

GDF11+MSTN levels also varied by sex143. Accordingly, future studies should investigate 

in greater detail any racial and sex differences in GDF11 and MSTN levels and their 

relationship to outcomes.
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As discussed above, several endogenous inhibitors of GDF11 have been reported. These 

inhibitors may antagonize other ligands in the TGFβ family, including MSTN and 

activin67, 68, 79. Heidecker and Ganz investigated the association of GASP1, FSTL3 and FS 

with cardiovascular outcomes and all cause-mortality in the Heart and Soul and HUNT3 

cohorts, using the same archived plasma samples as for the aforementioned GDF11+MSTN 

analyses144. High levels of FSTL3 were associated with increased risk of adverse 

cardiovascular events and all-cause mortality, and the effect of low levels of GDF11+MSTN 

and high levels of FSTL3 were additive. Subjects in the least favorable quartile of 

GDF11+MSTN (lowest) and its inhibitor FSTL3 (highest) had nearly 7-fold increased risk 

of cardiovascular events and all-cause mortality144. Thus, any future studies of human 

diseases will need to consider the levels of GDF11+MSTN, levels of their inhibitors and 

their interactions.

Any therapeutic targeting of GDF11 or MSTN in humans must consider its potential adverse 

effects. GDF11 has been reported to exacerbate anemia in the setting of ineffective 

erythropoiesis145. Blocking GDF11 alleviates anemia in a mouse model of beta-thalassemia 

and also in humans146. Analysis of observational cohort studies may provide much needed 

clarity whether levels of GDF11 and/or MSTN are associated with any additional adverse 

outcomes.

CURRENT CONTROVERSIES

The suggestion that GDF11 may serve as an evolutionarily conserved age-dependent 

hormone in multiple organ systems12-14, 133, raises possibilities for manipulating this 

signaling pathway to restore or preserve function to aging tissues. Yet, this provocative 

notion also presents a new and unexpected role for GDF11 within the TGFβ superfamily, 

and contrasts with studies of many other TGFβ family proteins in aging, which have 

frequently concluded that these molecules suppress healthy tissue function during aging, 

most notably by promoting tissue fibrosis and inflammation147-150. Thus, it is not surprising 

that there has been some skepticism and even controversy surrounding these results. It is 

likely that much of this controversy reflects the fact that GDF11 is a relatively under-studied 

member of the TGFβ superfamily, particularly compared to its close relative MSTN, and 

thus the tools for studying GDF11 biology are still evolving. In addition, given the 

substantial sequence conservation of GDF11 with MSTN, many have assumed that the 

functions of these proteins should be identical7, 87. Here, we discuss some of these 

controversies and suggest strategies to resolve the apparent discrepancies to advance our 

mechanistic understanding of GDF11 functions in organ physiology and aging.

Presence in circulation and direction of change with age of circulating GDF11 protein

In 2013, we reported a significant decline in systemic levels of GDF11 in aged, as compared 

to young mice12. This conclusion was based on an aptamer-driven analysis of serum from 

young (2 mo.) versus old (24 mo.) mice performed using Somalogics SomaMERs151, in 

combination with Western blotting using a monoclonal antibody from abcam, which, at the 

time, was reported to be specific for GDF11. Subsequent reports from our group104 and 

others87, 143, 152 revealed that the SomaMER and mAb used in these initial studies cross-

react with MSTN, and so, while these studies are consistent with a reduction in the 
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circulating pool of GDF11 and MSTN in aged animals, these data cannot discriminate the 

relative impact of aging on systemic levels of GDF11 specifically. A report from Egerman 

and colleagues argued that circulating levels of GDF11 might actually increase with age, 

based on the results of Western blot, RNA expression, and GDF11-specific immunoassay87. 

However, the Western results reported by this group were based on quantification of a 

~25kDa immunoreactive band, the approximate size of the disulfide-linked mature ligand 

dimer, which was present in samples that had been reduced and denatured prior to Western 

blot analysis. Puzzled by this observation (since the blotting conditions should have reduced 

the dimeric ligand to monomer), we reproduced these experiments and confirmed that the 

~25kDa band does increase with age. However, we further demonstrated that this band is 

comprised of serum immunoglobulin, known to increase with age153, and not GDF11 or 

MSTN104. As expected, under denaturing and reducing conditions, detection of GDF11 and 

MSTN in serum is limited to the ligand monomer of ~12.5kDa, which declines with age in 

the Egerman studies87, as in prior reports12, 14. In addition, the RNA expression analysis 

reported by Egerman et al. was limited to skeletal muscle, which expresses GDF11 at 

substantially lower levels (2-3 fold) than other tissues (e.g., the spleen and kidney12, which 

may represent the predominant sources of circulating GDF11 protein). Finally, their 

immunoassay results in rats and humans were extremely underpowered (e.g., only 9 

individuals “>60 years old” were assessed in the human studies, with no evaluation of health 

status) and did not yield statistically significant differences for either species.

Studies from this group and one other103, also suggested that circulating levels of GDF11 

may be very low compared to MSTN, leading a third group154 to argue that changes in 

circulating GDF11 levels are “mostly irrelevant”. However, published mass spectrometry 

data clearly demonstrate the presence of GDF11 protein in both human and mouse sera155, 

and, many critically important bioactive hormones are present at very low levels (i.e. pg/ml) 

in circulation, including glucagon, IL6, and TNF-α156. Thus, it is difficult to infer biological 

relevance from protein concentration alone. Future studies to develop highly specific 

reagents for measuring systemic GDF11 levels using either quantitative mass spectrometry 

or antibody-based immunoassays that can reliably distinguish GDF11 from MSTN in the 

blood of both humans and mice, something that has not yet been accomplished87, 103, will be 

essential to clarify the overall abundance and age-related changes of circulating GDF11 and 

MSTN proteins. Adding to the complexity, current methods131, 154, 157, 158 only measure the 

‘total’ amount of protein and cannot account for the status of the ligand in the serum (e.g. 

free, latent or in complex with an extracellular antagonist). Finally, it is still unclear if 

GDF11 and MSTN act predominantly as systemic hormones or if they may exert their most 

potent effects locally through autocrine/paracrine mechanisms, which complicates 

interpretation of the impact on peripheral tissues of changing levels of these proteins in the 

blood. Thus, it will be important to clarify which cell types produce GDF11 and what 

pathophysiological stimuli may alter GDF11 and/or MSTN expression.

Effect of GDF11 supplementation on skeletal muscle regeneration in old and young mice

Studies investigating the effects of exogenous rGDF11 on muscle regeneration have reported 

apparently discrepant conclusions. While we reported14 that rGDF11 reverses age-specific 

muscle phenotypes and improves muscle strength, endurance and regenerative potential, 
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with no discernable effects in young mice, Egerman et al. argued instead that rGDF11 

supplementation has no effect in aged mice and may slow regeneration in young mice87. As 

discussed above, these different conclusions likely arise from differences in protein source 

and experimental design. Of particular importance is the use by Egerman et al. of a more 

severe cardiotoxin injury model125, 128, as compared to the milder cryoinjury model applied 

in our studies14 and those that originally demonstrated rejuvenation of muscle repair by 

heterochronic parabiosis159. Furthermore, in their studies of young mice, Egerman et al. 

used a markedly different dosing schedule, shortening the pre-injury treatment window from 

28 to 3 days and lengthening post-injury treatment from 7 to 14 days. They also employed 

an unconventional analysis strategy that selectively focused on tiny “fibers” that lacked 

apparent nuclei. The reported in vitro studies, also, were quite different in design, with one 

group analyzing cells purified from uninjured muscle14, and the other cells purified from 

cardiotoxin-damaged muscle87, with distinct culture conditions and time points of analysis. 

Thus, discrepancies in the reported effects of rGDF11 on muscle repair and muscle satellite 

cells may reflect differences in the recombinant protein itself, in protein dosage and 

treatment schedule, in the severity or method of muscle damage and the consequent size of 

the residual muscle stem cell pool, or in the particular culture conditions and analysis 

strategies employed. Future studies to compare these experimental conditions side-by-side 

are necessary to identify the key experimental variables that underlie the different outcomes. 

In addition, the development and use of genetic gain- and loss-of-function models, as well as 

careful dose-titration assays in mice of different ages and different muscle injury paradigms 

will be helpful in establishing phenotypic thresholds for the possible context-specific effects 

of rGDF11 in skeletal muscle.

Effect of GDF11 supplementation on cardiac hypertrophy

Our studies published in 201312 and 2015104 reported an anti-hypertrophic effect of rGDF11 

administration by comparing heart weight-tibia length (HW/TL) ratio in treated and control 

aging mice, while the study by Smith and colleagues reported no effects on the heart103. As 

discussed above, this disagreement may relate to dose-dependent effects of rGDF11 on 

cardiac mass, but it is also important to emphasize that Smith and colleagues did not observe 

changes in body weight in rGDF11 injected mice103, while we reported a significant 

decrease in body weight in aging mice with exogenous rGDF11104. Observations from our 

laboratories indicate that exogenous rGDF11 decreases body weight in old mice in a dose 

dependent manner (unpublished observation and12, 104). While rGDF11 directly activates 

cardiomyocyte SMAD signaling in cardiomyocytes104, it is also possible that the reduction 

in cardiac size with exogenous rGDF11 in vivo is due to an indirect effect of rGDF11. A 

systemic signal, possibly initiated by a reduction in body size or a change in a specific 

tissue, is quite plausible. For example, there is clear evidence for cross talk between adipose 

tissue and cardiac160, 161 and skeletal133, 162, 163 tissues. Thus, any interpretation of a direct 

effect of rGDF11 on the myocardium must be considered in the context of its systemic 

effects.

In conclusion, GDF11 has emerged as an intriguing candidate in the regulation of vertebrate 

aging and considerable progress has been made in the analysis of its role in the progression 

of age-associated disease. Future investigation of GDF11 and MSTN biology and 
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biochemistry will clarify the similarities and differences in the functions of these proteins 

and advance our understanding of organismal aging and disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard abbreviations and non-standard acronyms

ActR Activin Receptor Kinase

ALK Activin Receptor-like Kinase

BMP11 Bone Morphogenetic Protein 11

CNS Central Nervous System

EGF Epidermal Growth Factor

BW Body Weight

CHD Coronary Heart Disease

FS Follistatin

FSTL3 Follistatin-like 3

GASP Growth and Differentiation Factor-Associated Serum Protein

GDF11 Growth Differentiation Factor 11

GDF8 Growth Differentiation Factor 8

HW/TL Heart Weight/Tibia Length

IGF1 Insulin-like Growth Factor 1

IL6 Interleukin 6

INPs Immediate Neuronal Precursors

LTBP Latent Transforming Growth Factor β Protein

LVH Left Ventricular Hypertrophy

MSTN Myostatin

ORNs Olfactory Receptor Neurons

rGDF11 Recombinant GDF11
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SMAD Mothers Against Decapentaplegic

SNP Single Nucleotide Polymorphism

TAC Transverse Aortic Constriction

TGFβ Transforming Growth Factor β

TLD Tolloid-like

TNFα Tumor Necrosis Factor α
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Figure 1. Biosynthesis and proteolytic processing of GDF11 and MSTN
A) Schematic of GDF11/MSTN monomer and relative position of proteolytic sites. B) 

Ordered proteolytic processing necessary to release an active dimer to elicit signaling.
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Figure 2. Structure of MSTN and reported elements of GDF11/MSTN
A) The symmetrical MSTN dimer forms two distinct interfaces, concave and convex, for 

receptor binding (PDB 3HH220). B) GDF11 and MSTN induced canonical and non-

canonical signaling. Known extracellular regulators and pharmacological inhibitors of 

GDF11 and MSTN are listed.
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Figure 3. Structural organization of the TGFβ1 prodomain and comparison of GDF11 and 
MSTN prodomains
A) Structure of the TGFβ1-prodomain latent complex (PDB 3RJR 42). Key regions identified 

in the TGFβ prodomain for conferring inhibition of the mature domain are highlighted 

(dotted box on the left is shown as the inset). B) Sequence alignment of human GDF11 and 

myostatin prodomains with topology based on the TGFβ structure. Known proteolytic sites 

and residues important for each proteolytic event are highlighted (furin: red; TLD: orange).
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Figure 4. Structural organization and comparison of GDF11 and MSTN mature domains
MSTN dimer is shown where one monomer colored to show three sub-divisions of the 

ligand (finger 1: blue; wrist: orange; finger 2: magenta), which correspond to the colors in 

the sequence alignment below. Residues that differ between GDF11 and myostatin are 

shown as spheres. Differences are localized predominantly to the Type I site. Topology in 

the sequence alignment is an extension of the topology shown in Figure 3 and delineated by 

the structure of myostatin (PDB 3HH220). Cysteines (yellow) and corresponding 

intramolecular (solid black line) and intermolecular (dotted line) disulfide linkages are 

shown.
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Figure 5. GDF11/MSTN in humans
A) Incidence of heart failure hospitalization, stroke, myocardial infarction, all-cause death, 

and their composite end-point in the HUNT3 cohort, unadjusted, stratified by quartile of 

GDF11+MSTN. Quartile 1 is the referent quartile with the lowest GDF11+8 concentrations. 

P-values for trend are <0.001 for heart failure, death, and composite end-point, 0.004 for 

stroke, and 0.02 for myocardial infarction. B) GDF11+MSTN levels by age in HUNT3 

cohort, unadjusted. Inner line = median, box 25th-75th percentile, outer whiskers denote 

adjacent value 1.5 times height of box. Units = relative fluorescence units. P-value is < 

0.001. This figure is reproduced from Olson et al.143 with permission from the European 

Heart Journal.
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Table 1

Comparison of developmental expression patterns and phenotypes in GDF11- and Myostatin-deficient mice.

Tissue/Phenotype MSTN GDF11

Predominant expression pattern Developing and adult skeletal 
muscle1

Primitive streak and tail bud
Expressed in developing limb 
buds2, 7, 17, 164

MSTN KO GDF11 KO MSTN/GDF11 DKO

Premature lethality No1, 7 Yes – perinatal2, 7 YES – born at expected ratio 
but none born alive2

Bone NR Anterior homeotic transformation of 
the axial skeletal (transformation of 
posterior vertebrae to anterior identity) 
via altered HOX gene expression on 
A/P axis2; Increased frequency of cleft 
palate7

More severe homeotic 
transformations than 
GDF11KO
All have cleft palate; 
Additional skeletal defects, 
including limb defects (extra 
forelimbs, shortened limbs), 
Digit patterning defects (sixth 
digit)7

Kidney NR Most have Renal agenesis165 All have renal agenesis7

Pancreas NR Reduced pancreas size due to exocrine 
hypoplasia; 2-4 fold increase in 
endocrine progenitor cells by E18166

Increased number of islet progenitors8

NR

Olfactory epithelium NR Increased number of olfactory neurons 
and neuronal progenitors10

NR

Retina NR Increased number of retinal ganglion 
cells and reduced number of retinal 
amacrine cells and photoreceptors11

NR

Skeletal muscle Myofiber hyperplasia and 
hypertrophy1, 112, 167

None reported (perinatal lethality) NR (perinatal lethality)

Stomach NR Two-fold reduction in the thickness of 
gastric wall with reduced number of 
characteristic folds8

NR

Fat Increased BW with decreased 
lipid content, decreased serum 
lipid and triglyceride 
levels6, 102, 168

None Reported– but analysis limited 
due to perinatal lethality

NR (perinatal lethality)

Heart Increased HW and BW169 NR (perinatal lethality) NR (perinatal lethality)

Conditional MSTN KO in 
skeletal myofibers only (in 
MLC-cre X MSTN-flox)

Conditional GDF11 KO in skeletal 
myofibers only (in MLC-cre X 
GDF11-flox mice)

Conditional KO of GDF11 
and MSTN in skeletal 
myofibers only

Adult skeletal muscle Two-fold increase in young 
adult muscle mass (due to 
hyperplasia and hypertrophy); 
not apparent at birth (emerges 
postnatally); more glycolytic 
fibers (IIB)7

No increase in young adult muscle 
mass; no change in fiber type7

Same as MSTN conditional 
KO; no increase in phenotypic 
severity7

Conditional MSTN KO in 
cardiac myocytes only

Conditional GDF11 KO in cardiac 
myocytes only

Conditional KO of GDF11 
and MSTN in cardiac 
myocytes only

Cardiac myocytes Did not prevent left ventricular 
decompensation after TAC97. 
Cardiac hypertrophy and 
hearth failure, but cardiac 
function is restored after 
several weeks88, 101

N/A N/A
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GDF11 and MSTN exhibit many similarities in their biosynthesis, regulation, receptor utilization, and intracellular signaling pathways. Yet, the 
consequences of loss of Gdf11 or MSTN expression in mice are phenotypically distinct. Comparative analysis suggests only partial functional 
redundancy. See text for details. NR - not reported
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