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ABSTRACT Obstructive sleep apnea (OSA) is a common sleep disorder found in 24% of adult men and 9%
of adult women. Although continuous positive airway pressure (CPAP) has emerged as a standard therapy
for OSA, a majority of patients are not tolerant to this treatment, largely because of the uncomfortable
nasal air delivery during their sleep. Recent advances in wireless communication and advanced (‘‘bigdata’’)
preditive analytics technologies offer radically new point-of-care treatment approaches for OSA episodeswith
unprecedented comfort and afforadability. We introduce a Dirichlet process-based mixture Gaussian process
(DPMG) model to predict the onset of sleep apnea episodes based on analyzing complex cardiorespiratory
signals gathered from a custom-designed wireless wearable multisensory suite. Extensive testing with signals
from the multisensory suite as well as PhysioNet’s OSA database suggests that the accuracy of offline OSA
classification is 88%, and accuracy for predicting an OSA episode 1-min ahead is 83% and 3-min ahead is
77%. Such accurate prediction of an impending OSA episode can be used to adaptively adjust CPAP airflow
(toward improving the patient’s adherence) or the torso posture (e.g., minor chin adjustments to maintain
steady levels of the airflow).

INDEX TERMS Sleep apnea, Gaussian mixture model, Nonlinear dynamical systems, Biomedical
telemetry.

I. INTRODUCTION
Obstructive sleep apnea (OSA) is a common sleep disorder
that affects 24% of adult men and 9% of adult women [1], and
is symptomatic in a third of that population. An OSA episode
is marked by the obstruction of pharyngeal airways resulting
in interruption of the airflow during sleep. It is known to
reduce sleep quality and affect allied physiological processes
vital for the cognitive and restorative functions of sleep [2].
Furthermore, due to irregular sympathetic stimulation at the
end of the obstructive phase, untreated OSA patients are
also at increased risk for developing cardiovascular disor-
ders, such as hypertension, coronary artery diseases, and
stroke [3].

Noninvasive ventilation therapies, such as continuous pos-
itive airway pressure (CPAP), which are based on delivering
air at a pre-determined pressure into the pharynx, and other

oral appliances designed to prevent throat constrictions and
deliver oxygen to the lungs continuously are used to treat
OSA. Such treatments can minimize the severity of sleep
apnea (measured in terms of an apnea-hypoapnea index AHI)
and thereby improve sleep quality, subjective wellness, and
mental health, and reduce stroke risk [4].
Despite its wide use, an estimated 46–83% of patients with

OSA have been reported to be nonadherent to the use of CPAP
beyond four hours. The main reason is that CPAP devices
often over-treat air supply to accommodate the differences
in respiration patterns during the different sleep stages (e.g.,
REM, N1, N2) [5], and such excessive unconditioned airflow
often leads to extreme nasal dryness and congestion [6, 7].
As an improvement over conventional CPAP, auto-adjustable
CPAP, also referred to as APAP devices, can automatically
adjust the pressure level based on the patterns gleaned from
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the sensor measurements of physiological factors such as
sleep stage, snoring severity, oxygen saturation, and respi-
ratory impedance. However, the therapeutic effectiveness of
APAP’s rather reactive, intermittent adjustment of pressures
based on the measurements has been questioned [8, 9]. Also,
due to the costs associated with the sensors for measuring
multiple physiological variables, as well as the need (for an
expensive pump) to effect sudden changes in the pressures
and flow rates in response to sensor measurements, APAP
devices tend oftentimes to be prohibitively expensive. The
forecasting of OSA events using the information gathered
from one channel of ECG signal for effecting proactive
adjustments of airflow and body positions would provide a
cost-effective means to mitigate OSA and improve the adher-
ence of the patient to the CPAP therapy. Such a prediction-
based approach requires a wearable multisensory suite for
continuous data acquisition during sleep and methods to track
and forecast the evolution of cardiorespiratory dynamics from
measured signals. While some advances in wearable sensors
for sleep monitoring have been reported, little, if any, work
has been reported towards using signals acquired from these
units for the prediction of OSA episodes.

In this paper, we introduce a method based on using data
gathered from a wireless wearable multisensory suite to pre-
dict the occurrence of sleep apnea events. A preliminary
version of this paper was presented at an earlier confer-
ence [10]. A unique wireless wearable multisensory suite has
been developed to continuously collect cardiac and respira-
tory signals in real-time during sleep. Quantifiers of the cou-
pled nonlinear and nonstationary cardiorespiratory dynamics
underlying the measured signals [11] are used as the inputs
to predict the onset of sleep apnea events. We developed
a novel Dirichlet process based mixture Gaussian process
(DPMG) model to predict the complex evolution of the OSA
signatures. As mentioned above, these predictions can be
timely for automatic adjustment of airway pressure patterns
in CPAP, supplemental oxygen devices, or to change the body
posture, such as a slight adjustment of torso or chin position
to avert the collapse of the airways, which precedes an OSA
episode. Continuous OSA monitoring and prediction using
the wireless wearable multisensory suite can thus improve
the efficiency of OSA treatment, especially in out-of-hospital,
point-of-care settings.

II. BACKGROUND AND LITERATURE REVIEW
The field of medicine is on the verge of transformation, where
healthcare will be provided on a personal basis to prevent an
illness rather than treat it post-trauma. This systems approach
to personalized healthcare is based on integrating concepts
of systems biology and medicine known as P4: personalized,
predictive, preventive, and participatory medicine [12]. Much
of the current P4 emphasis is on collecting physiological data
from ECG, CAT scan, genomic data, diet, etc., into large data
warehouses and using advanced information infrastructures
for predicting and monitoring chronic non-communicable
diseases [12, 13]. It has also been noted that early detection

of acute disease episodes through noninvasive monitoring is
effective for patients with chronic disorders because treatment
costs escalate exponentially with delay in detection [14].
Among chronic conditions, OSA and sleep-related breath-

ing disorders affect one-fourth of the US population [15].
Several OSA detection and prediction approaches based
on correlating the statistical patterns of heart rate, res-
piration rate, and oxygen saturation (SpO2) signals dur-
ing OSA episodes have been attempted [16]. For example,
spectral energy of intrinsic mode functions was extracted
from the empirical mode decomposition of flow rate sig-
nals (from a CPAP machine) to estimate the likelihood of
OSA episodes [17]. Similarly, discrete wavelet transforma-
tion coefficients of the thoracic effort signals have been used
as the inputs for neural network to identify subjects with
OSA [18]. Although considerable attention has been given to
OSA detection methods, prediction (forecast) of an impend-
ing OSA episode, necessary for calibrating CPAP therapy, has
not been reported in the literature. The few currently reported
(e.g., dynamic belief networks [19, 20]) use limited data from
OSA patients to predict OSA episodes ∼1 sec ahead or just
to predict the evolution of the physiological signals (i.e., heart
rate, chest volume, blood oxygen saturation). These methods
do not capture variations in the nonlinear and nonstationary
dynamics of the cardiorespiratory system responsible for the
onset of OSA or sleep-related breathing disorder events. Also,
the development of a wearable multisensory unit that would
facilitate gathering the signals necessary for prediction with-
out causing palpable discomfort remains elusive. The present
work is aimed at addressing these gaps.
The present approach uses a wearable multisensory wire-

less unit customizable to the specific conditions of the patient
such as age, gender, BMI, and diseases for continuous mon-
itoring and prediction of OSA episodes. Also, since the
underlying cardiorespiratory dynamics are nonlinear, signal
analysis, and prediction methods based on the nonlinear and
nonstationary characteristics were investigated to establish
these relationships.

III. RESEARCH APPROACH
The key contributions of the present research are in (a) the
development of an economical, wearable wireless multisen-
sory unit capable of measuring signals essential for sleep
monitoring, including ECG, heart sound, respiration, and
SPO2, synchronously without posing significant discomfort
or constraints onmotion, and (b) a method to provide accurate
prediction of an impending OSA episode by considering
the nonlinear and nonstationary cardiorespiratory dynamics
underlying the measured signals and the features extracted
therefrom. As summarized in Fig. 1, we use data fromApnea-
ECG database (from Physionet.org) as well as signals gath-
ered from our wearable multisensory unit for training and
testing of the predictor and classifier. While the Apnea-
ECG database consists of signals gathered from chronic OSA
patients, the signals from the wearable multisensory unit were
gathered frommostly healthy subjects (to assess false positive
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rates). Various quantifiers of the topology of the nonlinear
attractor of cardiorespiratory dynamics reconstructed from
the measured signals were extracted as features ϑ to iden-
tify an OSA event using a support vector machine (SVM)
classifier. The evolution of ϑ(t) was tracked using a non-
parametric Dirichlet process based mixture Gaussian process
(DPMG) prediction method that effectively captures nonlin-
ear nonstationary dynamics. The k-step (minutes) look-ahead
predictions ϑ̂(t + k) of feature values were used to detect
an impending OSA episode 1–3 minutes before the event
takes place with an accuracy of 70–90%. Such predictions
can be vital to initiate adjustments or therapeutic interventions
to avert an impending OSA episode [21]. The remainder
of this section describes the two main contributions of this
paper, namely the multisensory suite and the OSA prediction
method.

Data Source
-PhysioNet database

-OkState Lab

Feature extraction
-Power spectrum density

-RQA measures

Feature predictor
Dirichlet process based 

mixture Gaussian process

Sleep apnea classifier
Support vector machine

OSA episode prediction

Apnea annotations

Training phase Testing phase

FIGURE 1. Overview of the approach for OSA episode prediction.

A. WIRELESS WEARABLE MULTISENSORY PLATFORM
We have developed a multisensory platform capable of
synchronously gathering multiple heterogeneous signals,
including VCG, ECG, sound, and respiration (see Fig. 2 for
screenshot of real-time streaming VCG, 3-D color coded
VCG, and a standard display of 12-lead derived ECG), and
wirelessly transmitting the data to a host computer for online
OSA prediction and subsequent therapeutic decision support.
Such multi-channel data is necessary to track the dynamic
decouplings known to precede the state transitions that lead
to the onset of OSA episodes. Novel aspects of the proposed
multi-sensor unit are as follows. (1) The sensors are judi-
ciously chosen to capture the complementary aspects of
the heart operation, viz. electrical (ECG), acoustic (sound),
and mechanical (respiration). (2) Due to the use of MEMS
technology, the total footprint of the wireless unit is highly
adjustable and remains lightweight, and hence highly wear-
able. (3) The hardware platform in this context contributes
towards affordable, yet powerful, and early warning (prog-
nostic) systems for sleep apnea treatment. (4) The wireless
(Bluetooth) platform along with the sensors and microproces-
sor components are integrated into a customized garment to
continuously monitor and predict sleep apnea episodes [22].
The wireless design utilizes a Class I Bluetooth device with
response frequency range of 0.176–90 Hz, sampling rate of
up to 2 kHz, and 16 bit resolution.

We have embedded the multisensory platform as part of
a sleepwear shirt (see Fig. 3) to enhance the wearability
of the sensor suite. The fusion of information from VCG,

FIGURE 2. Screenshot of 3-channel streaming VCG, 3-D color coded
dynamic VCG, and 12-lead transformed ECG signals.

FIGURE 3. A prototype of the wireless wearable multisensory suite.

heart sound, and respiration provide adequate information
to track variations and detect transitions in cardiorespiratory
dynamics during sleep.

B. PREDICTION MODEL
Among nonparametric prediction models, Gaussian process
(GP) can simplify the modeling efforts, but the computa-
tional overhead with covariance matrix inversion scales as a
cube of the signal length and the assumption of a stationary
covariance function impede its wide applications. In our pre-
vious work [23], we used local Gaussian process (LGP) to
address the nonstationarity issue. We used local topological
characteristics including recurrence properties of dynamics
reconstructed from a signal to partition the signal into near-
stationary segments. While prior investigations suggest that
LGP can be effective in predicting the evolution of nonlinear
nonstationary processes, one needs to specify the threshold
of a correlation index to determine the boundaries in the state
space. Furthermore, estimation of the topological characteris-
tics (in the form of recurrence maps) can be computationally
intensive and somewhat sensitive to parameters such as the
threshold. Towards addressing this limitation, we have inves-
tigated a Dirichlet process based Gaussian process mixture
(DPMG) model to predict the evolution of the signal features.
In the DPMG model, the state space reconstructed from

a signal feature is partitioned into various clusters using
a Dirichlet process [24], such that each cluster follows a
multivariate Gaussian distribution. A local GP expert f can
be fitted for each cluster. A GP expert model [23] seeks a
mapping ϑ = f (x) + ε where x(t) ∈ Rd is the input vector
for the prediction model comprised of historic realizations of
an extracted feature, ϑ(t + 1) ∈ R is the output (‘‘future
feature’’), and ε ∼ N (0, σ 2

noise). In DP, the symmetric prior
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assignment probability for K clusters can be given as [24]

p (π) = p (π1, π2, . . . , πK |α) ∼ Dir
( α
K
, . . . ,

α

K

)
=

0 (α)

0
(
α
K

)K ∏k
π

α
K −1
k (1)

where α > 0 is a concentration parameter. This is conju-
gate to the multinomial distribution of cluster indicators of
n data points, p (c1, c2, . . . , cn|π) =

∏K
k=1 π

nk
k (where nk

is the number of data points in each cluster,
∑
nk = n).

The following holds for the posterior distribution:
p (π |c1, c2, . . . , cn) ∝ p(c1, c2, . . . , cn|π )p(π ), and

p (π |c1, c2, . . . , cn)=
0 (α+n)∏K

k=1 0(
α
K +nj)

∏K

k=1
π

α
K +nk−1
k .

That said, p (π | c1, c2, . . . , cn) ∼ Dir( αK + n1, . . . ,
α
K + nK ),

and as K → ∞, we can update the posterior indicator
distribution using Gibbs sampling

p (ci = k | c−i, α) ∝
n−i,k

n− 1+ α

p (ci 6= ck∀k 6= i | c−i) ∝
α

n− 1+ α
(2)

where n−i,k is the number of data points in cluster k before
the assignment of data point i. The distribution for a new
input within a mixture clusteris p (x∗ | c = k, µk , 6k) ∼

N (µk , 6k). Here, the parametersµk and6k are the mean and
the covariance for cluster k , with Gaussian distribution and an
inverseWishart distribution prior, respectively. We can obtain
the weight for each cluster as

wk = p (c = k | x∗) =
p(x∗|c = k)p(c = k)∑K
k=1 p(x∗|c = k)p(c = k)

. (3)

For a realized signal feature (i.e., input) x∗, we can obtain
local predictions ϑ̄k (k = 1, 2, . . . ,K ) from each local GP
expert

ϑ̄k = Q (Xk , x∗)
′
[
Q (Xk ,Xk)+ σ 2

noiseI
]−1

ζk

cov (ϑk) = Q (x∗, x∗)−

Q (Xk , x∗)
′
[
Q (Xk ,Xk)+ σ 2

noiseI
]−1

Q(Xk , x∗). (4)

Here, Xk=
[
xk1 , . . . ,x

k
nk

]′
and ζk=

[
ϑk
1 , . . . ,ϑ

k
nk

]′
, are the

observation samples (input and output) in cluster k , and Q is
the covariance matrix defined in terms of a covariance func-
tion [23]. Then the prediction for input x∗ can be expressed
as a weighted sum

ϑ∗ =
∑K

k=1
wk ϑ̄k . (5)

For multi-step predictions, after the first step, the input to
the DPMG model is a Gaussian random vector, as obtained
from previous-step prediction.We assume the new input x∗ ∼
N (µx∗ , 6x∗ ), where µx∗ and 6x∗ can be estimated from
Eq. (4). The output distribution in each cluster is given by

P
(
f (x∗)|µx∗ , 6x∗ ,Xk , θk

)
= ∫P (f (x∗)|x∗,Xk , θk)P (x∗) dx∗. (6)

The integration in Eq. (6) is a complicated function of x∗,
a closed form expression for the output distribution was not
sought, and we used a Monte Carlo approach to approximate
the expression at the right side of (6) as

P
(
f (x∗)|µx∗ , 6x∗ ,Xk , θk

)
=

1
T

∑T

t=1
P
(
fx∗(t)|x∗(t),Xk , θk

)
(7)

where T = 2000 is the total number of random sam-
ples. The expert function is evaluated with samples from
the random input distribution N (µx∗ , 6x∗ ), and the average
is used as the predicted feature value. The performance of
the DPMG model for multi-step ahead prediction of sleep
apnea was compared as part of the following validation study
with that from the Autoregressive Moving Average (ARMA)
and Empirical Mode Decomposition (EMD) prediction
techniques [25].

C. CLINICAL VALIDATION
The two sources of data used in this research are collected
from the Apnea-ECG Database–Physionet.org and from the
wireless multisensory platform developed by COMMSENS
(OkState) lab as reported in the foregoing. The first source
of data consists of 20 recordings that include an ECG signal
sampled at 100 Hz, 16 bit resolution, synchronized with a
set of minute-wide apnea annotations. The annotations of
sleep apnea are made by a human expert and are based on
supplementary signals including chest and abdominal respi-
ratory effort, oronasal airflow, and oxygen saturation signals.
The second source of data was collected from six healthy
male subjects and two subjects with suspected sleep apnea
(age range of 25–40) using the wireless wearable multisen-
sory suite. The subjects participating in this research were
trained with professional technicians at the COMMSENS lab
to use the devices and the accompanying software. How-
ever, because of the nature of the sleep testing procedure,
the data collection processes were performed entirely at the
subject’s home. In addition to the suite, a portable sleep
recording device (from Zeo) with automated algorithms to
distinguish between sleep and wakefulness stages [26], was
used to record the sleep stages and rate the sleep quality
using an average sleep score. Both the multisensory suite
and the portable sleep monitoring device wirelessly record
sleep stages and provide sleep and wakefulness patterns that
are quantified into four stages of sleep: wakefulness, rapid
eye movement (REM) sleep, light sleep (combined Stages 1
and 2 of sleep), and deep sleep (combined Stages 3 and 4 of
sleep) [27]. The portable sleep recording device with a subject
wearing the multisensory suite is shown in Fig. 4. Software
with an appropriate graphical user interface was provided to
assist subjects with data collection.
The procedure for clinical validation in this paper consists

of collecting signals from the multisensory suite and the
portable sleep device for two consecutive nights from each
subject. For the first experimental epoch (sleep through one
night), each subject was requested to use only the sleep device
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FIGURE 4. A multisensory suite with portable sleep monitoring device.

(from Zeo) during sleep. The sleep pattern and quality score
from the sleep device were collected. The purpose of this
experiment is to collect the sleep quality score of subjects
without wearing the multisensory suite, for validation pur-
poses. For the second experimental epoch (i.e., the second
night), the subject(s) donned the multisensory suite and used
the sleep device. The signals from both devices were collected
in real-time and saved in a secure location in a computer
accessible via a relational database management system. The
purpose of this experiment was to validate the effect of wear-
ing the wireless multisensory suite on sleep quality, as well as
to glean circumstantial estimates of the accuracy (sensitivity
and specificity) of the predictions compared against the sleep
stage transitions recorded by the sleep device and the signals
picked up by the sound sensor.

IV. IMPLEMENTATION DETAILS AND RESULTS
A. FEATURE EXTRACTION
First, a band-pass filter with a pass band in the range of
0.06–40 Hz was employed to remove the noise, artifacts, and
base-line wandering and retain the critical features for the
R peak extraction from the VCG signals. After de-noising,
the R peaks of the ECG signal are detected by using wavelet
transformation [28]. The heart rate time series known as
RR intervals is calculated as the time difference between
consecutive R peaks. Abnormal heart rates characterized by
at least 80% increase over the previous beats are eliminated.
The power spectral density (PSD) of the RR intervals in a
low frequency band (0.04 to 0.12 Hz) is used to capture the
heart rate variability in OSA patients. The PSD time series is
formulated such that each point is the average power spectral
density of one minute of the RR interval time series. The
normalized PSD (NPSD) feature is considered to account for
inter-subject variability.

Recurrence quantification analysis (RQA) is employed to
capture the nonlinear and nonstationary characteristics of
the RR interval signals. The time delay ζ = 5, which is
determined based on the mutual information test [29], and
the embedding dimension d = 7, based on the false nearest
neighbors test [30], were used to reconstruct the phase space.
The threshold of the recurrent plot is identified as 10% of the
maximum phase space diameters [31]. The RQA features are
extracted based on a sliding window concept with a window
size of 600 data points and a sliding step of 60 data points
corresponding to a 10 min length and a 1 min step of the

RR interval time series, respectively. The 10 min length for
the sliding window was selected to accommodate the longest
likely sleep apnea episode a subject may experience. The
sliding step of 60 sec is sufficient to characterize the cyclic
variance of the heart rate which ranges from 20 to 60 sec.
The recurrence features of each sliding window extracted
from the recurrence plot of the 10 min RR interval in the
phase space qualify for the recurrent characteristics of heart
rate variability in OSA patients. The features extracted from
the recurrence plot are the recurrence rate (RR), determinism
(DET), average length of the diagonal lines (DIA), length of
the longest diagonal line (LMAX), entropy (ENT), laminarity
(LAM), trapping time (TT), length of longest vertical line
(LVM), recurrence time of 1st type (RT1), recurrence time of
2nd type (RT2), recurrence period entropy density (RENT),
and transitivity (TRAN). Further details of these quantifiers
are described in the appendix.

B. CLASSIFICATION MODEL FOR OSA IDENTIFICATION
We employed a nonlinear support vector machine (SVM)
classification model to discern sleep apnea events based on
the extracted PSD and RQA features. An SVM classifier
separates a set of binary labeled training data with a max-
imal margin hyper-plane, i.e., it is oriented as far away as
possible from the closest members of both classes (known as
the support vectors) [32]. If no linear separation exists, the
original input space of features xi is transformed to another
isomorphic space where the training set becomes linearly sep-
arable or mostly linearly separable. We need not compute the
transform ϕ(.) explicitly; instead we only need to estimate the
inner product of the mapped patterns, k(xi,xj)=〈ϕ(xi), ϕxj〉
where 〈 〉 denotes the inner product. The inner product
is expressed as a linear combination of specified kernel
functions. Based on the kernel function used, SVMs are cate-
gorized into linear, (Gaussian) radial basis function (RBF),
polynomial, and multilayer perceptron classifiers. In the
present work, we selected the Gaussian RBF kernel based on
its superior performance over other classifiers in K-fold cross
validation studies.
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FIGURE 5. KS statistic variations of extracted features. KS statistic
indicates the maximal feature distribution differences between sleep
apnea and non-apnea groups.

To reduce the high dimensionality of the input space
(14 features), the features that most effectively classify the
input space into sleep apnea and non-apnea groups were
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(b) (a) 

NonApnea 
 Cluster 

FIGURE 6. (a) Distribution of apnea and nonapnea events in 2D feature
space (NPSD and LVM). (b) The classification boundary of the selected
Gaussian RBF kernel used as part of the SVM classifier.

TABLE 1. Comparison of the accuracy (sensitivity and specificity) of
support vector machine classification at different training levels.

selected based on the Kolmogorov−Smirnov (KS) statistic.
Fig. 5 shows the KS statistic values of 14 features. The two
significant features with the highest KS statistic—NPSD and
LVM—were selected as the inputs of the classifier. Fig. 6(a)
shows the distribution of the sleep apnea and nonapnea events
in the 2D feature space of NPSD and LVM and Fig. 6(b) the
classification boundary using Gaussian RBF. It may be noted
that the nonapnea feature values are clustered in the green dot
circle with low NPSD and LVM values. Table 1 summarizes
the sensitivity and specificity of the classification with differ-
ent percentages of training data. It is noted that the average
sensitivity and specificity for all classification cases are above
75% with standard deviation <6% even with 10% of the data
for training.With 90% of data used for training, the sensitivity
and specificity increased remarkably to 92.56% and 86.92%,
respectively. The high classification accuracies possible from
the SVMmodel allows the use of the feature values predicted
from the DPMG model to forecast the onset of an impending
apneic event.

TABLE 2. Comparison of the accuracies for 1 min and 3 min look-ahead
predictions of OSA episodes with different models.

C. PREDICTION RESULTS
Among the prediction methods tested, DPMG yields the
highest R2 and classification accuracy for different prediction
horizons as summarized in Table 2. Here we quantified the
performance of the feature predictions in terms of the R2

statistic, and the performance of overall apnea event forecasts
in terms of classification accuracy. It is noted that the DPMG
model performs better than the classical ARMA and EMD
models both in prediction and classification. Furthermore,

when the prediction horizon increases, the accuracy of the
DPMG model does not drop significantly. Fig. 7 shows the
training and prediction data of the LVM, NPSD features and
the sleep apnea status with the prediction point started at the
341st min. It is observed that the DPMGmodel with different
prediction horizons can capture the trend and the amplitude
of the observation features. Thus it yields reasonably high
prediction accuracies of apnea conditions (i.e., 83%
for 1 step-ahead prediction and 77% for 3 step-ahead
predictions).

FIGURE 7. Observation from 300th to 380th min and multiple step-ahead
predictions from 341th to 380th min of sleep apnea status, LVM, and
NPSD features from patient a05.

TABLE 3. Comparison of the average percentage of time durations in four
stages of sleep with and without donning the wearable multisensory
suite.

Table 3 summarizes the average percentage of the total
sleep time spent in each of the four stages of the sleep,
namely, awake, rapid eye movement (REM), light sleep and
deep sleep. The average was computed using the recordings
of the portable sleep device taken from eight subjects over
two nights with and without donning the multisensory suite.
It may be noted from the table that no significant changes
exist in any of the four sleep stages between the ‘‘No Suite’’

FIGURE 8. Real-time sound signal, sleep stage pattern, and one-minute
ahead prediction of sleep apnea in subject ID008 from the starting of
sleep to 350th min.
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and ‘‘With Suite’’ cases. This indicates that the multisensory
suite may not adversely affect the quality of the sleep from
a ‘‘comfort of wear’’ standpoint. All the eight subjects who
have participated in this paper have also affirmed that they
found it comfortable to wear the suite to sleep.

Fig. 8 shows a representative 350 min long signal seg-
ments collected from a subject who donned the multisensory
suite to sleep for 434 minutes. This subject suspects that he
suffers from sleep apnea and showed several signs of sleep
apnea including loud snoring and disturbed sleep. The signals
shown in the figure include synchronously gathered sound
(black), sleep stage (blue) signals along with the online one-
minute-ahead sleep apnea predictions (red). The start of the
signal strip coincides with the time when the subject begins to
sleep, as indicated by the transition from wake to light sleep
stage. It may be noted that no apneic episode was predicted
during the 25 min long deep sleep, or during the stable light
sleep stage in the 200–300 min range. More pertinently, the
first apnea event predicted at the 60 min mark precedes the
transition from a deep to light sleep. Also the 2nd, 3rd, 4th,
6th, 7th, and 9th apnea events are predicted near the transitions
from a deep sleep to a light or REM sleep. Two apparent false
positive apnea predictions (events 8th and 10th) occur at 225th

min and 336th minmarks in REM sleep stage. Offline training
epochs to estimate the parameters of the classification and
prediction models using the longitudinal data collected from
a subject might further improve the sensitivity and specificity
of the predictions.

V. CONCLUSION
We have developed an approach to provide 1–3 min ahead
early warning of an impending sleep apnea episode based on
using a wearable wireless multisensory suite and a novel non-
linear nonstationary process predictionmethod. The wearable
wireless multisensory system can serve as a viable platform
to continuously and noninvasively acquire physiological sig-
nals to track cardiorespiratory dynamics, and quantitatively
assess apneic conditions for prediction of OSA episodes.
Testing of the wearable sensory suite among eight mostly
healthy subjects suggests that our sensory suite does not
adversely impede the comfort and quality of sleep. The pre-
diction approach was extensively tested using 20 record-
ings from the Physionet database and 10 recordings from
8 subjects wearing the multisensory unit. These tests indi-
cate that the classification and prediction accuracies (R2) of
70–90% are possible from the present approach. It was also
evident that the longest vertical length (LVM) of the recur-
rence plot and normalized power spectral density (NPSD)
are the most sensitive features for OSA episode prediction
with offline OSA classification accuracy of up to 88%. More
pertinently, DPMG was shown to provide OSA prediction
accuracy of 83% 1 step-ahead and 77% for 3 steps-ahead.
This amounts to some 20–40% improvement in prediction
accuracy compared to other methods tested. Such early pre-
diction can spur the development of adaptive flow control
systems for CPAP devices and may lead to the advent of

devices to induce minor adjustments to body positions to
mitigate OSA.
The ongoing investigations are focused on testing the

approach on additional subjects to extract consistent
benchmarks of the performance of the multisensory suite
and the prediction method. Also, it may be noted that the
predictions reported in the present work are based on the SVM
classification model derived from multiple subjects. We are
currently investigating the customization of the classification
and predictions to subjects, which we believe can further
improve the performance of our approach. Additionally, we
are pursuing methods to mitigate OSA episodes that take
advantage of the early prediction capability.
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